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PREFACE 
 

The 7th International Conference on Education Data Mining held on July 4th -7th, 2014 at the 
Institute of Education, London, UK is the leading international forum for high-quality research 
that mines large data sets in order to answer educational research questions that shed light on the 
learning process. These data sets may come from the traces that students leave when they 
interact, either individually or collaboratively, with learning management systems, interactive 
learning environments, intelligent tutoring systems, educational games or when they participate 
in a data-rich learning context. The types of data therefore range from raw log files to eye-
tracking devices and other sensor data. Being hosted in London, UK the theme of the conference 
is "Big Data - Big Ben - Education Data Mining for Big Impact in Teaching and Learning".  
 
In our 7th consecutive year of EDM conferences, it is clear that the field is continuing to grow at 
a rapid pace. With renewed focus on education driven by big data learning analytics has put the 
EDM field in the center of growing interest. Traditional educational technologies, intelligent 
tutoring systems, educational games, and learning management systems all continue to generate 
growing amounts of data that are becoming available for analysis. The new interest in MOOCs 
and their promise to reach thousands or even hundreds of thousands of students per class requires 
techniques for feedback and grading that are being researched in the EDM domain. The 
conference submissions this year also continue to grow. This year we had 142 submissions as 
full or short papers representing a 30% increase over 2013. The program committee reviewed all 
submissions and based on the reviews the program chairs accepted 24 full papers and 34 short 
papers making the acceptance rate 17%  (full)  and 41% (full and short) respectively. Selecting 
the papers as such allows for full papers to be presented in a single track format.  
 
Continuing the successful mini-tutorial sessions offered at EDM 2013, we also have a full 
workshop and tutorial program this year with 4 workshops and 4 tutorials held on the first day of 
the conference. One page abstract of each workshop is included in these proceedings. The full 
proceedings can be found on CEUR:  http://ceur-ws.org/Vol-1183/ 
 
A tremendous amount of work has gone into bringing this conference together and we personally 
thank all of those who have contributed including the organizing committee, the program 
committee, additional reviewers, and the invited speakers. Also, we give a big thanks to our 
record number of sponsors for their generous support. They include Carnegie Learning, Inc. 
(Gold), MARi (Gold), Pearson (Gold), Kaplan (Silver), Whizz Education (Bronze), Intellimedia 
(Bronze), Realize It (Bronze), and Reasoning Mind (Bronze).  
 
We hope you enjoy these proceedings and recognize the great research that has made EDM 2014 
such a success! 
 
John Stamper 
Zachary Pardos 
Manolis Mavrikis 
Bruce M. McLaren 
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The field of EDM: where we came from and where we're going 

Joseph Beck 

 

 

Abstract: The Educational Data Mining community has undergone tremendous growth in the 
past decade. This talk will discuss how we got to where we are, as well as upcoming challenges 
for the field. The beginning of the EDM workshop series grew out of the AIED and ITS 
conferences, which greatly influenced both the initial participants and the frameworks used for 
viewing data mining problems. The development of the EDM conference series served to focus 
the field, and greatly increase the range of participants. Although much progress has been made 
in the past 6 years, there remain some large challenges not (yet) well addressed by the EDM 
community. Two issues include who are the consumers for the advances that we make, and 
under what conditions can we draw scientific conclusions from data-mining activities. 

 

 

 

 

 

 

 

 

 

 

Short biography: Joseph Beck, assistant professor of Computer Science, has been at WPI since 
2007. His research focuses on educational data mining, a new discipline that develops techniques 
for analyzing large educational data sets to make discoveries that will improve teaching and 
learning. His work centers on estimating how computer tutors impact learning. He established 
the first workshop in the field and in 2008 was program co-chair of the first International 
Conference on Educational Data Mining. He holds a BS in mathematics, computer science, and 
cognitive science from Carnegie Mellon University, and a PhD in computer science from the 
University of Massachusetts, Amherst. 
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Generative Adaptivity for Optimization of the Learning Ecosystem 

Zoran Popovic 

 

 

Abstract: Most of the current work on improving learning outcomes focuses on a small subset 
of variables of an immensely multi-dimensional space of the learning ecosystem. With ITS, 
learning games, and other digital content we consider only individual students, other research 
focuses only on teacher development, or only on curriculum improvement. In this talk I will 
describe our efforts on how to discover optimal parameters of this system that considers student 
factors (engagement and mastery), classroom factors (blended learning variations and group 
learning variations), curriculum factors (multidimensional variation of existing curricula), and 
teacher factors (in-class tools that mitigate weaknesses, and promote teacher development). I will 
describe our work on algorithms to discover optimal learning pathways in this high-dimensional 
space. I will conclude with recent remarkable outcomes of deploying a portion of our platform 
on algebra challenges conducted on two US states and the country of Norway. 

 

 

 

 

 

 

Short biography: Zoran Popovic is a Director of Center for Game Science at University of 
Washington and founder of Engaged Learning. Trained as a computer scientist his research focus 
is on creating interactive engaging environments for learning and scientific discovery. His 
laboratory created Foldit, a biochemistry game that produced three Nature publications in just 
two years, an award-winning math learning games played by over five million learners 
worldwide. He is currently focusing on engaging methods that can rapidly develop experts in 
arbitrary domains with particular focus on revolutionizing K-12 math education. His Algebra 
Challenges conducted in Washington, Minnesota, and Norway, have shown that more than 93% 
of children even in elementary school can learn key algebra concepts in 1.5 hours. He has 
recently founded Engaged Learning to apply his work on generative adaptation to any curricula 
towards the goal of achieving school mastery by 95% of students. His contributions to the field 
of interactive computer graphics have been recognized by a number of awards including the NSF 
CAREER Award, Alfred P. Sloan Fellowship and ACM SIGGRAPH Significant New 
Researcher Award. 
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150K+ online students at a time: How to understand what's happening in online learning 

Daniel Russell 

 

 

Abstract: Many MOOCs have had more that 100K students register for their courses, with many 
completing, but many dropping out. Is this the future of online education? Should we worry 
about attrition, or is this a new, natural, and expected trend in online learning? More importantly, 
how can we come to understand the (new) student experience? In the past year we have run 
several MOOCs with more than 350K registrants (and then another 250K who have taken the 
MOOC without the synchronous class structure). Learning in MOOCs is rather different than 
traditional learning experiences, and now we have the tools to start to understand how and why 
those differences exist. However, analytics often miss important behaviors that are key to 
understanding the inner life of the online student. I'll discuss the boundaries between EDM and 
observational methods that reveal the social community of learners that are essential for making 
MOOCs succeed, and what seems to work (and not work) in MOOCs. 

 

 

 

 

 

 

 

 

 

Short biography: Daniel Russell is the Über Tech Lead for Search Quality and User Happiness 
in Mountain View. He earned his PhD in computer science, specializing in Artificial Intelligence 
until he realized that magnifying human intelligence was his real passion. Twenty years ago he 
foreswore AI in favor of HI, and enjoys teaching, learning, running and music, preferably all in 
one day. His MOOCs have helped students become much more effective online searchers. His 
online course, PowerSearchingWithGoogle.com has had ~500K students go through the content, 
meaning that somewhere on earth, a video of him teaching search skills has been on-screen for 
more than 200 years. 
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Adaptive Practice of Facts in Domains with Varied Prior
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ABSTRACT
We propose a modular approach to development of a com-
puterized adaptive practice system for learning of facts in
areas with widely varying prior knowledge: decomposing
the system into estimation of prior knowledge, estimation of
current knowledge, and selection of questions. We describe
specific realization of the system for geography learning and
use data from the developed system for evaluation of differ-
ent student models for knowledge estimation. We argue that
variants of the Elo rating systems and Performance factor
analysis are suitable for this kind of educational system, as
they provide good accuracy and at the same time are easy
to apply in an online system.

1. INTRODUCTION
Computerized adaptive practice [10] aims at providing stu-
dents with practice in an adaptive way according to their
skill, i.e. to provide the students with tasks that are most
useful to them. Our aim is to make the development of such
a system as automated as possible, particularly to enable
the system to learn the relevant aspects of the domain from
the data so that there is no need to rely on domain experts.
This aspect is especially important for development of sys-
tems for small target groups of students, e.g. systems deal-
ing with specialised topics or languages spoken by relatively
small number of people (like Czech).

This work is focuses on the development of adaptive systems
for learning of facts. In the terminology of the “knowledge
learning instruction framework” [11] we focus on constant-
constant knowledge components, i.e. knowledge components
with a constant application condition and a constant re-
sponse. We are particularly concerned with learning of facts
in areas where students are expected to have nontrivial and
highly varying prior knowledge, e.g. geography, biology
(fauna, flora), human anatomy, or foreign language vocab-
ulary. To show the usefulness of focusing on estimation of
prior knowledge, Figure 1 visualizes the significant differ-
ences in prior knowledge of African countries.

Figure 1: Map of Africa colored by prior knowl-
edge of countries, the shade corresponds to the
probability of correct answer for an average user of
slepemapy.cz.

To achieve effective learning in domains such as geography
it is necessary to address several interrelated issues, particu-
larly the estimation of knowledge, the modeling of learning,
the memory effects (spacing and forgetting), and the ques-
tion selection.

The above-mentioned issues have been studied before, but
separatedly in different context. Adaptation has been stud-
ied most thoroughly in the context of computerized adaptive
testing (CAT) with the use of the item response theory [3].
In CAT the goal is the testing, i.e. to determine the skill of
students. Therefore, the focus of CAT is on precision and
statistical guarantees. It usually does not address learning
(students’ skill is not expected to change during a test) and
motivation. In our setting the primary goal is to improve
the skill; estimation of the skill is only a secondary goal
which helps to achieve the main one. Thus the statistical
accuracy of the estimation is not so fundamental as it is in
CAT. On the other hand, the issues of learning, forgetting,
and motivation are crucial for adaptive practice.
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Another related area is the area of intelligent tutoring sys-
tems [23]. These systems focus mainly on learning of more
complex cognitive skills than learning of facts, e.g. mathe-
matics or physics. The modeling of learning is widely stud-
ied in this context, particularly using the popular Bayesian
knowledge tracing model [2]. A lot of research focuses on
the acquisition of skills, less attention is given to the prior
knowledge and the forgetting (see e.g. [15, 20]).

The learning of facts is well studied in the research of mem-
ory, e.g. in the study of spacing and forgetting effects [16]
and spaced repetition [9]. These studies are not, however,
usually done in a realistic learning environment, but in a
laboratory and in areas with little prior knowledge, e.g.
learning of arbitrary word lists, nonsense syllables, obscure
facts, or Japanese vocabulary [4, 16]. Such approach fa-
cilitates interpretation of the experimental results, but the
developed models are not easily applicable in educational
setting, where prior knowledge can be an important factor.
There are also many implementations of the spaced repeti-
tion principle using “flashcard software” (well known exam-
ple is SuperMemo), but these implementations usually use
scheduling algorithms with fixed ad-hoc parameters and do
not try to learn from collected data (or only in a limited
way). The spaced repetition was also studied specifically for
geography [26], but only in a simple setting.

In this work we propose both a general structure and a spe-
cific realization of a computerized adaptive practice system
for learning of facts. We have implemented an instance of
such system for learning geography, particularly names of
countries (slepemapy.cz, the system is so far implemented
only in Czech). Data from this system are used for the
evaluation (over 2 500 students, 250 000 answers). To make
the description more concrete and readable, we sometimes
use the terminology of this system, i.e., learning of country
names. Nevertheless, the approach is applicable to many
similar domains (other geographical objects, anatomy, biol-
ogy, foreign vocabulary).

The functionality of the system is simple: it provides series
of questions about countries (“Where is country X?”, “What
is the name of this country?”) and students answer them
using an interactive map. Questions are interleaved with
a feedback on the success rate and a visualization of the
estimated knowledge of countries. The core of the system
lies in estimating students’ knowledge and selecting suitable
questions.

We decompose the design of such system into three steps
and treat each of these steps independently:

1. Estimation of prior knowledge. Estimating the proba-
bility that a student s knows a country c before the first
question about this country. The estimate is based on
previous answers of the student s and on answers of
other students about the country c.

2. Estimation of current knowledge. Estimating the prob-
ability that the student s knows a country c based on
the estimation of prior knowledge and a sequence of
previous answers of student s on question about coun-
try c.

3. Selection of question. Selection of a suitable question
for a student based on the estimation of knowledge and
the recent history of answers.

Each of these issues is described and evaluated in a single
section. The independent treatment of these steps is a use-
ful simplifications, since it makes the development of the
system and student models more tractable. Nevertheless, it
is clearly a simplification and we discuss limitations of this
approach in the final section.

2. BACKGROUND
In this section we briefly describe some of the relevant mod-
els that are used in the realization and evaluation of our
approach.

2.1 Bayesian Knowledge Tracing
Bayesian knowledge tracing (BKT) [2, 21] is a well-known
model for modeling of learning (changing skill). It is a hid-
den Markov model where skill is the binary latent variable
(either learned or unlearned). The model has 4 parameters1:
probability that the skill is initially learned, probability of
learning a skill in one step, probability of incorrect answer
when the skill is learned (slip), and probability of correct
answer when the skill is unlearned (guess). The skill esti-
mated is updated using a Bayes rule based on the observed
answers. Parameter estimation can be done using the Ex-
pectation Maximization algorithm or using the exhaustive
search.

2.2 Rasch Model
Basic model in the item response theory is the Rasch model
(one parameter logistic model). This model assumes the
student’s knowledge is constant and expressed by a skill pa-
rameter θ, the item’s difficulty is expressed by a parameter
b, and the probability of a correct answer is given by the
logistic function:

P (correct |b, θ) =
1

1 + e−(θ−b)

The standard way to estimate the parameters from data is to
use the joint maximum likelihood estimation [3], which is an
iterative procedure. In the case of multiple choice question
with n options, the model is modified to use a shifted logistic
function:

P (correct |b, θ) =
1

n
+ (1− 1

n
)

1

1 + e−(θ−b)

2.3 Performance Factor Analysis
Performance factor analysis (PFA) [17] can be seen as an
extension of Rasch model with changing skill. The skill,
which is a logit of probability of a correct answer, is given
by a linear combination of the item’s difficulty and the past
successes and failures of a student:

P (correct) =
1

1 + e−m

m = β + γs+ δf

1BKT can also include forgetting. The described version
corresponds to the variant of BKT that is most often used
in research papers.
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where β is the item difficulty, s and f are counts of previous
successes and failures of the student, γ and δ are parameters
that determine the change of the skill associated with cor-
rect and incorrect answer. Note that originally PFA [17] is
formulated in terms of vectors, as it uses multiple knowledge
components; for our analysis the one-dimensional version is
sufficient.

2.4 Elo System
The Elo rating system [5] was originally devised for chess rat-
ing, i.e. estimating players skills based on results of matches.
For each player i we have an estimate θi of his skill, based
on the result R (0 = loss, 1 = win) of a match with another
player j; the skill estimate is updated as follows:

θi := θi +K(R− P (R = 1))

where P (R = 1) is the expected probability of winning given
by the logistic function with respect to the difference in es-
timated skills, i.e. P (R = 1) = 1/(1 + e−(θi−θj)), and K is
a constant specifying sensitivity of the estimate to the last
attempt. An intuitive improvement, which is used in most
Elo extensions, is to use an “uncertainty function” instead of
a constant K. There are several extension to the Elo system
in this direction, the most well-known is Glicko [6].

We can use the Elo system in student modeling, if we in-
terpret a student’s answer on an item as a “match” between
the student and the item. Recently, several researchers have
studied this kind of application of the Elo system in the
educational data mining [10, 24, 25].

The basic Elo system (reinterpreted in the context of ed-
ucational problems) also uses the logistic function and one
parameter for each student and problem. Thus the Rasch
model and the Elo system are in fact very similar models,
the main principal difference is that the Rasch model as-
sumes the constancy of parameters, the Elo system assumes
a changing skill.

3. ESTIMATION OF PRIOR KNOWLEDGE
At first, we treat the estimation of prior knowledge. Our
aim is to estimate the probability that a student s knows a
country c based on previous answers of students s to ques-
tions about different countries and previous answers of other
students to questions about country c – as a simplification
(for an easier interpretation of data) we use only the first
answer about each country for each student in this step.

3.1 Model
In the following text we use a key assumption that both
students and studied facts are homogenous; we assume that
we can model students’ overall prior knowledge in the do-
main by a one-dimensional parameter. This assumption is
reasonable for geography and students from Czech Republic
(which is the case of our application), but would not hold for
geography and mixed population or for a mix of facts from
geography and chemistry. If the homogenity is not satisfied,
we can group the students and facts into homogenous groups
(e.g. students by their IP address, facts by an expert or by
an automatic technique [1]) and then make predictions for
each subgroup independently.

More specifically, we model the prior knowledge by the Rasch
model, i.e. we have student parameter θs corresponding to
the global knowledge of a student s of geography, the item
parameter bc corresponding to the difficulty of a country c,
and the probability of a correct first answer is given by the
logistic function P (correct |s, c) = 1

1+e−(θs−bc) .

As we mentioned above, the standard approach to the pa-
rameter estimation for the Rasch model is joint maximum
likelihood estimation (JMLE). This is an iterative approach
that is slow for large data, particularly it is not suitable for
an online application, where we need to adjust estimates of
parameters continuously.

Therefore, we also consider the application of the Elo rat-
ing system in this setting. Although the assumptions in this
context are closer to the assumptions of the Rasch model
(the global skill and the difficulty of items are rather con-
stant), the Elo system is much more suitable for an online
application and results with simulated data suggest that it
leads to similar estimates [19].

3.2 Evaluation
The basic version of the Elo system with the constant update
parameter K does not provide a good estimation – if the
parameter K is small, the system takes long to learn skills
and difficulties, if the parameter K is large, the behavior of
the system is unstable (estimates are too dependent on a
last few answers). Therefore, instead of the constant K we
use an uncertainty function a

1+bn
, where n is the order of

the answer and a, b are parameters. Using a grid search we
have determined optimal values a = 1, b = 0.05. This exact
choice of parameter values is not important, many different
choices of a, b provide very similar results.

This variant of the Elo system provides both fast coarse esti-
mates after a few answers and stability in the long run (see
Figure 2 A). It also provides nearly identical estimates as
the joint maximum likelihood estimation (Figure 2 B, corre-
lation 0.97). JMLE is computationally demanding iterative
procedure, the Elo system requires a single pass of the data
and can be easily used online. Since the estimates of the
two methods are nearly identical, we conclude that the Elo
system is preferable in our context.

Distribution of the difficulty parameters (Figure 2 C) reflects
the target domain and student population. In our case the
difficulty of countries for Czech students is skewed towards
very easy items, which are mostly European countries. Dif-
ficult countries are mostly African. Skill parameters are dis-
tributed approximately normally.

We have tested the assumption of a single global skill by
computing the skill for independent subsets of items (coun-
tries from different continents) and then checking the cor-
relation between the obtained skill. Figure 2 D shows the
results for two such particular “subskills”, the correlation co-
efficient for this case and other similar pairs of subskills is
around 0.6. Given that there is some intrinsic noise in the
data and that the skills are estimated from limited amount
of questions, this is quite high correlation. This suggests
that the assumption of a global skill is reasonable.
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Figure 2: Estimation of prior knowledge: A) Development of estimates of difficulty of selected countries under
Elo system, B) Comparison of Elo and JMLE difficulty estimates, C) Histogram of difficulty of countries, D)
Correlation of “subskills” computed for different sets of countries.

4. ESTIMATION OF CURRENT KNOWL-
EDGE

We now turn to the estimation of a student’s current knowl-
edge, i.e. knowledge influenced by the repeatedly answering
of questions about a country. The input data for this es-
timation are an estimate of prior knowledge (provided by
the above described model) and the history of previous at-
tempts, i.e. the sequence of previous answers (correctness of
answers, question types, timing information).

4.1 Models
Several different models can be considered for the estima-
tion of current knowledge. Bayesian knowledge tracing can
be used in a straightforward way. In this context the proba-
bility of initial knowledge is given by the previous step. The
probability of learning, guess, and slip are either given by a
context (guess in the case of multiple choice question) or can
be easily estimated using an exhaustive search. However, in
this context the assumptions of BKT are not very plausible.
BKT assumes a discrete transition from the unknown to the

known state, which may be reasonable a simplification for
procedural skills, but for declarative facts the development
of the memory is gradual.

Assumptions of the Performance factor analysis are more
relevant for the learning of facts. Instead of the item diffi-
culty parameter βi, used in the original version of PFA, we
can use the estimate of the initial knowledge for a student s
and a country c in our setting. This is given by the difference
θs − bc.

A disadvantage of PFA is that it does not consider the order
of answers (it uses only the summary number of correct and
incorrect answers) and it also does not take into account the
probability of guessing. Guessing can be important partic-
ularly in our setting, where the system uses multiple choice
questions with variable number of options. To address these
issues we propose to combine PFA with some aspects of the
Elo system (in the following text we denote this version as
PFAE – PFA Elo/Extended):
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• Ksc is the estimated knowledge of a student s of a
country c.

• The initial value of Ksc is provided by the estimation
of prior knowledge: Ksc = θs − bc.

• The probability of correct answer to a question with n
options is given by the shifted logistic function:

P (correct |Ksc, n) =
1

n
+ (1− 1

n
)

1

1 + e−Ksc

• After a question with n options was answered, the es-
timated knowledge is updated as follows:

– Ksc := Ksc + γ · (1 − P (correct |Ksc, n)), if the
answer was correct,

– Ksc := Ksc + δ · P (correct |Ksc, n), if the answer
was incorrect.

The estimation can be further improved by taking into ac-
count the timing information. If two questions about the
same item are asked closely one after another, then it can
be expected that the student will answer the second one cor-
rectly, because the answer is still in his short term memory.
In models based on a logistic function (PFA, PFAE) we can
model this effect in the following way: the skill is “locally”
increased by w

t
, where t is the time (in seconds) between at-

tempts and k is a suitable constant (optimal w = 80 for our
data). It should be possible to further improve the model by
a more thorough treatment of forgetting and spacing effects,
e.g., by incorporating some aspects of the ACT-R model [16].

Another useful timing information is the response time. As
the response time tends to be log-normally distributed [8,
22], we work with the logarithm of time. Intuitively, the
higher knowledge of a country leads not only to higher prob-
ability of a correct answer, but also to a faster response.
Figure 3 shows results of an experiment supporting this in-
tuition – distribution of times of correct answers is shifted
to lower values if the next answer on the same country is
correct. This suggests that response time could be used to
improve the estimation of knowledge. Indeed, even simple
modification of the γ parameter in the PFA model (by com-
parison of the response time to mean response time) leads
to a slight improvement in predictions. A more involved
application of the response time requires a suitable normal-
ization due to different speeds of students and different sizes
of countries – it is much easier to click on China than on
Vietnam.

4.2 Evaluation
The described models provide predictions of probability of a
correct answer. To evaluate these models we need to choose
a metric by which we measure performance of models. In ed-
ucational data mining researchers often provide evaluation
with respect to a chosen metric without providing any ra-
tionale for the particular choice. In some cases the choice of
metric is not fundamental and different metrics lead to sim-
ilar results (that is the case for above described experiments
with estimating prior knowledge). However, the evaluation
of models of the current knowledge is sensitive to the choice
of a metric, and thus it is necessary to pay attention to this
issue.

Figure 3: Normalized logarithm of time of correct
answers, depending on whether the next answer
about the country is answered correctly or incor-
rectly.

Let us review the most commonly used metrics in educa-
tional data mining and their suitability in our context. The
mean absolute error (MAE) is not a good metric, since for
unbalanced data it prefers models skewed towards the larger
class. Consider a simulated student that answers correctly
with constant probability 0.7. If we optimize a constant
predictor with respect to the mean absolute error, the pre-
dicted probability is 1. The root mean square error (RMSE)
is a similar measure that does not share this disadvantage
and is thus preferable. The log-likelihood (LL) metric be-
haves similarly to RMSE except for predictions very close
to 0 or 1. Since LL is unbounded, a single wrong predic-
tion can degrade the performance of a model. To prevent
this behaviour, an ad-hoc bound can be introduced in the
computation of LL. Metrics like AIC and BIC are extensions
of the log-likelihood penalizing large number of model pa-
rameters. All models described above have only very small
number of parameters, and thus these metrics are not rel-
evant for the current discussion. Another popular metric
is the area under the receiver operating characteristic curve
(AUC). This metric considers the prediction only in rela-
tive way – note that if all predictions are divided by 2, the
AUC metric stays the same. In our application, however,
the precision of the absolute prediction is important, since
the value is used in computations that determine the choice
of questions and number of options in multiple choice ques-
tions.

Thus it seems that the most suitable metrics from the com-
monly used ones is RMSE. Thus we use RMSE as our pri-
mary metric, i.e. to optimize values of model parameters.
Table 1 provides a comparison of different models also for
other metrics. We can see that the results are inconclusive
regarding the comparison of BKT and PFA, but the newly
proposed extension PFAE beats both the standard PFA and
BKT models with respect to all three reported metrics. The
results also show that the consideration of timing informa-
tion further improves the performance of models.
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Table 1: Model comparison.

model RMSE LL AUC

BKT 0.262 -42048 0.668
PFA 0.265 -44740 0.669
PFA + time 0.262 -43088 0.695
PFAE 0.262 -41947 0.682
PFAE + time 0.259 -40623 0.714

For the reported evaluation we use models with “global” pa-
rameters, i.e., for example in the PFA and its extension we
use the same parameters γ, δ for all countries and students.
Thus the models have very small number of parameters (at
most 4 for the extension with timing information) and can
be easily fit by an exhaustive search. Since the number of
data points is many orders larger (tens of thousands), over-
fitting is not an issue. It would be possible to use the “lo-
cal” parameter values for individual countries and students,
such variant would require an improved parameter estima-
tion and a mechanism for dealing with uneven distribution
of data among countries and students.

5. QUESTION SELECTION
We will now focus on the issue of the question selection.
Based on the past performance of the student we want to
select a suitable next question. In the context of our geogra-
phy application the selection of a question consists of several
partial decisions: which country to target, which type of the
question to ask (“Where is X?” versus “What is the name of
this country?”), and how many options to give a student to
choose from.

Compared to the knowledge estimation, the question selec-
tion is much harder to evaluate, since we do not have a
single, clear, easily measurable goal. The overall goal of the
question selection is quite clear – it is the maximization of
student learning. But it is not easy to measure the fulfilment
of this general goal, since it depends also on the context of
the learning. An experiment with pre-test, post-test, and
fixed time in the system may provide a setting for an accu-
rate evaluation of the different question selection strategies.
Results of such experiment would, however, lack ecological
validity, as many of the users of the system use the system
on their own and with variable time in the system, so for ex-
ample the issue of motivation is much more important than
in a controlled experiment. A related work [18] presents
this kind of controlled experiment for card selection in drill
practice, the authors however provide comparison only with
respect to a very simple cyclic selection technique and not
to an evaluation of different alternatives of the selection al-
gorithm. Another possibility is to use the time spent in
educational system as a measure of quality of question se-
lection. Here, however, the optimal choice with respect to
this measure may not be optimal for learning, see [12] for
a specific instance of an educational online game with this
dynamics.

Thus at the moment we do not provide the evaluation of
the question selection. We formulate general criteria that
the question selection should satisfy and propose a specific
approach to achieve these criteria.

5.1 Criteria
The question selection process should satisfy several criteria,
which are partly conflicting. The criteria and their weight
may depend on the particular application, the target student
population, and student goals. We propose the following
main criteria.

The selection of question should depend on an estimated
difficulty of question. From the testing perspective, it is op-
timal to use questions with expected probability of a correct
answer reaching 50%, because such question provide most
information about students’ knowledge. However, 50% suc-
cess rate is rather low and for most students it would de-
crease motivation. Thus in our setting (adaptive practice)
it is better to aim for a higher success rate. At the moment
we aim at 75%, similarly to previous work [7].

Another important issue is the repetition of questions. This
aspect should be governed by the research about spacing
effects [4, 16], particularly it is not sensible to repeat the
same question too early.

It may be also welcome to have variability of question types.
Different question types are useful mainly as a tool for tuning
the difficulty of questions, but even if this is not necessary,
the variability of question types may be meaningful criteria
in itself, since it improves user experience, if used correctly.

5.2 Selecting Target Country
We propose to use the linear scoring approach to select a
target country (the correct answer of the question). For
each relevant attribute, we consider a scoring function that
expresses the desirability of a given country with respect
to this attribute. These scoring functions are combined us-
ing weighted sum, the country with highest total score is
selected as a target. We consider the following attributes:

1. the probability the student knows the country,

2. time since the last question about the country,

3. the number of questions already answered by the stu-
dent about the country.

Figure 4 shows the general shape of scoring functions for
these attributes. Further we specify concrete formulas that
approximate these shapes using simple mathematical func-
tions.

The first case takes into account the relation between the es-
timated probability of a correct answer (Pest) and the target
success rate (Ptarget). Assume that our goal is to ask a ques-
tion where the student has 75% chance of a correct answer.
The distance from the probability for the difficult countries
(nearly 0% chance of the correct answer) is higher than for
easy ones (almost 100%), so it is necessary to normalize it.

Sprob(Pest , Ptarget) =

{
Pest
Ptarget

if Ptarget ≥ Pest

1−Pest
1−Ptarget

if Ptarget < Pest

The second scoring function penalizes countries according
to the time elapsed since the last question, because we do
not want to repeat countries in a short time interval when
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Figure 4: Desired contribution of different criteria to selection of target country.

they are still in short term memory. We use the function
Stime(t) = −1/t, where t is time in seconds. Using just
the above mentioned attributes the system would ask ques-
tions for only a limited pool of countries. To induce the
system to ask questions about new countries we introduce
the third scoring function that uses the total number n of
questions for the given country answered by the student:
Scount(n) = 1/

√
1 + n. The total score is given as a weighted

sum of individual scores, the weights are currently set man-
ually, reflecting experiences with the system: Wprob = 10,
Wcount = 10, Wtime = 120.

5.3 Choosing Options
Once the question’s target is selected, the question can be
adjusted according to the student’s needs by using a multi-
ple choice question with suitable number of options. For a
multiple choice question the probability of a correct answer
is the combination of the probability of guessing the answer
(Pguess) and knowing the target country (Pest)

2:

Psuccess = Pguess + (1− Pguess) · Pest

As our goal is to get Psuccess close to Ptarget , we would like
to make Pguess close to

G =
Ptarget − Pest

1− Pest

For G ≤ 0, we use open question (no options), otherwise we
use n closest to 1

G
as a number of options. For principal

reasons the minimal possible value of n is 2, for practical
reasons there is also an upper bound for n (more than 6
options would be confusing). The type of the question –
“Where is country X?” or “What is the name of this coun-
try?” is currently selected randomly. In case of an open
question the first type is always used.

When using multiple choice questions, we also need to choose
the distractor options. Unlike other systems for practice
dealing with text [13, 14], we work with well structured data,
so the problem of option selection is easier. The choice of
options can be based on domain information, e.g. geograph-
ically close countries or countries with similar names. The
easiest way to choose good distractors is, however, to simply
base the choice on past answers. We can take countries most

2This is, of course, simplification since a multiple choice
question can also be answered by ruling out distractor op-
tions. But if the distractors are well chosen; this simplifica-
tion is reasonable.

commonly mistaken with the target country (in open ques-
tions) and select from them randomly. The random choice is
weighted by the frequency of mistakes with the given coun-
try, for example Kamerun is most often confused with Niger
(38%), Nigeria (27%), Central African Republic (10%), Re-
public of the Congo (9%), Gabon (6%), Ivory Coast (5%),
Uganda (3%), and Guinea (2%).

6. DISCUSSION
We described the functionality of the system in three inde-
pendent parts: the estimation of prior knowledge, the esti-
mation of current knowledge, and the selection of a question.
The independent treatment of these steps is, however, a sim-
plification, as there is an interaction between these steps.

In our treatment, only the first answer about a given item is
taken as an indication of a prior knowledge, other answers
are considered as an indication of changes in knowledge. But
for example the second answer, clearly, also contains some
information about prior knowledge. A more precise mod-
els should be possible by incorporating more integrated ap-
proach to the estimation of prior and current knowledge.

The selection of a question was treated as a subsequent step
after the estimation of knowledge, but in reality there is a
feedback loop: the estimation of knowledge influences the
selection of a question and the selection of a question deter-
mines the data that are collected and used for the estimation
of knowledge. Since the collected data are partially deter-
mined by the model used, there may be a bias in the data
towards certain questions, and this bias may, in a subtle way,
influence the evaluation. For example, if the model overes-
timates the knowledge of students, the question selection
stops asking questions about items too early, which means
that the system does not collect data that would contradict
the overestimated knowledge. The question selection proce-
dure may be also modified in such a way to collect data most
useful for improving the precision of the estimation. The
study of these interactions may be more important than dif-
ferences between different models or estimation procedures,
which typically get most attention in current research in
student modeling.
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ABSTRACT 
The key issue affecting Cognitive Diagnostic Models (CDMs) is 
how to specify attributes and the Q-matrix. In this paper, we first 
attempt to use the Boolean Matrix Factorization (BMF) method to 
express conjunctive models in CDMs. Because BMF is an NP-
hard problem [2], we propose a recursive method that updates the 
attribute matrix (its rank equals to one) in each step. As Boolean 
algebra is irreversible, it requires time to recursively compute and 
update the matrix, especially when the number of attributes is 
large. To speed up computations, we use a Heaviside step function, 
which allows us to decompose the recursive computing process 
into normal non-negative matrices and get the results by mapping 
them back into a Boolean matrix. Two different algorithms are 
presented: a deterministic heuristic algorithm and a stochastic 
algorithm. Simulation results from an actual test show that the 
proposed method can learn the original Q-matrix well from item 
response data.  

Keywords 

Q-matrix, Cognitive Diagnostic Models (CDMs), Boolean Matrix 
Factorization (BMF), Conjunctive Models, Alternating Recursive 
Algorithm. 

1. INTRODUCTION 
Cognitive diagnostic assessment (CDA) has attracted a great deal 
of attention in the psychological and educational measurement 
fields. It not only reports students’ total test scores, but also 
assesses students’ mastery of attributes, which refers to their 
knowledge, skills or strategies, so that it can provide students or 
their teachers with diagnostic information on their strengths and 
weaknesses. A key issue in CDA is to correctly specify the so-
called Q-matrix introduced by Tatsuoka [23], which associates the 
items and attributes of students a diagnostic test intends to assess.  

To construct a Q-matrix, experts in the particular domain usually 
need to specify what attributes are key knowledge or skills for 
students to acquire. There are two approaches to constructing it. 
One is to develop test items and specify the Q-matrix for the items 
particular to cognitive diagnostic purposes. The other way is to 
apply diagnostic modeling to an existing test and specify the Q-
matrix for the test items. Once the Q-matrix has been specified 
and items have been administered in a test, the items are 
calibrated to one of the cognitive diagnostic models, in which a 
known Q-matrix is typically assumed [24, 11, 13, 12, 15, 4]. 
However, if the Q-matrix is not specified appropriately, it could 
seriously affect the models’ goodness of fit [21]. In that sense, the 
key issues affecting CDMs are how to define attributes and 
specify the Q-matrix. On the other hand, there is a big problem 
with the current manual method of generating the Q-matrix. When 

the domain or content of the tests is broader, it is an extremely 
difficult task for experts to specify attributes and the Q-matrix 
manually. This difficulty and their time-consuming nature could 
be reasons why CDMs are still not as popular as they should be in 
educational fields. Automatic and intelligent help to alleviate this 
difficulty is obviously desirable, and even necessary. During the 
past decade, the problem of how to map test items into latent 
skills based on students’ test responses has become a hot topic in 
psychometrics and in educational data mining (see [16, 17, 14, 28, 
7, 6, 5, 1, 3] for recent contributions).  

In the previous studies [17] and [28], the proposed DINA model-
based Q-matrix learning approach use EM algorithm to solve the 
Q-matrix. They need to involve a matrix T(Q) on a scale of 2n×2K, 
wherein n, K is the number of items and attributes, respectively, 
which makes it extremely difficult to achieve for even a medium 
sized Q-matrix. In [7], an alternative least square method was 
proposed to solve the Q-matrix, where they use a matrix inverse 
operation that values may appear negative and estimated values 
for all the parameters are real instead of binary 0 or 1. To finally 
map the results into binary 0 or 1, there need to assume an 
appropriate threshold to truncate the values, but the threshold 
selected can’t be automatically given, it can only be artificial and 
thus subjective. Moreover, the most serious problem for the 
previous methods so far ([7][17][28]) is that the number of 
attributes K have to be set in advance. They can’t be determined 
by students’ real response dataset R matrix, which is extremely 
critical for data driven Q-matrix learning approach. 

Here we present new algorithms to learn the Q-matrix 
automatically from the students’ item response matrix on the basis 
of the Boolean Matrix Factorization (BMF) technique and 
demonstrate how the methods can yield promising results from 
simulation data. This is the first attempt to apply BMF to Q matrix 
discovery. 

2. CONJUNCTIVE MODELS AND 
BOOLEAN MATRIX FACTORIZATION   
Various statistical models have been built around the Q-matrix 
[23, 15, 13, 11, 12, 26, 4, 21]. The applicable statistical model, 
such as conjunctive or compensatory models, will vary depending 
on whether there are hierarchical relations or interactions among 
the defined attributes. Conjunctive models assume that students 
can get “correct” for an item only if they have mastered all 
attributes required for that item and only a fraction of them results 
in a success probability equal to that of a student possessing none 
of the attributes. The DINA model (deterministic inputs, noisy-
and-gate; [13]) is one of the simplest and most widely studied 
conjunctive models. This study makes the conjunctive assumption 
for dichotomously scored test items in CDMs.  
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2.1 Item Response Matrix, Q-matrix, and 
Knowledge States Matrix 
Suppose there are K attributes in a particular domain. Then a 
student’s attribute patterns αi = (αi1, αi2…, αiK), called knowledge 
states, indicate the student’s mastery status in terms of the K 
attributes. αik=1 indicates the ith student’s mastery of attribute k 
and αik=0 indicates non-mastery of the attribute. As stated above, 
the Q-matrix indicates the required attributes for each item. The 
entry of the Q-matrix (denoted qjk) equals one if item j requires 
attribute k; and zero otherwise. The Q-matrix is used to establish a 
relationship between the students’ responses and the attribute. It is 
assumed that the item responses are determined by the attributes 
involved in each item and the attributes mastered by each student. 

For conjunctive models, based on the students’ knowledge states 
and Q-matrix for items, an ideal item response matrix R can be 
generated, whose element rij is typically represented in the 
following form. 

 
, , ,

, ,
, ,1

1 ( : 1,.., )
( , )

0 ( : {1,..., })
j k

K
i k j kq

i j ij i k
i k j kk

q k K
r A Q

q k K
α

ξ α
α=

≥ =⎧⎪= = = ⎨ < ∃ ∈⎪⎩
∏

······ (1) 
Here rij is the latent response variable of the ith student with the 
latent knowledge states 

1 2( , ,..., )i i i jKα α α=α to the jth item, 

indicating whether the student i has all the attributes required for 
item j. It represents a deterministic prediction of item response 
from each student’s knowledge state.  
An example of eight students’ knowledge states and their ideal 
response patterns to seven items identified by a Q-matrix is 
illustrated. Given two matrices A and Q, the ideal response matrix 
R will be obtained as follows. 

A=

1     1     1
0     0     1
1     1     0
0     1     1
1     1     0
1     1     0
0     0     1
0     0     0

⎛ ⎞
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎝ ⎠

,   Q=
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, 

R=

1     1     1     1     1     1     1
0     1     0     0     1     0     0
1     0     0     1     0     1     0
1     1     1     0     1     1     1
1     0     0     1     0     1     0
1     0     0     1     0     1     0
0     1     0     0     1     0     0
0     0     0     0     0     0     0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

It is important to note that mapping of knowledge states to ideal 
response patterns is not a one-to-one correspondence; rather, 
given a particular set of items and a particular Q-matrix, two or 
more different knowledge states can result in the same ideal 
response pattern. 

2.2 Boolean Matrix Factorization  
A recent technique based on Boolean Matrix Factorization (BMF) 
has been shown to be extremely effective for getting valuable 
results in binary data analyses [8, 9, 10, 18, 19, 20, 25, 27].  

Definition: If 
,( ) {0,1}m k m k

i jP p × ×= ∈  and 
,( ) {0,1}k n k n

i jQ q × ×= ∈ , 

the Boolean product of P and Q is defined as 

,s s, j1
( ) {0,1}

k
m n m n

is
P Q p q × ×

=
= ∨ ∈ . 

In our previous work involving BMF, we verified that an ideal 
response matrix R can be expressed in terms of the following 
Boolean relations of the knowledge states matrix A and the Q-
matrix (see [30] for details).  

T=R A Q ········································································  (2) 
Here, A and Q are a m-students by K-attributes binary mastery 
matrix and an n-items by K-attributes binary Q-matrix, for student 
i=1,..,m; item j=1,…,n; and attribute k=1,…,K. The bar notation in 
equation (2) represents logical NOT operation (i.e. 0 1, 1 0= = ), 
and T represents the transpose of the matrix. The notation ⊙ 
represents the Boolean product. These notations will apply 
hereafter. 
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The process of Boolean matrix factorization is to determine the 
matrices Q and A from R, and the goal of a factorization 
algorithm is to minimize the estimated R with R in equation (2). It 
is clear that equation (2) becomes much more powerful than the 
usual equation (1) as the number of latent attributes increases.   

3. ALTERNATE RECURSIVE METHOD 
FOR Q-MATRIX LEARNING  
3.1 Approach to Response Matrix through 
Attribute Latent Space Perturbation 
Instead of approximating the item response matrix R, for 
simplicity, we will approach its complementary matrix R  by 
using matrix H=X ⊙ YT. From equation (2), it is implicit 
that X A=  and Y Q= , where A and Q are the initial knowledge 
state matrix and Q-matrix, respectively. In order to approximate 
R , we need to perturb X and Y by adding one-column vectors x 
and y to the latent attribute space (the operations are denoted as 
Xnew=[X, x], and Ynew=[Y, y]). Thus, Hnew=Xnew⊙(Ynew)T, which 
minimizes the following objective error function: 

     E(x,y)=(|| R − Xnew⊙(Ynew)T||F)2 

where || ||F indicates the Frobenius norm of the matrix. Without 
loss of generality, we can fix y and choose x to minimize the error 
function E(x,y)： 

2 2
new new

1 1

( )
m n

T
ij ij i jF i j

R X Y r h x y
= =

− = − ∨∑∑  
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When u,v∈{0,1}, the max{u,v}=u+v−uv= v+uv is used to obtain 
equation (3). The three terms in equation (3) consist of the 
original H matrix error and two perturbation errors. We express 

them as Eorig=
1 1

( )
m n

ij ij ij ij
i j

r h r h
= =

+∑∑ , EP
+

 (i)=αi=
1

n

ij ij j
j

r h y
=
∑ , and EP

-(i) 

=βi = 
1

n

ij ij j
j

r h y
=
∑ . Obviously, Eorig is the already existing error term 

which is independent of how x and y are optimized. Therefore, in 
what follows, we focus on the αi and βi error terms.  
Observation 1: For i=1,2,…,m, if 

ijr = 0 and hij=0, when xi=1 the 

total error of the function E(x,y) increases by a positive factor 

EP
+(i)=αi=

1

n

ij ij j
j

r h y
=
∑ . Although the original approaching matrix H 

doesn’t have any error with respect to matrix R , the new 
approaching matrix  is such that 1=Hnew(i,j) =

ij i jh x y∨ >
ijr =0; 

hence, the total error increases.  
Observation 2: For i=1,2,…,m, if 

i jr =1 and hij=0, when xi=1 the 

total error of E(x,y) decreases by a positive factor EP
-
 (i) =βi = 

1

n

ij ij j
j

r h y
=
∑ . Although the original approaching matrix H has an 

error with respect to matrix R , the new approaching matrix is 
such that 1=Hnew(i,j) =

ij i jh x y∨ =
ijr =1; hence, the total error 

decreases. 

The above two observations imply that if αi ≤βi , setting xi=1 will  
decrease the total error of E(x,y), and if αi >βi, we obviously have 
to set xi=0 directly to ensure that the total error does not increase. 
To control the error in the case of αi ≤βi and setting xi=1, we 
exploit two heuristic methods by using a determinate function or 
by using a sigmoid function based on adjusting coefficients ρ and 
τ, which are constant parameters bigger than zero, and satisfies  
αi≤ρ⋅βi, 0<ρ≤1. The two heuristic algorithms based on the BMF 
approach are illustrated in Figure 1. 

 
Figure 1. Perturbation Approaching Algorithms (PAA) 

For PAA algorithm we have the following convergence theorem 1. 
Theorem 1.  
1) For PPA deterministic algorithms, suppose H be the original 
matrix and Hnew be the updated matrix, then || R −Xnew ⊙ 
(Ynew)T||F ≤|| R −H||F. holds.  
2) By the same token, for PPA stochastic algorithm, it converges 
each step at the final equilibrium distribution 
P(x,y)=(1/Z)exp(−xT(P−Q)y/τ), wherein Z is a normalized 
constant for probability distribution . 
Proof: Define local energy function as Eloc(x,y)= xT(P−Q)y.  
1) For PPA deterministic updating algorithm, if we see it as 
Hopfield neural network bidirectional associative computing 
updating algorithm [29], it holds according to Hopfield 
convergence theorem of bidirectional associative memory (BAM). 
 2) For the PPA stochastic algorithm, if we see it as a limitation 
Boltzmann machine in neural network [ 29 ] , according to the 
Boltzmann convergence theorem, every step of the final x, y 
equilibrium distribution will be P(x,y)=(1/Z)exp(−xT(P−Q)y/τ), 
wherein Z is a probability distribution of a normalization factor , τ 
is called Boltzmann machine annealing temperature which should 
be gradually reduced during the iteration . QED. 

As each step of the optimization process are discrete variables 
{0,1} quadratic optimization problem , they are all NP-hard 
problem according to the computational complexity theory. 
Therefore there will always be a local optimum, which is also the 
reason why sometimes PPA stochastic algorithm is used. While 

Step 1. Input the response matrix R ∈{0,1}m×n, Initialize 
H=0, X=Ф, Y=Ф; k=1; for given K 

Step 2. Compute ( )ij ij m nr h ×=P , ( )ij ij m nr h ×=Q , y(j)=1, when 

j=k; otherwise, y(j)=0；j=1,…,n 

Step 3. Calculate α =Py, β = Qy, and update x based on one 
of the following two methods: 

1) (update method I) x=θ(ρ⋅β −α ), 0<ρ≤1 is a given 
parameter  

2) (update method II) Prob (x(i)=1|αi,βi)= ( )

1
1 i ie τ β α− −+

 ,  

where τ is a given  parameter  
Step 4.  Compute u =PTx, v = QTx and select one of the 

following approaches to update y： 

1)  y=θ(ρ⋅v −u)，where 0<ρ≤1 is a given parameter； 

  2) Prob (y(j)=1|uj,vj)= ( )

1
1 i iv ue τ− −+

 where τ is a given 

parameter； 

Step 5. Repeat Step 3 and Step 4, till x and y converge 
(update method I) or the distributions of x and y become   
stable (update method II)  

Step 6. Set ( )T= ∨H H xy , X=[X,x], and Y=[Y,y], k=k+1, if 
k>K, output H, X, Y and break， 

Else go to step2 
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deterministic algorithm can always guarantee that each time one 
attribute is added, the error of approaching response matrix with 
the real response matrix R can be reduced accordingly, although it 
may eventually fall into local minimum of the local error Eloc. 
The stochastic algorithm uses that random error energy can 
increase certain probability in an iterative process, so when the 
annealing temperature decreases slowly enough, the conclusions 
based on simulated annealing algorithm, it is possible to converge 
to the probability of a global optimum. 

3.2 A Fast Alternating Recursive Algorithm 
Due to the monotony of the Boolean matrix product, the algorithm 
we proposed in 3.1 often relapses into a local optimal solution. 
We suggested an alternative recursive algorithm to improve the 
accuracy of approaching matrix H. For given H=(x1,x2,…,xK) ⊙ 
(y1,y2,…,yK)T, let  X=(x1,x2,…,xK), Y=(y1,y2,…,yK), 
Xi=(x1,x2,…,xi−1,xi+1,…,xK), Yi=(y1,y2,…,yi−1,yi+1,…,yK), Hi= X⊙
(Yi)T. Therefore, we have H=Hi∨ xi(yi)T. The index i can be 
chosen by using random or deterministic methods. Using the 
results of Perturbation Approaching Algorithms (PAA) as initial 
values, one can iteratively optimize the perturbation vector xi and 
yi for fixed Xi and Yi. In practice, when the dimension of attribute 
space K is quite large, we need to reuse the previous results for 
the next iteration on the perturbation vectors xj and yj in order to 
reduce the time complexity of the algorithm. However, because of 
the special characteristics of the Boolean matrix product, we 
cannot make use of Hj in the previous round, since Hj≠ Hi∨ xi(yi)T 
∧ ( )T

j jx y . Luckily, the algorithm can be sped up by using the 

general matrix product instead of the Boolean matrix product if 
we introduce the Heaviside step function as follows.  

Define ( )xθ  as the Heaviside step function.   

1 0
( )

0 0
x

x
x

θ
>⎧

= ⎨ ≤⎩ ······························································· (4) 

Given a matrix 
,( )m n m n

i jB b R× ×= ∈ , we define its Heaviside step 

function as
,( ) ( ( ))m n m n

i jB b Rθ θ × ×= ∈ ; namely, ( )xθ acts on every 

element of matrix B.  

Property 1. 
,( )m n m n

i jP p R× ×
+= ∈  and 

,( )m n m n
i jQ q R× ×

+= ∈  Here, 

{ , 0}R x x+ = ≥ . If 1λ ≥  exists such that P Qλ≥ , we have 

( ) ( )P P Qθ θ= − . 

Proof:   If
, 0i jq = , it immediately follows that 

, , ,( ) ( )i j i j i jp p qθ θ= − =0.  

On the other hand, if 
, 0i jq > , from the assumptions, we have 

, , ,( 1)i j i j i jp q qλ− > −  

Therefore, 
, , ,( ) ( ) 1i j i j i jp p qθ θ= − = ， 

Hence, we have ( ) ( )P P Qθ θ= − .    QED. 

Property 2. 
,( )m n m n

i jP p R× ×
+= ∈  and 

,( )m n m n
i jQ q R× ×

+= ∈ , here 

{ , 0}R x x+ = ≥ . Then we have  θ(PQ)=θ(P)⊙θ(Q)              

Proof: Let 
,( )n k

i jG g PQ×= = . If 
, 0i jg = , then 

,( ) 0i jgθ = . 

While if 
, 0i jg > , then  

,( ) 1i jgθ = . 

In case of 
, , ,

1
0

k

i j i t t j
t

g p q
=

= ∑ = , because P and Q are nonnegative  

matrices,  we have 
, , 0i t t jp q =  for all 1 t n≤ ≤ ,  which leads  to 

, ,( ) 0i t t jp qθ = .  

From the definition of Heaviside step function θ , i.e. formula (4), 
we have  

, ,( ) ( ) 0i t t jp qθ θ = .  

Therefore, we have  

, , ,1
( ) ( ) ( ) 0

n

i t t j i jt
p q gθ θ θ

=
∨ = = .  

On the other hand, in case of 
, , ,

1
0

k

i j i t t j
t

g p q
=

= ∑ > , because P and 

Q are nonnegative matrices,   there exists 
, , 0i t t jp q >  for 1 t n≤ ≤ , 

which leads to   

, ,( ) 1i t t jp qθ = . 

From definition of θ , we have 
, ,( ) ( ) 1i t t jp qθ θ = . 

Therefore, we have  

, ,1
( ) ( ) 1

n

i t t jt
p qθ θ

=
∨ =  

Considering the above two cases, we have  

θ(PQ)=θ(P)⊙θ(Q)  

hold for 
,( )m n m n

i jP p R× ×
+= ∈  and 

,( )m n m n
i jQ q R× ×

+= ∈ . QED. 

For given matrices X and Y, we generate G=XYT, Gi=Xi(Yi)T by 
taking the general matrix product. According to the above 
properties, H=θ(G) and Hi=θ(Gi) hold.  We update xj and yj after 
updating xi and yi in the previous round. Instead of computing the 
whole matrix Hj, we calculate   

j i T T
i i j j= + −G G x y x y ························································· (5) 

Hj=θ(Gj) ··············································································· (6) 
In equation (5), xi and yi are the updated values and xj and yj are 
the original values. Equation (5) and (6) enable us to compute 
matrix Hj quickly. The alternating approach algorithm is as 
follows in Figure 2. 

For AIA algorithms, we have the following convergence theorem 
2. 
Theorem 2.  
1) For AIA deterministic algorithms, suppose H be the original 
matrix and Hnew be the updated matrix, then  

|| R −Xnew⊙(Ynew)T||F ≤|| R −H||F.  

2) By the same token, for AIA stochastic algorithm, it converges 
each step at the final equilibrium distribution  

 P(x,y)=(1/Z)exp(−|| R −X⊙YT||F /τ),  

wherein Z is a normalized constant for probability distribution. 

Proof: Define local energy function as Eloc (x, y) =|| R −X⊙YT||F.  
1) For AIA deterministic updating algorithm, if we see its 3rd step 
as Hopfield neural network bidirectional associative computing 
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updating algorithm [29], it holds according to Hopfield 
convergence theorem of bidirectional associative memory.  
2) For the AIA stochastic algorithm, if we see its 3rd step as a 
simulated annealing algorithm [29], according to the conclusions 
of simulated annealing, the final equilibrium distribution 
P(x,y)=(1/Z)exp(−|| R −X⊙YT||F /τ) can be obtained, wherein Z is 
a probability distribution of a normalization constant , τ is called 
Boltzmann machine annealing temperature, which should be 
gradually reduced during the iteration.  QED. 
 

Figure 2. Alternating Iteration Algorithms (AIA) 

According to the conclusions of simulated annealing the AIA 
stochastic algorithm can obtain global optimal Q-matrix and A 
matrix when attributes fixed, as long as we assure the decreasing 
rate of annealing temperature being slow enough. 
 

4. EXPERIMENTAL RESULTS 
Q-matrix Reproduction from Real Response 
Data 
To show how the proposed methods work, real responses to an 
actual test we developed is used. The test is a fraction diagnostic 
test comprised of 35 items in terms of the conjunctive assumption. 
Eight attributes have been specified and developed by content 
experts as essential skill required in solving fraction problem 
according to the “Japanese government curriculum guidelines for 
teaching” (for details, see [22]). We administered the test to 144 
sixth grade students in an elementary school in Tokyo and the real 
response data of 144 students to 35 items are used as R matrix.  
We use the proposed algorithms to approach this response matrix 
R and reproduce the Q-matrix and knowledge states matrix A. 
Specifically we use the PAA algorithm illustrated in Figure 1 to 
optimize latent matrices Q (denoted as X) and A (denoted as Y for 
complementary A) first. By setting the results as initial values we 
use the other AIA algorithm illustrated in Figure 2 then to 
iteratively optimize the perturbation and get the final estimated 
matrices Q, A and approaching matrix H of the complementary 
matrix R. As shown in the above section, there are two update 
methods in each algorithm but here we only show the results of 
update method I.  
It is indicated that calculations converge within 15-20 iterations 
for all  ρ parameter ranging from 0 to 1. An example for ρ=0.5 is 
shown in Figure 3. The vertical axis represents the coverage rate 
indicating how well the generated approaching matrix has 
reproduced the original response R matrix. We can see that the 
initial value estimated by the PAA algorithm covers a little more 
than 85% of the original R and by the AIA algorithm the coverage 
rate increases rapidly at first 5-6 iterations moving towards a 
stable value (Figure 3). The convergence plots for all  ρ parameter 
have the same trends, although the coverage rate for each one is a 
slight different.   

 
Figure 3. Converging of coverage rate (ρ=0.5) 

 

 

 
Figure 4. Coverage rates along with different ρ 

Step 1. Input the response matrix R ∈{0,1}m×n and 
X∈{0,1}m×k, Y∈{0,1}n×k  

Step 2. Compute G= XYT. 
Step 3. Randomly select (or deterministically select) l,          

1≤ l≤ K, and update the l columns of X and Y. 

3.1 Compute Gl= X(:,l)Y(:,l)T, Gl=G−Gl, H=θ (Gl), 
( )ij ij m nU r h ×= , ( )ij ij m nV r h ×= ; 

3.2 Set y= Y(:,l);  

3.3 Calculate α =Uy, β = Vy, and update x based on one of the 
following methods: 

1) (update method I) x=θ (ρ⋅β −α ), where 0<ρ≤1 is a given 
parameter； 

2) (update method II) Prob (x(i)=1|αi,βi)=
( )

1
1 i ie τ β α− −+

, 

where τ is a given parameter； 

3.4 Compute  γ =UTx, δ =VTx, and update y based on one of 
the following methods: 

    1) ( )y θ ρδ γ= − ，where 0<ρ≤1 is a given parameter； 

    2) Pr ( ( ) 1) | , )j job y j γ δ= =
( )

1
1 j je τ δ γ− −+

 , where τ is a 

given parameter； 

3.5 Repeat steps 3.3 and 3.4, till x and y converge (update 
method I) or the distributions of x and y become stable 
(update method II). 

3.6 Update X:  X(:,l)=x; 
Update Y:  Y(:,l)=y;   
Update G:  G=Gl+xyT;  

Step 4.  Repeat step 3 till the change of values less than a 
given threshold.  
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Figure 5. Coverage rates with number of attributes  (ρ=0.5) 

 

The coverage rate at 20 iterations for each ρ is given in Figure 4. 
We can see that despite of different ρ the coverage rates are as 
high as around 90%, which indicates our algorithms are valid and 
give good optimization and reproduction from the original 
response data. 
Figure 5 shows how well the original response R matrix is 
reproduced by different number of attributes. The coverage rate, 
starting from 80% by single attribute, has been increasing as the 
number of attributes increases reaching the peak at eight attributes. 
It is interesting to notice that “eight” are the number the content 
experts specified and considered to be appropriate for the 
particular test in our previous study [22].  

5. CONCLUSION AND FUTURE WORK 
We used Boolean Matrix Factorization (BMF) to express 
conjunctive models in CDMs and proposed recursive algorithms 
for updating the matrix in latent attributes space (its rank equals 
one) at each step in order to get optimal solutions. We also used a 
Heaviside step function to decompose the recursive computing 
process into normal non-negative matrices and get results by 
mapping them back into a Boolean matrix, which makes our 
approximation algorithms faster. Two different algorithms were 
presented: a deterministic heuristic algorithm and a stochastic 
algorithm. We presented examples demonstrating applications of 
one of these algorithms based on an actual test dataset. The results 
indicate that Q-matrix learned can reproduce item response data 
with more than 90% coverage rate, which suggests that our 
algorithms are valid. 
As the next step we will compare the Q-matrix learned from the 
data by the proposed methods with the one created by experts in 
our previous research [22]. We will also introduce statistical 
parameters, such as “guessing” and “slip”, to make our methods 
more applicable for real data. 
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ABSTRACT
One of the key aspects of educational data mining is estima-
tion of student skills. This estimation is complicated by the
fact that students skills change during the use of an educa-
tional system. In this work we study two flexible approaches
to skill estimation: time decay functions and the Elo rating
system. Results of experiments in several different settings
show that these simple approaches provide good and con-
sistent performance. We argue that since these approaches
have several pragmatical advantages (flexibility, speed, ease
of application) they should be considered in educational data
mining at least as a baseline approach.

1. INTRODUCTION
One of the goals of educational data mining is to estimate
skill (knowledge) of students. The problem of skill estima-
tion is the following: we have sequential data about student
performance (e.g., answers to exercises, timing) and we want
to estimate a latent student skill. The quality of the skill
estimate can be evaluated by its ability to predict future per-
formance. Once we have a reliable skill estimate, it can be
used in many ways: for guiding adaptive behaviour in intel-
ligent tutoring systems, for computerized adaptive practice,
or for providing feedback to students (e.g., in skillometers,
open learner models).

In skill estimation, there are two main approaches to dealing
with the sequentiality of the data. One approach is simply
to ignore the ordering of the data, i.e., to make a simplifying
assumption that students do not learn and the skill is a con-
stant. This approach is usually used with “coarse-grained”
skills (like “fractions” or even “arithmetic”), where the rate
of skill change is slow and thus the assumption of constancy
is reasonable. A typical example of this approach is item
response theory [3], which is used mainly for adaptive test-
ing. In this case the assumption is justified since we do not
expect students to learn during test. But even some models
used in adaptive learning systems do not consider the order
of data and treat all data points in same way (e.g., per-

formance factor analysis [19] or a model of problem solving
times [10]).

The second main approach is to make a fixed assumption
about learning and “hard code” it into the model. A typi-
cal example of this approach is Bayesian knowledge tracing
(BKT) [2, 22], which models knowledge as a binary vari-
able (known/unknown) with a given probability of switch-
ing from unknown to known. Another approach of this type
are models based on learning curves [16], which typically as-
sume a logarithmic increase in skill with respect to number of
attempts (e.g., a model of problem solving times with learn-
ing [9]). These types of models are used mainly with “fine-
grained”skills (e.g., a specific operations with fractions). For
their application it is necessary that the skills are correctly
identified, so that the model assumptions hold [2].

In this work we study educational application of two interre-
lated techniques – time decay functions and the Elo system.
These techniques are between the two above described ap-
proaches. They do take the sequentiality of the data into
account, but do not make fixed assumptions about learning.
Both techniques are rather flexible and thus are applicable
to wide range of skill granularity.

The first technique is based on time decay functions. Since
students skills and knowledge changes over time, the older
data are less relevant for the estimation than the recent data.
Thus it makes sense to use some kind of data discounting – in
analysis of sequential data this can be done using weighting
by a time decay function [12, 6]. Only little research in
student modeling has so far studied data discounting or some
similar temporal dynamics, e.g., using less data in BKT [17],
data aging [29], or effect of real time (not just ordering) in
BKT [20].

The second technique is the Elo system [4], which was origi-
nally devised for chess rating (estimating players skills based
on results of matches), but has recently been used also for
student modeling [13, 27]. In context of skill estimation we
interpret an attempt of a student to answer an item as a
“match” between the student and the item. This approach
updates a skill estimate based on the result of a last match
in such a way that implicitly leads to a discounting of past
attempts.

The goal of this work is to explore applicability of time de-
cay functions and Elo system in educational data mining.
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More specifically to study the following questions: What is
a good time decay function in the context of educational
data mining? How sensitive are results with respect to pa-
rameters of time decay function and Elo rating? How do
these approaches compare to other student modeling tech-
niques? To answer these questions we apply the techniques
different contexts and we use for evaluation several differ-
ent datasets. The obtained results are quite stable and
favourable for these approaches, and thus we also discuss
their possible application in intelligent tutoring systems.

2. MODELS FOR SKILL ESTIMATION
We study the skill estimation in two context: modeling of
correctness of student answers (the only measure of perfor-
mance is correctness of the answer, possibly also the number
of hints used) and modeling of problem solving times (the
only measure of performance is a time to solve a problem).

2.1 Overview of Relevant Models
In item response theory the main model is the 3 parameter
logistic model, which assumes a constant student skill θ and
three item parameters: b is the basic difficulty of the item,
a is the discrimination factor, and c is the pseudo-guessing
parameter. The model assumes that the probability of a
correct answer is given by a (scaled) logistic function:

Pa,b,c,θ = c+ (1− c) ea(θ−b)

1 + ea(θ−b)

A specific case of this model is a 1 parameter model, which
is obtained by setting c = 0, a = 1; this model is also called
the Rasch model.

A model of problem solving times [10] uses parameters with
analogous meaning and assumes a log-normal distribution
of problem solving times:

fa,b,c,θ(ln t) = N (aθ + b, c)(ln t) =
1√
2πc

e
− (ln t−(aθ+b))2

2c2

Bayesian knowledge tracing [2, 22] models a changing skill.
It is a hidden markov model where skill is the binary la-
tent variable (either learned or unlearned). The model has
4 parameters1: probability that the skill is initially learned,
probability of learning a skill in one step, probability of in-
correct answer when the skill is learned (slip), and proba-
bility of correct answer when the skill is unlearned (guess).
The skill estimated is updated using a Bayes rule based on
the observed answers.

2.2 Time Decay Functions
Time decay function are used in the study of concept drift [6,
12, 21]. Concept drift is relevant example for modeling the
change of user preferences in recommender systems, where
the inclusion of temporal dynamics into models can improve
their performance [15]. A different area that uses temporal
discounting is economics and study of decision making [5],
where temporal discounting and time decay functions are
studied mainly with respect to decisions about future. All

1BKT can also include forgetting. The described version
corresponds to the variant of BKT that is most often used
in research papers.

Figure 1: Examples of time decay functions.

these areas can provide useful inspiration for student mod-
eling (e.g., the choice of the time decay function), but are
not directly applicable.

A time decay function assigns a weight to a data point (stu-
dent performance) that happened in the past. As a measure
of “time” we use a number of attempts (denoted n). Other
possibilities are to use a “real time” (seconds from the at-
tempt) or “semi-real time”, which counts the number of at-
tempts but takes into account big pauses (e.g., larger step
for a day switch). Figure 1 shows several natural candidates
for time decay functions, which we have evaluated in our
experiments.

Let us apply time decay functions to student modeling. In
the case of modeling correctness of answers, we have data
of the following type: student s gave to an item i an answer
with correctness csi (usually a binary variable, in case of
a “partial credit model” [25] it can also have a continuous
value between 0 and 1). The skill of a student s is estimated
as a weighted average of csk with weights given by the time
decay function, i.e., θs =

∑
f(k)csik/

∑
f(k), where ik is

the item solved by the student k steps into the past. This
skill estimate is in the range [0, 1] and can be directly used
to predict future performance.

We also study modeling of problem solving times. In accor-
dance with previous research [10, 23], we work with the log-
arithm of time, since raw times are usually log-normally dis-
tributed. Now we assume data of the type: student s solves
a problem p in a logarithm of time tsp. We denote θsp a “lo-
cal skill estimate” on a particular problem: θsp = mp − tsp,
where mp is a mean time to solve the problem p. A current
skill of a student s is estimated as a weighted average of
these local estimates with weights given by the time decay
function: θs =

∑
f(k)θspk/

∑
f(k), where pk is the prob-

lem solved in k steps into the past. The skill estimate can
be used to predict performance on an unsolved problem p
as follows: ˆtsp = mp − θs. Note that with a constant weight
function this approach is equivalent to the baseline person-
alized predictor used in [9, 10].
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Compared to more complex students models (BKT, model
of problem solving times) the outlined approaches to esti-
mating student skill are quite simple. The advantage of
this simplicity (apart of simplicity of implementation and
application) is that they make minimal assumptions about
the behaviour of students, e.g., this approach can naturally
accommodate forgetting (as opposed to BKT, where the in-
clusion of forgetting means an additional parameter) and
also such effects as a change of working environment (e.g.,
switching from a computer with mouse to notebook with
touchpad can increase problem solving times for interactive
problems).

2.3 The Elo System
The basic principle of the Elo system is the following. For
each player i we have an estimate θi of his skill, based on
the result R (0 = loss, 1 = win) of a match with another
player j the skill estimate is update as follows:

θi := θi +K(R− P (R = 1))

where P (R = 1) is the expected probability of winning given
by the logistic function with respect to the difference in es-
timated skills, i.e., P (R = 1) = 1/(1 + e−(θi−θj)), and K is
a constant specifying sensitivity of the estimate to the last
attempt.

There exists several extension to the Elo system, the most
well-known are Glicko [7], which explicitly models uncer-
tainty in skill estimates, and Trueskill [8], which can be used
also for team competitions. The Elo system has also been
used previously in modeling of correctness of student an-
swers by interpreting student solution attempt as a match
between a student and an item [13, 27].

In the case of problem solving times we can apply the method
as follows: for each student we have an skill estimate θs, for
each problem we have a difficulty estimate dp. When the
student s solves the problem p in the logarithm of time tsp
we update these estimates as follows:

θs := θs +K(E(t|s, p)− tsp)

dp := θp +K(tsp − E(t|s, p))

where E(t|s, p) is an expected solving time for a student s
and problem p, which is given as E(t|s, p) = dp − θs.

The value of the constant K determines the behaviour of the
system – if K is small, the estimation converges too slowly,
if K is large, the estimation is unstable (it gives too large
weight to last few attempts). An intuitive improvement,
which is used in most Elo extensions, is to use an “uncer-
tainty function” instead of a constant K. Previous work on
using the Elo system for student modeling [13, 27] used ad
hoc uncertainty functions selected for particular application.

An important difference of application of the Elo systems
in its typical domains (chess and other competitions) and
in student modeling, is the asymmetry in student modeling
between students and problems. Particularly we typically
have much more students than problems and consequently
more data about particular problems than students. Thus
it makes sense to use different uncertainty functions for stu-
dents and problems.

2.4 Relation between Time Decay and the Elo
System

Both described approaches are closely related – they can
both capture changing skill and do not make any specific
assumptions about the nature of the change, they just give
more weight to recent attempts. The close relation between
these two approaches is apparent particularly in modeling
of problem solving times. Using the previously described
notation of a local performance θsp = dp − tsp, the update
rule of the Elo system can be rewritten as follows:

θs := θs +K(E(t|s, p)− tsp) = θs +K(dp − θs − tsp) =
θs +K(θsp − θs) = (1−K)θs +Kθsp

Now if we consider a sequence of n solved problems and
assume an initial skill estimate 0, the final skill estimate is
given by:

θs = K

n∑
i=1

(1−K)n−iθspi

The resulting expression is very similar to the estimation
with exponential decay function, the main difference is the
use of mp (mean problem solving time) versus dp (difficulty
parameter estimated by the Elo system), but since problems
are usually solved by large numbers of students and difficulty
parameter is quite easy to estimate [9], this difference is not
practically important.

The relation with time decay function is not so straightfor-
ward for applications of the Elo system to correctness data,
which uses the logistic function, and for extension of the Elo
system with uncertainty function. Nevertheless, some sort
of temporal dynamics is inherently included in all variants
of the Elo system. Extension usually correspond to the use
of a steep decay function during first few student attempts
and flatter decay function later, when the skill estimate is
more stable.

3. EVALUATION
We present evaluation of time decay functions and the Elo
system on several different datasets. Rather than perform-
ing one exhaustive experiment with one dataset, we per-
formed several basic experiments in different settings (dif-
ferent types of datasets, simulated data).

3.1 Simulated Data
Using simulated data we explore how well can the Elo sys-
tem and estimation using time decay functions approximate
previously studied models (mentioned in Section 2.1). We
use the following type of experiment: we generate data us-
ing one of the standard models and then try to fit the data
using one of the studied approaches (the Elo system, time
decay functions).

The first experiment concerns comparison of the Rasch model
(one parameter logistic model) and the Elo system. These
two approaches are very similar, since both assume one stu-
dent parameter (skill), one item parameter (difficulty), and
the same functional form of the probability of correct answer
(logistic function with respect to the difference between skill
and difficulty). The differences between these approaches
are in the assumption about constancy of parameters and in
parameter estimation methods. The Rasch model assumes
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Figure 2: Correlation between generated and esti-
mated difficulty parameters for different number of
students. JMLE = Joint maximum likelihood esti-
mation, Elo = Elo system, PC = proportion correct.

that the parameters are constant, specifically that the skill
is constant (i.e., no learning). The standard method for esti-
mating parameters of the Rasch model is the iterative proce-
dure joint maximum likelihood estimation (JMLE) [3]. The
Elo system does not make any specific assumptions about
the constancy or change of the skill or difficulty and tracks
these parameter in more heuristic fashion.

We performed the following experiment. The simulated data
are generated using the Rasch model with skills and diffi-
culties generated from standard normal distribution. The
data are then fitted using JMLE and the Elo system and we
compare the fitted values of parameters with the generated
values. As a metric of fit we use the correlation coefficient.
The Elo system with constant K leads to significantly worse
results than JMLE, but if we use a suitable uncertainty
function, the two estimation procedures give very similar
results (correlation mostly above 0.99). A suitable uncer-
tainty function is for example the hyperbolic function a

1+bx
,

with parameters a = 4, b = 0.5. Suitable parameters can be
easily found by grid search, the performance of the system
is quite stable and the precise choice of parameter values is
not fundamental to the presented results.

In the case that we have complete data about answers or
data are missing at random, even a simple “proportion cor-
rect” statistics gives good prediction of item difficulty. How-
ever, in real systems data are not missing at random, par-
ticularly in adaptive systems more difficult items are solved
only by students with above average skill.

Figure 2 shows the results for such scenario. Data are gener-
ated using the Rasch models, portion of the data is missing,
the availability of answers is correlated with student skill
and item difficulty. The data are generated for 100 items
and different number of students, the results are averaged
over 50 runs. In this scenario, results for “proportion cor-
rect” are significantly worse than for the other two methods,
detailed analysis shows that the estimates are wrong par-

ticularly in the middle of the difficulty range. Results for
JMLE and Elo are nearly identical, the graph demonstrates
that the difference in the amount of available data is more
important than the difference between the estimation pro-
cedure used. If we have enough data, the JMLE is slightly
better than Elo, but for small amount of data Elo is even bet-
ter than JMLE. Note that this scenario is optimistic for the
JMLE, since the simulated data adhere to the constancy of
skill assumption, whereas any real data will contain at least
some variability. We have performed similar experiments in
the case of problem solving times. The results are similar,
again we get similar performance and a suitable uncertainty
function is the hyperbolic function.

Another experiment concerns comparison of the Bayesian
knowledge tracing and skill estimation using time decay func-
tions. Similarly to the previous experiment, we simulated
data from a BKT model with fixed parameters. Then we
use the BKT model and the time decay approach to make
predictions and compare them using the AUC metric (re-
sults for RMSE metric are similar). For the predictions we
use the BKT model with the optimal parameters, i.e., those
used to generate the data. This is again overly optimistic
case for BKT, as we assume that the data fully correspond
to the assumptions of the model and that we know the cor-
rect parameter values. To make the comparison fairer, the
estimation using time decay has at least the information
about the initial probability of learned skill. Even in this
setting, time decay approach gets close to BKT. For BKT
parameters 0.5, 0.14, 0.09, 0.14 (taken from [20] as average
BKT parameter values from the ASSISTments system), the
AUC values are 0.822, 0.815. The time decay function used
is the exponential function e−0.3n; similarly to the previous
experiment the choice of optimal value of the parameter can
be done easily using an exhaustive search.

3.2 Real Data
At first we describe experiments with models of problem
solving times. For this evaluation we use data from the
Problem Solving Tutor [11], which is an open web portal
with logic puzzles and problems from mathematics and com-
puter science. For comparing different models we use root
mean square error (RMSE) metric.

The results show that time decay functions can bring im-
provement of predictions. Figure 3 shows results for the
exponential decay function. As the graph shows, the opti-
mal parameter k for the exponential function e−kn is around
0.1. Hyperbolic function 1/(1 + kn) achieves similar results
as the exponential function, with optimal values of the pa-
rameter k in the interval 0.2 to 1.2. The sliding window and
linear function within sliding window achieve significantly
worse results.

Different problem types behave similarly with respect to
which time decay functions and which parameter values bring
the best improvement. They, however, differ in the amount
of improvement. For some problems the improvement is
only minor – these are for example Tilt maze and Region
division, which are rather simple puzzles where we do not
expect significant learning or other temporal effects affecting
performance. Hence it is not very useful to discount data
about past attempts. On the other end are problems like
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Figure 3: Results for exponential time decay function e−kn for varying k; the graph shows normalized RMSE
(with respect to constant time decay function). Left: Data from Problem Solving Tutor (problem solving
times), Right: Algebra data set (correctness data).

Slitherlink (more advanced logic puzzle) or Broken Calcu-
lator (practice of calculations), where the improvement is
larger and the best results are obtained by steeper decay
functions. For these problems learning is more significant
and thus it is sensible to take into account particularly last
few attempts.

In previous work [9] we have proposed a model of problem
solving times that makes a fixed assumption about learn-
ing, particularly the assumption of logarithmic improvement
with respect to the number of attempts (in agreement with
the research on learning curves). For the used dataset, this
model does not bring any systematic improvement in predic-
tions, whereas time decay functions do improve predictions
(see [14] for more detailed analysis of this comparison). Thus
it seems that for the used dataset there are temporal effects
in the performance of students that do not easily conform
to the assumptions of learning curves – the dataset con-
tains nonstandard educational problems and logic puzzles
and some of the problems require “insight”, not just appli-
cation of some fixed set of principles.

So far we have used the time decay functions with respect
to the number of attempts. Another option is to use the
time decay function with respect to real time or to take
at least some aspects of the real time into account, e.g.,
to consider large pause between attempts (similarly to the
approach used in [20]). We have performed experiments with
this extension, but the results stay very similar or bring only
small improvement (using linear combination of number of
attempts and the logarithm of passed time [14]).

In Figure 3 we have evaluated the parameter of time de-
cay function with respect to the problem type. We can do
similar analysis with respect to students. If the student’s
performance is improving fast, then the optimal time de-
cay function for him is steep, i.e., there is some relation
between learning and optimal choice of the time decay func-
tion. However, this relation is not straightforward, as steep

decay function can also mean high autocorrelation without
learning, e.g., when the student accesses the educational sys-
tem from different environments (mouse vs touchpad) or at
different conditions (morning vs night).

The results for the Elo system over this dataset are similar
and we summarise them only briefly. Even the basic Elo
system achieves similar predictions as the model of problem
solving times from [10]. The extension of the Elo system
that uses the uncertainty function with parameters deter-
mined from experiments with simulated data can achieve
improvement over the previously published model by 1 to 3
percent in RMSE [24].

For experiments with student models that predict correct-
ness of answers we used an Algebra I dataset from KDD Cup
2010 (binary correctness) and ASSISTment dataset with
partial credit data [25] (correctness is a number between
0 and 1 depending on the number of hints used). In both
of these datasets each item has a knowledge component as-
signed and we compute skills for these specified knowledge
components.

Although this is different setting and completely different
datasets from the previous experiments, the results are very
similar (Figure 3). For the choice of a time decay func-
tion we have analogical results: exponential and hyperbolic
functions work best, sliding window (in both versions) is
significantly worse. The choice of optimal parameters for
time decay functions is again similar (usually around 0.1 for
exponential function) and again we observe differences be-
tween different skills (knowledge components). For generic
skills (like “Identifying units”, “Entering a given” in Alge-
bra), time decay does not bring an improvement. For spe-
cific skills (like removing constant in linear equation), the
optimal time decay function is steep and improves perfor-
mance, i.e., for these skills there is significant learning and
hence it pays to give large weight to recent attempts.
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Figure 4: Comparison of JMLE and Elo estimates
of difficulty of geography items (country names).

For the Elo system in the context of correctness of answers,
we have applied and evaluated the system in an educational
application for learning geography (names of countries) –
slepemapy.cz. We use the Elo system to estimate the prior
geography knowledge of students and difficulty of countries.
Similarly to the above reported experiments with simulated
data, the Elo model (with uncertainty function) achieves
very similar results as the joint maximum likelihood esti-
mation for the Rasch model (see Figure 4). The Elo sys-
tem is much faster and more suitable for online application
than the iterative JMLE procedure. To estimate the prob-
ability of correct answer after a sequence of attempts at
a given country we use a model that combines aspects of
performance factor analysis [19] and the Elo system. This
combined model achieves better results than both standard
performance factor analysis and Bayesian knowledge trac-
ing. More details about this application and evaluation are
given in [18].

4. DISCUSSION
We have performed experiments in different settings and
with different datasets. Basic results are quite consistent.
The Elo system and estimation using time decay functions
are simple and flexible approaches, which can match more
specific models (Rasch model, Bayesian knowledge tracing)
even if the data are generated exactly according to the as-
sumptions of the more specific model. For the choice of
time decay function, it seems that for student modeling it is
most useful to use either exponential or hyperbolic function
(our experiments do not show systematic significant differ-
ence between these two). Sliding window and linear function
within sliding window lead to worse results.

The choice of specific parameters is also quite consistent,
e.g., for the exponential time decay function e−kt the best
k is usually around 0.1. The differences between problems
of the optimal value of the parameter k (i.e., of the shape
of time decay function) are related to the speed of learning
for a particular problem type (knowledge component). This
relation is however not straightforward, because the time
decay approach captures not just learning, but also other

temporal effects (e.g., autocorrelation of result due to the
use of the system from different working environments). For
the uncertainty function of the Elo system a good candidate
is a hyperbolic function a

1+bx
, the specific parameters a, b

differ according to the exact application, but the values can
be easily found using a grid search and the performance of
the system is only mildly sensitive to the exact values.

The advantages of both studied techniques are their flexibil-
ity, small number of parameters, and easiness of application.
Flexibility is due to the weak assumptions about student be-
havior and allows for application in wide variety of contexts
– this was demonstrated by wide range of data used in our
evaluation (e.g., logic puzzles, math problems, knowledge
of country names). Small number of parameters reduces
the chance of overfitting and leads to stable results. Both
techniques are very easy to implement and have low com-
putational demands – predictions are easy to compute, the
Elo system and exponential time decay function can be even
used in online fashion without storing data about individual
student attempts.

Both studied techniques are quite general. Since they do
not make any specific assumptions, they should not be ex-
pected to bring an optimal performance results for a par-
ticular situation. But as we show, they can be easily ap-
plied in wide range of situations and provide reasonable per-
formance. Moreover, small improvements in performance
(which can be brought by more specific models) are often
not practically important for applications of skill estimates.
Even if more specific models are available, these simple ap-
proaches can be used to get quick insight into the data and
should be used in evaluations to judge the merit of more
complex models. The basic ideas of the Elo system and
time decay functions can also be incorporated into other
models, e.g., time decay functions could be quite naturally
incorporated into performance factor analysis [19].

Some of the natural features of these approaches can also be
useful for intelligent tutoring and adaptive practice. Con-
sider two students with the following history of answers to a
particular knowledge component: student A: 1, 1, 1, 1. stu-
dent B: 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1. Immediately after
these sequences, it is not useful to give any of these two stu-
dents more problems about this knowledge component, as
there is a high probability of a correct answer. But there
is clearly a difference between these students – whereas stu-
dent A probably has solid knowledge and there is little use
in returning to the knowledge component in the future, for
student B a review in the future would be certainly useful.
If we summarise the skill by a single number as is typically
done by BKT, it is hard to capture this difference. Using
time decay functions, it is easy to cover this situation – we
can estimate a “current skill” using a steep time decay func-
tion and a “long term skill” with a flat time decay function.

Recently, there has been several works that studied the Elo
system in the context of student modeling and adaptive
practice [1, 13, 26, 27, 28]. However the impact so far has
been rather marginal, particularly compared with Bayesian
knowledge tracing. As the discussion above suggest, the ap-
proach deserves more attention.
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ABSTRACT 
Non-cognitive and behavioral phenomena, including gaming the 
system, off-task behavior, and affect, have proven to be important 
for understanding student learning outcomes.  The nature of these 
phenomena requires investigations into their causal structure.  For 
example, given that gaming the system has been associated with 
poorer learning outcomes, would reducing such behavior improve 
outcomes?  Answering this question requires an understanding of 
whether gaming the system is a cause of poor outcomes, rather 
than, for example, only sharing a common cause with factors 
influencing learning.  Because controlled experiments to settle 
such causal questions are often costly or impractical, we employ 
algorithmic search for the structure of graphical causal models 
from non-experimental data.  Using sensor-free, data-driven 
detectors of behavior and affect, this work extends Baker and 
Yacef’s notion of “discovery with models” to incorporate causal 
discovery and reasoning, resulting in an approach we call “causal 
discovery with models.” We explore a case study of this approach 
using data from Carnegie Learning’s Cognitive Tutor for Algebra 
and raise questions for future research.  

Keywords 

Discovery with models, causal discovery, graphical causal 
models, probabilistic graphical models, gaming the system, affect, 
off-task behavior, sensor-free detectors, intelligent tutoring 
systems, Cognitive Tutor, measurement. 

1. INTRODUCTION 
Recently, researchers in educational data mining, learning 
analytics, and the learning sciences have used the moniker 
“discovery with models” to describe analyses in which “a model 
of a phenomenon is developed through any process that can be 
validated in some fashion…, and this model is then used as a 
component in another analysis, such as prediction or relationship 
mining” [10]. Examples of discovery with models range over a 
variety of constructs that capture student context and interaction 
with educational software and courseware [22] like help seeking 
strategies [2] and patterns of use of online resources (e.g., [23]).   

We focus on models that function as sensor-free “detectors” that 
use data from student interactions with an intelligent tutoring 
systems (ITS) to predict whether actions are likely instances of 
particular forms of behavior or arise from a student being in a 

particular affective state.  Such detectors (and corresponding 
constructs of interest) have been the topic of a great deal of 
literature in educational data mining and the learning sciences; 
predicted constructs include “gaming the system” [6,8], off-task 
behavior [3], affective states (e.g., boredom and engaged 
concentration) [9], and carelessness [39], among others.  These 
detectors are generally validated by comparing their data-driven 
predictions (e.g., whether a student is likely to be gaming the 
system or bored at a particular [interval of] time) to classifications 
provided by trained observers in a classroom or computer 
laboratory environment (cf. [30]).   

While discovery with models approaches have been used to 
associate learning outcomes with various constructs, we suggest 
that many constructs of recent interest are especially important 
because of underlying causal questions: What causes behavior like 
gaming the system? What makes students bored, careless, or 
frustrated? What are causal links (if any) among such modeled 
constructs, and are they causally linked to outcomes like learning?  
Gaming the system, for example, and learning are found to be 
negatively associated in several studies (e.g., [14,31]), but the 
mere association of gaming behavior and learning does not imply 
that if we reduced gaming we would increase learning. Perhaps 
both are caused by some other factor (like motivation), making a 
focus on gaming behavior itself ineffective in increasing learning. 
Ideally, researchers would settle causal questions using 
randomized experiments (e.g., A/B software tests, randomized 
controlled trials), but often such experiments, if possible, are 
expensive, difficult, or unethical.  Given non-experimental ITS 
log data, and its wide availability from sources like the Pittsburgh 
Science of Learning Center’s DataShop [26], we turn to 
algorithmic methods to discover causal structure from 
observational data.   

After describing Carnegie Learning’s Cognitive Tutor® (CT) 
Algebra [36] ITS and several constructs for which sensor-free 
detectors have been developed, we briefly explicate the 
framework of data-driven search for the structure of graphical 
causal models.  We then apply this framework in a discovery with 
models approach to find causal explanations that integrate aspects 
of behavior, affect, and learning in ITSs.  Finally, we describe 
several important and interesting problems, especially but not 
limited to measurement problems, at the intersection of causal 
discovery from non-experimental data and discovery with models 
in educational data mining (i.e., “causal discovery with models”). 

2. PRELIMINARIES 
2.1 Cognitive Tutor (CT) Algebra 
CT Algebra is an ITS with hundreds of thousands of middle 
school and high school users both in the United States and 
internationally.  Increasingly, CT Algebra is also deployed in 
higher education settings.  The CT adaptively presents 
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mathematics content to students by tracking their mastery of fine-
grained knowledge components (KCs) or skills, into which 
mathematics content has been atomized, as they work through 
(parts of) problems (cf. the screenshot of Figure 1).  At each 
problem-solving step, students can request context-sensitive hints 
and receive immediate feedback about correctness that is 
sometimes accompanied by just-in-time, context-sensitive 
feedback that is more detailed. 

 
Figure 1. Screenshot of problem solving in CT Algebra 

The CT deploys content that is divided into curricular units 
comprised of (roughly topical) sections.  When the CT judges a 
student, using a framework called Bayesian Knowledge Tracing 
(BKT) [15], to have reached mastery of all the KCs in a particular 
section, she is graduated to the following section (or unit if she 
has completed all the sections in a given unit). 

2.2 Data-Driven Detectors of Behavior and 
Affect 
Recent work has developed a variety of data-driven, sensor-free 
“detectors” to infer or measure different features of student 
interactions with educational courseware, especially ITSs.  In this 
work, we focus on using detectors to infer aspects of learners’ 
gaming the system, off-task behavior, and affective states while 
interacting with the CT Algebra ITS. 

2.2.1 Gaming the System & Off-Task Behavior 
A great deal of recent work has been directed at using data-driven, 
predictive models to measure or infer disengaged behavior, 
including gaming the system and off-task behavior, and linking 
such behavior to learning outcomes using discovery with models 
techniques.  Gaming the system [5-7] is characterized as behavior 
that allows for progression through curricular material without 
genuine learning by taking advantage of ITS affordances available 
to the learner.  In general, such behavior can be broadly 
characterized by learners’ abuse of hints [1], including cycling 
through hints until the last hint (i.e., a “bottom out” hint) is 
reached that provides the answer to a problem-solving step, and 
by rapid and/or systematic guessing [7].  While some gaming 
behavior has been called “non-harmful” because it is not 
associated with decreased learning, there is a great deal of 
evidence for “harmful gaming” that is associated with decreased 
learning [6,7]. The “harmful” modifier can (at least tacitly) be 
read causally, even if generally used to describe merely 
correlational results, so one research question involves 
determining whether we can provide evidence from non-
experimental data for the claim that gaming the system is a cause 

of decreased learning.  Off-task behavior refers to behavior that is 
disengaged and/or unrelated to learning or the learning 
environment [3]. 

A variety of data-driven detectors of gaming the system and off-
task behavior have been developed in recent years (e.g., 
[11,24,43]).  We deploy detectors of gaming the system [8] and 
off-task behavior [3] developed for CT Algebra, the statistical 
basis of which are Latent Response Models [29]. These detectors 
employ features “distilled” from fine-grained CT process data that 
capture the types of behavior we described above (e.g., for 
gaming the system: quick actions after making at least one error 
on a problem-solving step [7]; for off-task behavior: extremely 
fast or extremely slow actions [3]).  Detectors generate a 
prediction for each learner action in the CT as to whether it is 
likely an instance of gaming the system or off-task behavior.  
These predictions can then be “rolled-up” to the level of 
consecutive actions on a particular problem solving-step (i.e., 
roughly consecutive actions involving the same KC).  If any one 
action within a problem-solving step is determined to be gamed or 
off-task, then we call that step gamed or off-task, following other 
applications of these detectors (e.g., [14]). 

2.2.2 Affective States 
While evidence suggests that learner affect can influence learning 
(e.g., [16,33]), measurement and assessment of affect, whether via 
surveys, physical sensors, or direct observation, can be obtrusive, 
time-consuming, and suffers from a lack of scalability to larger 
numbers of learners over longer periods of time.  In an effort to 
overcome these obstacles, recent work [9] has taken a data-driven, 
sensor-free approach to infer learner affect from ITS process data, 
much like that adopted to infer gaming and off-task behavior.   

As with gaming and off-task detectors, in the development of 
affect detectors, a wide variety of features are distilled from CT 
process data, but rather than learning a Latent Response Model, 
machine learning classifiers are applied to features of “clips” of 
problem-solving (durations of learner actions up to twenty 
seconds in length) to classify them as likely corresponding to 
learners being in a state of boredom, confusion, engaged 
concentration, or frustration. Boredom in a particular clip can be 
detected, in part, through features like the maximum number of 
previous incorrect actions and hint requests for any skill in the 
clip. Confusion in a clip can be detected, for example, using the 
percentage of actions that take longer than five seconds after two 
incorrect answers.  The duration of the fastest action in a clip is 
one feature upon which the detector of engaged concentration 
relies.  Finally, frustration can be detected, in part, by the 
percentage of past actions on skills in a clip that were incorrect 
[9]. 

These classifiers can then be applied to new data to generate 
predictions about problem-solving clips and their correspondence 
to learner affective states.  We now review several successful 
instances of discovery with models approaches using detectors to 
predict external, student-level learning outcomes.  These results 
demonstrate correlations between learning outcomes and gaming 
the system, off-task behavior, and affective states, but we seek 
further insight into whether non-experimental data alone can 
provide evidence for causal claims about the impact of these 
phenomena on learning.  

2.3 Prior Work: Using Models of Behavior & 
Affect to Predict Learning Outcomes 
Several recent projects have used data, aggregated over fine-
grained predictions, from these detectors as input to statistical, 
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predictive analyses of student-level, substantive learning 
outcomes (i.e., adopting a discovery with models approach).  One 
study used aggregate counts of gaming and off-task problem-
solving steps to predict post-test scores for several units of CT 
content [14].  These researchers built linear regression models for 
each CT unit they considered, summarizing their results by 
reporting that gaming the system was weakly associated, and off-
task behavior strongly associated, with poorer learning in the 
aggregate. 

Later work has successfully used detectors of gaming the system, 
off-task behavior, and affect on data from the ASSISTments 
system [21], to predict Massachusetts Comprehensive Assessment 
System (MCAS) standardized test scores [31] and college 
enrollment (in a different population and study) some time after 
using the software [38].  The former study reports pairwise 
correlations between variables aggregated from detector 
predictions and raw MCAS scores, treating different types of 
ASSISTments’ problems separately.  For our purposes, 
ASSISTments’ “scaffold” problems, presented after a student has 
made a mistake or asked for help, are most relevant to 
understanding student behavior in the CT, as their structure is the 
norm for CT problems.  

Boredom, confusion, engaged concentration, and frustration on 
scaffold problems are all positively and significantly correlated 
with MCAS scores across two academic years of data.  They 
report mixed results (one year positive, one negative) about the 
correlation of off-task behavior with MCAS scores and that 
gaming the system is significantly, negatively correlated with 
MCAS scores.  A logistic regression model of college enrollment 
based on detectors also found significant, positive associations 
between enrollment and both boredom and confusion [38].   

Having summarized several correlational studies that exemplify 
discovery with models using data-driven detectors, we now 
introduce the framework of graphical causal models and 
algorithmic search procedures to learn causal structure from non-
experimental data.  Our aim will then be to use detector 
predictions as input to these procedures to go beyond analysis of 
correlations. 

3. GRAPHICAL CAUSAL MODELS & 
CAUSAL DISCOVERY 
To learn causal relationships among the phenomena of gaming the 
system, off-task behavior, affective states, and learning, we adopt 
the formalism of graphical causal models, specifically causally 
interpreted directed acyclic graphs (DAGs), to represent the 
qualitative causal structure among variables of interest [32,42].  
Such models have been used to better understand causal 
relationships among various phenomena in ITSs (e.g., [20,34,35]) 
and in educational technology more generally (e.g., [17,40]).   

Under the causal interpretation of DAGs, nodes represent random 
variables and directed edges represent direct causal relationships, 
relative to the set of variables in the model. For linear causal 
relations and multivariate normal joint probability distributions, 
DAGs imply (conditional) independence constraints on observed 
distributions or covariance matrices.  Whether particular 
constraints obtain for observed data can be ascertained by 
statistical tests for whether appropriate partial correlations vanish. 

However, it is often the case that more than one DAG is 
consistent with the same set of (conditional) independence 
constraints; that is, causal structure is underdetermined by non-
experimental data, and members of the set of all of DAGs 
consistent with the same constraints (i.e., members of an 

equivalence class of DAGs) are indistinguishable from 
observation alone.  Consider, for example, a simple case of three 
observed variables X, Y, and Z, no pair of which shares any 
unmeasured common cause.  Suppose the pair-wise correlation of 
each pair of variables is non-zero, and that by a statistical test we 
determine that the sample partial correlation ρX,Y.Z vanishes (i.e., 
ρX,Y.Z = 0).  Three DAGs are consistent with this conditional 
independence relationship (i.e., are members of the equivalence 
class consistent with this constraint): 

• X à Z à Y 
• X ß Z à Y 
• X ß Z ß Y 

Beyond data-driven constraints, background and domain 
knowledge are also important.  If we knew, for example, that Z 
were prior in time to X and Y, then only one graph (the graph in 
which Z is a common cause of X and Y: X ß Z à Y) is consistent 
with both the conditional independence constraint and background 
knowledge.  

Researchers have developed asymptotically reliable algorithms1 
[42] to infer the equivalence class of causal graphs that are 
consistent with observed independencies, conditional 
independencies, and background knowledge, under different 
assumptions.  We focus on two such algorithms.  The PC 
algorithm [42] learns a graphical object called a pattern that 
represents the equivalence class of DAGs consistent with 
observed (conditional) independencies and background 
knowledge, assuming there are no unmeasured (i.e., latent) 
common causes of measured variables.  Qualitative causal 
structure of a DAG member of the class represented by a pattern 
(each member of which will fit the data equally well) can be used 
to specify a linear structural equation model.  Estimating 
parameters of such a model allows for path analysis and the 
consideration of quantitative causal effects (as we will see in 
§5.3.1).   

Since the assumption of no latent common causes is implausible 
for most real-world scientific settings, we also consider search 
using the FCI algorithm [42], which allows for the possibility of 
latent common causes.  While FCI is similar to PC in many ways, 
the graphical object it learns from data, called a Partial Ancestral 
Graph (PAG), also represents an equivalence class of causal 
graphs but is more expressive to allow for possible latent common 
causes.  Edges in PAG causal models are interpreted as follows: 

• X o—o Y: (1) X is an ancestor (i.e., cause) of Y; 
(2) Y is a cause of X; (3) X and Y share a latent 
common cause; (4) either (1) & (3) or (2) & (3). 

• X oà Y: Either X is a cause of Y; X and Y share a 
latent common cause; or both. 

• X ↔ Y: X and Y share a latent common cause in 
every member of the equivalence class 
represented by this PAG. 

• X à Y: X is an ancestor/cause of Y in every 
member of the equivalence class represented by 
this PAG. 

A graph containing this last type of edge represents a case where 
we can make causal inferences despite the assumption that there 
may be latent common causes of measured variables.  We now 
summarize our data as well as how we construct variables, from 

                                                                    
1 implemented and made freely-available by the Tetrad Project 

(http://www.phil.cmu.edu/projects/tetrad/) 
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predictions of detector models, to use as input to causal structure 
search algorithms. 

4. DATA 
4.1 Overview 
We consider CT Algebra log data over a sample of 102 learners 
who completed an algebra course in a higher education context.  
Specifically, we focus on a module of CT Algebra units presented 
at the end of a particular course that included the following units 
of instruction: 

• Systems of Linear Equations 
• Systems of Linear Equations Modeling 
• Linear Inequalities 
• Graphing Linear Inequalities 
• Systems of Linear Inequalities 

In addition to pre-test scores for this module of instruction and 
final exam scores for the entire algebra course for each of the 102 
learners, we constructed aforementioned data-driven detectors of 
gaming the system, off-task behavior, and various affective states, 
including boredom, confusion, engaged concentration, and 
frustration, from fine-grained log files containing roughly 337,000 
student actions. We learned BKT parameters, required as input to 
these detectors, for the 32 KCs in our data using a brute-force 
method [4]. 

4.2 Variable Construction 
Since it is implausible that any particular interaction (e.g., gaming 
the system on a particular problem solving step in CT) is 
attributable as a cause of aggregate student learning, we seek 
aggregate patterns of interaction (i.e., variables aggregated at the 
level of students) over which to learn causal models and provide 
causal explanations.  That is, our present project is to provide 
causal models that could explain relationships among student-
level behavior, affect, and learning, but the results of the detector 
models we seek to use as a component of (i.e., as input to) causal 
search algorithms are fine-grained (i.e., predictions about behavior 
and affect during many problem solving steps or clips of 
interaction per student).   

Previous work [18,19] provided a preliminary exploration of this 
data set using algorithmic causal search over variables defined as 
student-level counts of gamed or off-task problem-solving steps 
(as assessed by appropriate detectors), following other work that 
modeled aggregate variables constructed from predictions of these 
detectors [14].   The current project extends this exploration by 
integrating detectors of learner affect and constructs variables 
differently, roughly following more recent, aforementioned 
research using detectors to predict learners’ MCAS scores [31].  

We define variables for the proportion of problem-solving steps, 
per learner, that are judged to be instances of gaming and off-task 
behavior and the proportion of problem-solving clips (i.e., longer 
durations of problem-solving activity) at which learners are 
judged to be in particular affective states.  Constructing variables 
in this way allows for each variable to represent the proportion of 
the student’s CT interaction in which they behaved in a particular 
way or were inferred to be in a particular affective state, 
eliminating the complication of counting steps versus clips for the 
two different types of detectors deployed.  Despite modest 
differences in variable construction, high-level results we now 
present are consistent with these previous modeling efforts using 
variables defined or constructed as counts.   

5. RESULTS 
We begin describing our results by summarizing learner behavior 
and affect.  Then we present pair-wise correlations of modeled 
behavior and affect variables with learning before presenting 
structural, causal models that explain patterns of conditional 
independence among these measures. 

5.1 Relative Frequencies of Behaviors and 
Affective States 
As a check on the applicability of the detectors, we consider the 
relative frequency with which particular behavioral and affective 
predictions are made by the detectors we used.  Our findings 
roughly align with previous applications to data from (and 
observations of) CT Algebra and other tutors (cf. [9]; [S.M. 
Gowda, personal communication]).  Over all 102 students and all 
usage, 41% of steps are determined to be instances of gaming the 
system while 4.4% of steps are deemed off-task.  The detectors of 
affect infer that 5.87% of all problem-solving clips correspond to 
learner boredom; 3.52% of clips correspond to learner confusion; 
67.5% of clips are inferred to be instances of engaged 
concentration, and .8% of clips correspond to frustration. 

The relatively large percentage of gaming the system may be 
partially attributable to the fact that the detector, as in previous 
studies of the aggregate impact of gaming (e.g., [14]), does not 
distinguish between what has been called “harmful” and “non-
harmful” gaming.  Moreover, some behavior inferred to be 
gaming might be helpful for learning, as, for example, when 
students seek “bottom out” hints as worked examples [41].  

5.2 Correlations with Learning 
Next, we consider pairwise correlations of each modeled behavior 
and affective state variable and our learning outcome, the algebra 
course final exam score.  We report Pearson correlation 
coefficients in Table 1 (noting significance of each according to 
the two-tailed t-test for such coefficients). 

It is perhaps unsurprising that Gaming the System, Off-Task 
Behavior, and Frustration are negatively correlated with learning 
and Engaged Concentration is positively correlated with learning.  
That Boredom and Confusion are both positively correlated with 
learning, while perhaps surprising, is consistent with predictive 
results reported in both the MCAS and college enrollment studies 
we briefly summarized in §2.3 that used ASSISTments data.  In 
considering causal models of these constructs in the following 
section, we provide possible explanations for the directions of 
these correlations and associations. 

Table 1. Pairwise correlations of learning (i.e., final exam 
score) and variables representing “detected” behavior and 

affective states (**p < .01; ***p < .001) 

Variable / Construct Pearson Correlation 
Boredom .18 
Confusion .31** 
Engaged Concentration .55*** 
Frustration -.27** 
Gaming the System -.63*** 
Off-Task Behavior -.09 
5.3 Causal Model Discovery 
To learn structural, causal models to help explain these pairwise 
correlations, we apply aforementioned search algorithms to learn 
qualitative causal structure. So that we might provide a robust 
analysis, we consider three different sets of assumptions, 
including the temporal ordering of variables as background 
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knowledge, that constrain the search for causal structure and the 
types of inferences that can be made.  The issue of temporal 
ordering is especially important given a lack of agreement about 
whether behavior precedes affect, vice versa, or they co-occur (cf. 
[9]). We begin with the strongest assumptions, relax those 
assumptions, and then briefly consider robustness of causal 
inferences across these assumptions.  

5.3.1 No Unmeasured Common Causes & Affect 
Precedes Behavior 
We begin with two relatively strong assumptions.  First, we 
assume that there are no unmeasured common causes of measured 
variables.  This assumption is unlikely to hold in most real world 
settings.  Second, we assume that learner affect causally precedes 
behavior. We constrain the PC algorithm’s search space by 
providing background knowledge that Module Pre-Test precedes 
Confusion, Engaged Concentration, and Boredom, and that these 
three affective states precede Gaming the System and Off-Task 
Behavior.  Finally, the course Final Exam is the last variable in 
this ordering.2 

Using the qualitative causal structure inferred with the PC 
algorithm,3 we specify and estimate parameters of the linear 
structural equation model (graphically represented) in Figure 2.  
In such a model, each variable is a linear function of its parents 
(i.e., direct causes) and an independent, normally distributed error 
term (omitted from Figure 2). This linear model fits the observed 
data well, as assessed by a chi-square test comparing the implied 
covariance matrix to the observed covariance matrix (χ2(13) = 
14.64; p = .33) [13].  While we will find that the inferred causal 
relationship between Gaming the System and Final Exam (i.e., 
learning) is robust across all sets of assumptions we will consider, 
given the assumptions we have made so far, other edges in the 
graph should be interpreted cautiously. 
Keeping this caveat in mind, considering the structure and 
parameters of the model in Figure 2, we see that Module Pre-Test 
is directly linked only to Engaged Concentration; learners with 
greater pre-test scores tend to concentrate more.  Learners with a 
higher proportion of Engaged Concentration tend to game the 
system less and go off-task less, and we have already seen that 
gaming is strongly, negatively correlated with Final Exam, our 
learning outcome. 

Off-Task Behavior has no direct effect on Final Exam (or on 
Gaming the System), which we will see is also a robust finding.  
Interestingly, since Confusion is positively correlated with 
Engaged Concentration and negatively correlated with Gaming 
the System, one explanation of the positive, pair-wise correlation 
of Confusion and Final Exam is that increased Confusion 
virtuously leads both directly and indirectly (via leading students 
to better concentration) to less Gaming the System.  This provides 
one possible causal explanation consistent with recent literature 
                                                                    
2 We omit Frustration from our analysis because it is relatively 

rare, and we were unsuccessful in inferring linear models that fit 
observed data well when we included it in the search.  Future 
work should determine whether frustration in ITS environments 
is so rare.  Assuming we are inferring a valid affective feature, 
finding appropriate means for analysis is also an important topic 
for future work. 

3 While in general we learn an equivalence class of causal graphs 
with the PC algorithm, in this case, our assumption of temporal 
ordering leads us to the unique DAG structure illustrated by 
Figure 2. 

showing that confusion can be beneficial for learning (e.g., 
[27,28]).   

 
Figure 2. Estimated linear structural equation model 

That increased Boredom may contribute to less Gaming the 
System and better learning is consistent with an aforementioned 
finding [31], but the proposed explanation in that work posits an 
unmeasured common cause (here also unmeasured) of boredom in 
“scaffold” questions and better learning. Carelessness, for 
example, rather than a lack of skill mastery, may drive students to 
answer incorrectly on originally presented questions, forcing 
learners into ASSISTments’ scaffold questions; consequently 
learners become bored. Apropos, we consider relaxing the 
assumption that there are no unmeasured common causes and of 
the ordering of affect and behavior, allowing that neither precedes 
the other, but rather that they may co-occur.4 

5.3.2 Relaxing Assumptions 
The result of relaxing these two assumptions and applying the FCI 
algorithm to our data is the PAG causal model of Figure 3. First, 
despite relaxing both of our relatively strong assumptions, we still 
make the positive inference that Gaming the System is a cause of 
decreased learning (i.e., is generally “harmful” in the aggregate). 
Next, we see that inferring affective causes of Gaming the System 
is more complicated. Both Engaged Concentration and Boredom 
are found to share at least one unmeasured common cause with 
Gaming the System; the same is true of their relationships with 
Off-Task Behavior.  However, despite relaxing the ordering of 
affect preceding behavior, we still find that Confusion is possibly 
a cause of Gaming the System, though the two may also share an 
unmeasured common cause.  Finally, Module Pre-Test and 
Engaged Concentration are also possibly confounded, but this is 
perhaps unsurprising because, at best, such a pre-test is a noisy 
measure of prior ability. 

                                                                    
4 While perhaps less likely given the relatively short span of the 

single CT Algebra module we consider, cyclic relationships 
over time between behavior and affect might be fruitfully 
treated in an acyclic setting by constructing appropriate, time-
indexed (e.g., section-by-section or unit-by-unit) aggregate 
variables.  This is a topic for future research. 
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Figure 3. PAG causal model learned with weaker assumptions 

5.3.3 Robustness 
That affect and behavior co-occur is the weakest assumption and 
possibly the most reasonable, but we also inferred PAGs assuming 
that behavior precedes affect and vice versa.  Most notably, 
Gaming the System is inferred as a non-confounded cause of Final 
Exam in both cases.  However, when behavior is assumed to pre-
cede affect, positive causal inferences are also made that Gaming 
the System is a non-confounded cause of all three affect variables.  
While Gaming the System might trivially lead to less Confusion 
(i.e., attempts to avoid genuinely learning should not increase 
confusion), Gaming the System could both impinge upon 
concentration and decrease Boredom in more substantive ways.  
In the case in which affect precedes behavior (as we assume in the 
model of Figure 2), we find that Engaged Concentration causes 
decreases in both Off-Task Behavior and Gaming the System, but 
relationships between Confusion, Boredom, and Gaming the 
System may be confounded.   
Simply because more positive causal inferences can be made 
given a particular temporal ordering does not provide evidence 
that we have arrived at the “correct” ordering.  Questions like this 
should be settled by some combination of theoretical 
considerations, experimental results, and data analysis. The most 
important conclusion we reach from examining different sets of 
assumptions is that the positive inference about Gaming the 
System (i.e., that it is harmful to learning, in the aggregate) is 
robust across all of them.  The negative finding that Off-Task 
Behavior is not a cause of learning is also robust.  Lacking 
robustness for other inferences, we find the model of Figure 3 
with weaker (i.e., modest) background knowledge, allowing that 
behavior and affect co-occur, most plausible and return to it in our 
discussion. 

6. DISCUSSION 
This work makes at least two important contributions. First, we 
have illustrated an approach, combining discovery with models 
and methods for causal discovery from non-experimental data, 
that we call causal discovery with models. Second, we have 
demonstrated that this approach can be used to provide evidence 
about relationships among important constructs of interest that are 

not always practical targets of randomized experiments.5  
Specifically, we have provided evidence that gaming the system 
is, in fact, harmful (i.e., both negatively correlated and likely 
causally related) to aggregate learning for a relatively novel 
sample of learners in a higher education context. 

Notably, we do not have ground truth labels for our data (e.g., 
field observations of whether students are off-task or bored), so in 
this sense this work helps to generalize the idea that these 
detectors can be applied to data from new student populations and 
yield interesting connections to learning.  Nevertheless, further 
research is necessary to determine what unmeasured common 
causes may confound relationships between affect and behavior, 
either because of measurement problems or because of 
phenomena we have not included in these models (e.g., 
carelessness, motivation, etc.).  

A perhaps underappreciated problem for a variety of discovery 
with models approaches concerns the process by which the output 
or results of particular models (here, fine-grained detector 
predictions concerning behavior and affect) are used to construct 
variables that are used as input in other analyses (here, causal 
graph search). How do we best use the output or results of a 
particular model as a component (possibly components) of other 
analyses? Previous work [18,19] explored this problem as one of 
semi-automated search for constructed variables (including 
several different levels of aggregation and aggregation functions 
as suggested by [14]), but future work should explore better 
aggregate variable construction and feature engineering (including 
considerations of the interpretability of resulting features) as well 
as measurement models for these constructs. 

To wit, despite sophisticated feature engineering used by detectors 
to make predictions and classifications, variables included in these 
models provide a relative paucity of information about the 
underlying phenomena of interest.  More sophisticated 
measurement models might be used to either explicitly model 
latent phenomena or to develop improved, measured proxies (e.g., 
scales) to represent these constructs.  As operationalized, 
Boredom and Off-Task Behavior may, for example, be 
confounded by boredom itself, as the constructed variable 
Boredom is only one noisy measure of the underlying 
phenomenon.   

We should also include more phenomena in these models, 
including both latent phenomena like motivation and learner goals 
[12,20] and relatively simple process measures from CT log data.  
Prior work with this data set [18,19], for example, found that the 
count of actions that trigger context-sensitive, just-in-time 
feedback in the CT, while possibly less tenable as a target for 
future interventions, is highly correlated both with the final exam 
score and gaming the system.  These prior results also suggest that 
this measure, or more likely the phenomena for which it stands in 
as a proxy,6 is an intermediate link in a causal chain from Gaming 
the System to learning.  Such measures, including other relatively 
simple measures of learner efficiency and assistance required by 
learners (e.g., the “assistance score” that sums hints requested and 
errors made [26]) that have been found to predict standardized test 
                                                                    
5 This is not to say that phenomena like gaming the system have 

not or cannot be targets of interventions (cf. [5]).  However, the 
design and implementation of many experiments is likely to be 
non-trivial. 

6 possibly shallow learning or a learner’s tendency to simply enter 
values that appear in a problem 
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scores for middle school CT users [37], do not require 
sophisticated feature engineering to achieve predictive access to 
learning outcomes and have been found to be highly correlated 
with gaming the system [25]. These and other measures should be 
further evaluated and explored.  Their suitability to preserve (or 
induce) appropriate conditional independence relationships, 
necessary for modeling causal relationships in the framework we 
have described (given assumptions we have considered), should 
also be evaluated. 
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ABSTRACT 
In this paper, we mined students' sequential behaviors from an 
instructional game for color mixing called Lightlet.  Students 
pkaying the game have two broad strategies.  They can either test 
candidate color combinations in an experiment room without 
risking an incorrect answer.  Or they can choose colors from a 
faux shopping Catalog containing several different mixing charts. 
While the results shown in the Experiment Room are always 
correct, only a few of the charts in the Catalog are correct. Thus, if 
students use the catalog students must apply critical thinking skills 
to determine what charts to trust. Our primary goal in this work 
was to identify the crucial choice pattern(s) in students' game play 
that would contribute to their learning or subsequent performance. 
Data was collected from 6th graders. The results showed that 
children who chose to explore the Catalog of different charts 
during the game performed better in school.  More specifically, 
the types of behavior choices students committed during the game 
play predicted about 43% of the variation in their subsequent math 
grades. This project shows that by assessing students' choices 
during learning, we can discover a great deal about their learning 
process and can identify and assess choices that are critical for 
learning but are often missed by most tests. 

Keywords 

Educational Assessments, Educational Games, Choice-based 
Assessment, Mining Behavior Data 
 

1. INTRODUCTION  
Educational assessment sits at the epicenter of learning research. 
Any quantitative study of an intervention, experience, or program 
to improve learning depends on the quality of the outcome 
measures. An ideal educational assessment would both reflect and 
reinforce the educational goals that society deems valuable. One 
fundamental goal of education is to prepare students to act 
independently in the world—which is to make good choices. It 
follows that an ideal assessment would measure how well we are 
preparing students to do so.  

Most existing educational assessments are knowledge-based in 
that they focus on the amount of knowledge and skills students 
have accrued. Many such assessments use a format that Bransford 
and Schwartz (1999) labeled, Sequestered Problem Solving (SPS). 
In the typical SPS assessment, students are sequestered from 
learning opportunities and outside resources that might 

contaminate the validity of the assessment. Bransford and 
Schwartz argue that these retrospective measures are appropriate 
if the goal of instruction is training for highly stable performance 
conditions, but they are not optimally diagnostic when the goal is 
to prepare students to continue adapting and learning.  

As an alternative, Bransford and Schwartz followed the theories 
of Vygotsky (1934) and Fueurstein (1979) to propose Preparation 
for Future Learning (PFL) assessments. In a PFL assessment, 
there are opportunities for learning during the assessment process, 
and the question is whether students are prepared to take 
advantage of these opportunities. These types of assessments are 
appropriate when the assumption is that students will need to 
continue learning, and the question is whether prior instruction 
and experiences have prepared them to do so. Multiple studies 
have shown the value of including PFL measures for assessing the 
quality of classroom instruction (Schwartz & Bransford, 1998; 
Schwartz & Martin, 2004; Chin, et al, 2010).  

In the present work, we brought PFL assessments into an 
interactive context, where it is possible to directly measure 
processes associated with PFL. In our approach, choices, rather 
than knowledge, was the interpretative frame within which 
learning assessments are organized. In the following, we refer our 
approach as choice-based assessment. 

Until recently, most researchers treated choice as a form of 
learning intervention.  Iyengar and Lepper, (1999), for example, 
argued that giving students choices can increase their motivation 
and learning. Choice is important for learning if only because 
students need to experience choices in the protected atmosphere 
of education so they can learn how to handle them before 
becoming independent. Our approach is different.  We ask why 
choices should be viewed as the outcome of learning and not 
solely an instructional ingredient to improve it. We contend that 
choice should be the interpretative framework for understanding 
and assessing learning outcomes. With new developments in 
technology, it should be possible to advance this goal which was 
beyond the reach of prior assessments. 
One particularly promising way to integrate choice into 
educational assessment involves creating process measures that 
can capture student behaviors dynamically. Digital technologies 
make it possible to teach and assess student learning in new ways. 
Simply put, many new technologies are about choice. When 
browsing webpages, each click can be considered a choice about 
learning. When deciding what online sources to trust and which 
friends to consult, people are making learning choices. When 
using scientific simulations, people choose which sequence of 
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settings that will yield the most telling results. Thus there is a 
good match between digital technologies and choice-based 
assessments.  

Digital technologies make choice-based assessments possible, 
because interactive assessments can evaluate students in the 
context of choosing whether, what, how, and when to learn. By 
logging what students choose to do in an interactive environment, 
it is possible to gather functional process measures that can be 
expensive and difficult to gather by other means (e.g., Aleven et 
al., 2003; Baker, Corbett, & Koedinger, 2004; Hogyeong et al, 
2008; Stevens & Thadani, 2007). Cognitive Tutors (Koedinger & 
Anderson, 1997), for example, track student progress and actions 
across multiple hours of use. Videogames include metrics of 
success and process (Gee, 2003).  
However, the examples, which we describe below, all depend on 
large-scale environments that require many hours of interaction 
before any useful information can be gathered. To serve a broad 
range of goals, assessments need to be more nimble.  We show 
that this is possible by demonstrating a digital choice-based 
assessment designed to assess critical thinking.  This assessment 
is drawn from our work on Choicelets. It may not be what you 
expect in a test. 

There are advantages to making smaller and more nimble 
environments for assessment. First, nimble assessments do not 
depend on students completing many hours of a complex game or 
instructional sequence before it is possible to make any useful 
assessments. 

Second, smaller assessments can target specific choices design. 
This is quite different from searching for diagnostic patterns amid 
the millions of possible choice combinations in larger open 
environments. 
Third, there is value to having an assessment that can be used to 
make general comparisons. In video games, cognitive tutors, and 
many embedded assessment tools, the assessments are locked into 

a specific model of instruction and delivery system. Thus they 
cannot be used to compare the effectiveness of different 
instructional models and learning experiences. 

2. Choicelet  
Choicelets take the form of short, and hopefully, engaging games 
that students want to complete. To complete the game, each 
Choicelet requires some learning, and we keep a log of students’ 
choices during the process. Different Choicelets are designed to 
assess specific constellations of choices relevant to learning. In 
the present work we will focus on Lightlet a game designed to 
assess students’ critical thinking skills. Most assessments of 
critical thinking evaluate deductive reasoning; for example, the 
ability to recognize when assumptions do not lead to conclusions. 
We chose instead to reclaim the broader meaning of critical 
thinking as the process of rationally deciding what to believe 
(Norris, 1985). Therefore, in Lightlet, we assess the decision to 
engage in critical thinking for the purpose of learning. 

Figure 1 shows the main interface of the Lightlet. To play 
Lightlet, students mix the primary colors of light to move through 
a series of puzzle levels. The main component is a game board 
with colored light tiles, shown in the center of the screen. The first 
step in the game is to pick a colored tile from the game board.  
This is the target color. There is no constraint on the ordering of 
tiles to play and students can play them in any order. The students 
then select from the colors shown below the game board. The 
colors include the three primary colors (red, green, blue) and one 
non-primary color. With a click of the mix button, the selected 
colors mix. If the mixed colors produce the target color, then the 
tile disappears from the game board and reveals a portion of a 
rebus (picture that makes a phrase); otherwise, the tile remains. 
There is no limit on the number of times that a student can try for 
each tile. Once students remove all of the tiles from the board or 
reveal enough of the rebus to guess it correctly, then they can 
move to the next level of the game.  

 
 

 
Figure 1. Lightlet GUI showing the Experiment Room (lower-left), Game Board (center) and Catalog (right). 
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Most students know about the primary colors for mixing paint or 
subtractive color.  They are: red, yellow and blue.  Mixing light or 
additive color however, depends upon a different set: red, green, 
and blue (RGB).  Red + green makes yellow, and red + green + 
red makes orange. Thus, a major part of the game involves 
learning about additive color.  
Lightlet includes a pair of resources to help students learn both of 
which are shown in Figure 1. On the lower left-hand side of the 
screen is the Experiment Room, where students can try out 
different color combinations without risking a wrong answer in 
the game board. In the Experiment Room, students can use seven 
base colors including the three primary colors.  There is no upper 
limit on the number of times that each base color can be used.  
Students can clear the experiment room at any time with the 
‘clear’ button.  

On the right, there is a faux shopping Catalog in which different 
companies sell charts for mixing colors. There are seven charts 
available.  Two of them are for additive color (i.e. light) and are 
correct.  The remainder are for subtractive color mixing (i.e. 
paint) and are thus incorrect. The chart shown in Figure 1 is 
incorrect and is designed to play into students’ prior beliefs about 
mixing paint.  The descriptive text for the chart says: “Tried and 
true, red, yellow, and blue. You used them in finger painting! Use 
them now.” The Experiment Room correctly shows that yellow 
and blue make white while the Catalog entry shows that they 
make green.  Students must use critical thinking to decide which 
charts to believe, if they choose to use them at all. We track each 
of the students’ choices during the game play in the log files. 
There are three levels in Lightlet. The introduction (level 1), 
simply involves mixing red and blue lights to make three colors: 
red, blue, and magenta. This task is easy as it conforms to 
students’ existing assumptions about mixing paint. Only the 
experiment room is available in this level.  

Level 2 provides for full game play. In this level the color mixing 
challenges become harder in that students can use all three 
primary colors (e.g. red + green = yellow); we open both 
resources (the Catalog and Experiment Room) so that players can 
use them to figure out how to mix light.  It is in this level where 
we collect the process data of most interest. Students may be 
induced to use trial and error in the Experiment Room or using 
the chart Catalog. If the students who used the chart Catalog did 
better, then there would be a warrant that this is a better choice 
pattern.  

In the more advanced level (level 3) students are provided with 
new, even harder challenges as students can use each primary 
color twice (e.g., making orange, which requires red+red+green). 
And both the Catalog and Experiment Room are available for all 
players. Figure 1 shows this level of the game, which includes 
color combinations that depend on mixing three lights together.  

3. Two Dominant Choices on Lightlet 
There were two dominant patterns of choices in Lightlet: One 
pattern, The catalog-related choice pattern occurred when students 
chose to figure out which of the color charts are correct. 

The other pattern, the Experiment Room-related, happens when 
students use the Experiment Room to solve the problems. These 
students would mix colors in the Experiment room to determine 
which colors to mix for the gameplay. Once they find the answer 
in the Experiment Room, they then choose the corresponding 
color on the game board and mix colors correctly. 

In brief, on Lightlet, students have to learn the rules of additive 
color, they have an Experiment Room in the lower left corner, and 
they have a set of Catalog charts that show different color mixing 
results, some of which are subtractive charts and some of which 
are additive. Our question is: Do students choose to engage in 
critical thinking by deciding what charts to believe or they choose 
to try-and error in Experiment Room? 

We hypothesize that students who applied the Experiment Room 
choice pattern had learned to solve problems one at a time rather 
than trying to find a general explanation. In math class, one can 
imagine students working to get the right answer for each separate 
math problem without attempting to find the deeper explanation 
that handles all possible related problems. The students who spent 
their time trying to decide which color chart to believe, on the 
other hand, were trying to find the general framework that could 
handle any colors in the game. 

4. Teaching Students General Explanation  
Prior research has shown the advantage of asking students to 
generate a general explanation that can handle all cases in a given 
task. It is much like finding a good theory can explain the results 
of multiple experimental conditions. For example, in a series of 
studies, students were provided with sets of contrasting cases 
designed to help them induce the structure of density (Schwartz, 
et al. 2011). When students were asked to invent a single 
procedure for generating a “crowdedness index” for the cases, 
they learned the ratio structure of density and spontaneously 
transferred to new problems. They outperformed control students, 
who were told about density at the outset and then applied the 
formula to the exact same contrasting cases.  

In the current study, we first conducted pre-Lightlet training on 
generating general explanation. During the training, students were 
asked to find the similarities and differences between a series of 
contrasting cases in two physics tasks for two consecutive Friday 
classes (50 min each), one task per class. Half of the students, the 
experimental group, were explicitly encouraged to produce a 
comprehensive, general explanation of the similarities and 
differences. In other words, the experimental group was tasked 
with finding an underlying general structure or framework that 
explains all contrasting cases while the control group were tasked 
with finding the similarities and differences between the cases and 
they were not explicitly tasked to generate any general 
explanations or framework.  
The two groups were treated identically when using Lightlet. 
Because the task of determining which set of charts to trust would 
help students find a general framework that could handle any 
colors in the game, we hypothesize that the experimental students 
in the pre-Lightlet training would be more likely to do so, 
especially since they were not only explicitly taught to do so but 
also greatly benefited from generating a general explanation for 
both physics tasks. So our first hypothesis is that: the 
experimental students will be more likely to use Catalog charts 
than the control students.  

5. Validating Choice-based Assessments  
In the normative world of education, we care about “better” and 
“worse,” so it is crucial to justify whether or not a particular 
performance is “better.” Knowledge-based assessments rely on 
objective “right” and “wrong” answers as their criteria for better 
and worse performance. Few would argue with the claim that 
“five” is a worse answer than “four” to the question, “What is two 
plus two?” But with choices, people may reasonably challenge the 
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judgment that one choice is better than another. Who is to say that 
persisting is better than not? If we were to analyze the log file of a 
student using Lightlet, for example, the choice of where to let the 
cursor rest while thinking is less relevant than the choice of 
whether to open up one of the color charts. A data-driven answer 
would help alleviate some of the problems associated with the 
social construction of what constitutes a useful choice, at least 
with respect to learning. People would then be able to debate 
whether the learning value of a choice is sufficiently high to favor 
it in assessment. 

Here we present some approaches to validating whether some 
choices are better or worse than others. As always, our criteria of 
better and worse are relative to learning. We begin with a 
correlational approach: whether certain choices are connected to 
standard knowledge-based measures. This is important since most 
educators still think knowledge-based assessments are the ground 
truth for evaluating learning. In the following, we used the 
students’ final school math test scores as a standard knowledge-
based assessment. More specifically, we will investigate whether 
the choices students made when interacting with Lightlet would 
predict their final school math test scores.  

To further validate the choice-based assessment, we will directly 
compare the choice-based assessment with game-embedded 
knowledge-based assessments such as how well did a student play 
Lightlet. Thus our general question is: which assessment is 
predictive to students’ school performance, the choice-based 
assessment, the embedded knowledge-based assessment, or 
neither. Given that Lightlet has little to do with solving math 
problems as they appear on the children’s mathematics tests, we 
hypothesize that that game-embedded knowledge-based may not 
be very predictive.  

As described above: we hypothesized that students involved in 
Catalog-related choice patterns are interested in finding a general 
framework that could handle any colors in the game. Since the 
Catalogs only became available on the full game play level (level 
2), we expect general-explanation students would begin exploring 
the Catalog choices on level 2, immediately or shortly after each 
catalog becomes available. Therefore, our second hypothesis is 
that: when considering level 2 alone the choice-based assessment 
will be a better predictor of students’ math performance than the 
game-embedded knowledge-based assessment. 
On the other hand, considering level 2 alone may not be sufficient 
to grasp all the students’ choice patterns. On average, students 
spent only around 5 minutes on level 2 vs. 20 minutes on the 
whole game. So the effectiveness of choice-based assessment may 
become even more predictive if we considering the entire game 
play. Therefore, our third hypothesis is that when considering the 
whole game play, the choice-based assessment will still be a 
better predictor for students’ math performance than the game-
embedded knowledge-based assessments. However, it is not clear 
whether the former will be more effective than the choice-based 
assessment when using level 2 alone. In other words, whether the 
longer the choice-based assessment is, the more effective it will 
be?  

6. Data Collection   
6.1 Participants and Design: 
Two 6th-grade classes participated in the study.  Both classes 
were from high-SES schools in California and had the same math 
teacher. Due to logistical constraints, intact classes were randomly 
assigned to the two conditions during pre-Lightlet training.  The 
assignments were: Experimental (n = 19) and Control (n = 21). In 

both conditions, students variously worked individually or in 
groups, consistent with regular classroom practice. Then all 
students played Lightlet for 15-30 minutes. All tests in the study 
were taken individually.  
6.2 Procedure: 
The study occurred on three Friday classes (50 min each) with 
two consecutive Fridays for the pre-Lightlet training and one for 
interactions with Lightlet.  

During the pre-Lightlet training, all students were given a set of 
contrasting cases on “cannon rides” shooting straight out at 0° 
angle at different speeds and from different heights in the first 
week and cases on “cannon rides” shooting out at an angle at 
different speeds and reaches different maximum heights in the 
second week. The treatment difference occurred in the 
instructions that students received. Control students were 
prompted to explain the similarities and differences among the 
cases while the experimental ones were told to invent a single 
general framework that would explain all cases. This phase lasted 
15 minutes. Students answered a brief test item, used the 
simulation to test their ideas, and then took the posttest. 

Interactions with Lightlet happened six weeks after pre-Lightlet 
training. All students played Lightlet for fifteen to thirty minutes. 
The students’ final school math test was taken at the end of the 
semester, about one month after interacting the Lightlet.  

6.3 Data Features 
In order to identify students’ choices and track their game-
embedded performance during interactions with Lightlet, we 
defined a set of Catalog-related, Experiment Room related, and 
performance-related features based on a combination of theory 
and prior work on modeling learning environments (Chi, 
VanLehn, Litman, & Jordan, 2011) and on student modeling (Chi, 
Koedinger, Gordon, Jordan, & VanLehn, 2011). We do not yet 
know precisely what choice or performance actions are associated 
with learning outcomes in advance. Thus, we defined four 
categories of features.  
The first two categories correspond to the two types of the choice 
patterns in section 3. More specifically: 
The first category includes 18 features related with the Catalog 
usage. It includes two types of features: duration and occurrence. 
The former covers 11 time-related features such as the total 
duration that a correct or incorrect Catalog is open; while the 
latter includes seven features such as the total number of times 
that a student opened an incorrect Catalog, the total number of 
Catalogs that the student opened and so on.  
The second category includes 13 features related with usage of the 
Experiment Room. It consists of one feature covering how much 
time a student spent in the Experiment Room and 12 features 
related to their behaviors within the room behaviors. These are 
simple features such as the number of times the students used the 
Experiment Room and more complicated features such as the 
number of times that a student successfully makes a target color in 
the experiment room after picking it on the game board. 
The third category includes 6 features focused on general 
information about the game play.  These include simple features 
such as the total time spent in the game, gender and the condition 
information during the Pre-Lightlet training. Some more 
complicated features in this category assess how students choose 
the next puzzle to play. On Lightlet, students were given 6, 9 and 
12 puzzles on level 1, 2 and 3 respectively. For each level, 
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students can select which tile to play in any order. We thus 
defined three features to detect how the students choose the target. 
We found that, rather than using the Experiment Room, students 
sometimes engage in trial and error on the game board.  One 
example feature is TryErrorPick, which is defined as the number 
of times a student picked a color from the game board that they 
had previously made a wrong attempt on. For example, if a 
student trying to mix “orange” by mixing red + green, the student 
would get yellow and the orange puzzle remains unsolved on the 
game board; if the student then chose yellow again this would be 
detected.  
The last category includes 13 features related with game-
embedded performance-related features. They include features 
such as the total number of tiles that a student succeeded, the 
percentage of tiles that a student succeeded (how well a student 
clear the game board), how efficient a student was when clearing 
the tiles (the number of tiles students cleared from game board 
divided by the total time) and so on.  

7. Results  
In the following, we will present our results in the order of our 
three hypotheses:  

Hypothesis 1: the experimental students will be more 
likely to use Catalog charts than the control students. 

Hypothesis 2: when considering level 2 alone the choice-
based assessment will be a better predictor for students’ math 
test school than the game-embedded knowledge-based 
assessment. 

Hypothesis 3: when considering the whole game play, the 
choice-based assessment still be a better predictor than the 
game-embedded knowledge-based assessments.  

7.1  Experiemental vs. Control 
Our overall results show that the experimental and control groups 
were comparable at the outset of Pre-Lightlet training when the 
treatment differences began: there were no significant differences 
between treatment groups on two tests given by the teacher before 
the study, or any of our assessments before or at pretest on the 
first week of Pre-Lightlet training. As expected, after the different 
treatments, the two groups began to separate. We found that 
explicitly asking students to generate a general explanation led the 
experimental group to outperform the control condition on several 
midtest and posttest items after the different treatments took place. 
More specifically, 100% and 77.8% of experimental group 
produced a general explanation for the two physics tasks 
respectively while only 10% and 33.3% of the control group did 
so. This difference was statistically-significant for the first task 
and marginally-significant for the second.  
The experimental group significantly outperformed the control 
group.  We argue that this is because the former were asked 
explicitly to generate a general explanation for all the cases. On 
Lightlet, to generate a general framework for all the color games 
would requires students to engage in Catalog activities. We would 
expect that the experimental group would be more likely to do so. 
However, our results showed that the experimental students were 
no more likely to engage in Catalog activities than the control 
students. We compared the two groups across all Catalog -related 
features described in previous section on both level 2 and across 
the whole game. No significant difference was found on any of 
Catalog-related choices students made.  
Furthermore, we found no significant difference between the two 
conditions on any Lightlet Experiment Room-related behaviors, 

game-board performance related, or the school math final test 
scores. 

Overall, it seems that after explicit instruction on generating 
general explanations, the experimental students did not 
spontaneously make a choice that would lead to finding a general 
solution for all the colors on Lightlet. There are many possible 
explanations for this finding. One possible explanation is that the 
instruction on generating a general explanation was explicit 
during the Pre-Lightlet training but when interacting with 
Lightlet, the experimental students were not explicitly asked to do 
so. Additionally, the experimental students were given a set of 
comparing and contrasting worked cases in the original general 
explanation instruction; but on Lightlet, they were not given any.  

To summarize, our results showed that it is still an open question 
how to teach students to make good choices. On the other hand, 
while it may not be easy to teach students to make good choices, 
is it still feasible to use choices as an effective assessment? In the 
following, we investigated whether the choices students made on 
Lightlet would predict their learning performance in school. We 
first investigated whether using level 2 data alone would be 
predictive.  

7.2 Choice- vs. Knowledge-based Assessment 
Using Level 2 Only  
We first investigated whether the individual features from the four 
categories would predict the standard knowledge-based 
assessment: students’ final math test scores. Note that, all the 
features were calculated based on the level 2’s log files alone. 
Among the four categories, Out of 18 Catalog-related features, 13 
features are significantly predicted students’ final math test 
scores. For all 13 features, the more Catalog activities, the higher 
the students’ final math tests scores. Among them, the most 
predictive feature is: ResourceReviewDuration the total duration 
that a Catalog is open in level 2. ResourceReviewDuration 
significantly predicted students’ final math tests scores: β = 0.010, 
t(38) = 2.64, p = 0.01. It alone also explained a significant 
proportion of variance in students’ final math tests scores, R2 = 
.15, F(1, 38) = 6.95, p < .001. 

Only one out of 13 Experiment-Room related features are 
significantly predicted students’ final math test scores. The feature 
is GoalOrientedExperimentSuccessTry: the number of times 
students pick a color from the game board and then try to make 
the targeted color successfully in the Experiment Room in level 2. 
GoalOrientedExperimentSuccessTry significantly predicted 
students’ final math tests scores: β = -1.93, t(38) = -2.69, p = 0.01. 
It alone explained a significant proportion of variance in students’ 
final math tests scores, R2 = .16, F(1, 38) = 7.22, p = .01. So the 
more a student try and error successfully in the experiment room, 
the lower his/her final math score is.  

Finally, none of the features in the remaining two categories, the 
general information and the game-embedded performance related 
features significantly predict students’ final math test scores. For 
example, PercCorrectGamePlay: the total number of times tile a 
student succeeded divided by the total number of tiles the student 
tried to play in level 2, did not significantly predict student’s final 
math scores: R2 = .05, F(1, 38) = 1.85, p = .18.  

Therefore, when considering level 2 alone the choice-based 
assessment is a better predictor for students’ math test school than 
the game-embedded knowledge-based assessment when using the 
single feature.  
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We then applied brute-force search to select the best three features 
from all the four categories that would best predict students’ final 
math test scores. Our final model include three features and they 
are: 

WrongResourceReviewDuration (Catalog-related): The 
total duration of a student opening a wrong Catalog 

GoalOrientedExperimentSuccessTry (Experiment Room 
related): The number of times students pick a color from 
the game board and then try to make the targeted color 
successfully in the Experiment Room. 

TryErrorPick (General): The number of times students 
pick a color from the game board that is the same color 
as the previous wrong color.  
 

The results of the regression indicated the three predictors 
explained a significant proportion of variance in students’ final 
math tests scores: R2 = .43, F(3, 36) = 8.94, p = .0001. Table 1 
shows that all three features significantly predict students’ final 
math tests scores. 

Table 1: Coefficient of Three Level 2 Feature Model  

Feature Name β Sig 
WrongResourceReviewDuration  
 

0.018 t(38) = 3.51  
p =0.001 

GoalOrientedExperimentSuccessTry  -2.62 t(38) = -4.14  
p =0.0002 

TryErrorPick  
 

-3.28 t(38) = -2.69  
p <0.05 

 
Finally, note that none of the game-play performance related 
features were included in the final three-feature model. Therefore, 
it again suggested that the choice-based assessment is a better 
predictor for students’ math test school than the game-embedded 
knowledge-based assessment. 

7.3 Choice- vs. Knowledge-based Assessment 
Across Levels 
Similar as previous section, we first investigated whether each 
individual features we extracted from whole log files would 
predict students’ final math test scores.  
While on level 2, 13 out of 18 Catalog-related features are 
significantly predicted students’ final math test scores, only 5 
Catalog-related features are significantly predictors when using 
across levels. Among them, the most predictive feature is the 
same as using level 2: ResourceReviewDuration (the total 
duration that a Catalog is open). It significantly predicted 
students’ final math tests scores: β = 0.004, t(38) = 2.34, p = 0.02. 
It alone also explained a significant proportion of variance in 
students’ final math tests scores, R2 = .13, F(1, 38) = 5.46, p= 
0.02.  So when using the whole game play logs, the best 
predictive Catalog-based feature is still the same as using the level 
2 alone: ResourceReviewDuration. However, when considering 
the whole game play, the ResourceReviewDuration is less 
predictive than using the level 2 data alone.  
Similarly, out of 13 Experiment-Room related features, the only 
feature that significantly predicted students’ final math tests 
scores is again: GoalOrientedExperimentSuccessTry (the number 
of times students pick a color from the game board and then try to 
make the targeted color successfully in the Experiment Room). It 
significantly predicted students’ final math tests scores: β = -0.45, 
t(38) = -2.45, p = 0.02. It alone explained a significant proportion 

of variance in students’ final math tests scores: R2 = .14, F(1, 38) 
= 5.995, p = .02.  Again, when considering the whole game play, 
the GoalOrientedExperimentSuccessTry is less predictive than 
using the level 2 data alone: R2 = 0.136, p < 0.02 vs. R2 = 0.16, p 
= 0.01 respectively.  

For the remaining three types of features, as when using the level 
2 log alone, none of the features significantly predict students’ 
final math test scores. In other words, again none of the embedded 
knowledge-based assessment on students’ game play performance 
significantly predict students final math test scores. For example, 
PercCorrectGamePlay, the total number of times tile a student 
succeeded divided by the total number of tiles the student tried to 
play across the whole game, again did not significantly predict 
student’s final math scores: R2 = .02, F(1, 38) = 0.88, p = .35. 
 

As with using level 2 alone, the choice-based assessment is a 
better predictor for students’ math test school than the game-
embedded knowledge-based assessment when using the single 
feature.  

The brute-force search selects the best three features from all the 
four categories that would best predict students’ final math test 
scores.  Two features, WrongResourceReviewDuration (Catalog) 
and GoalOrientedExperimentSuccessTry (Experiment Room), are 
also shown in best three-feature model using Level 2 log alone; 
the other feature is: 
 

ExactDurationNoActivity (General): The total duration 
that a student is not involving any game playing 
activities such as reading Catalog, nor using Experiment 
Room, nor playing a game. 
 

The results of the regression indicated the three predictors 
explained a significant proportion of variance in students’ final 
math tests scores: R2 = .34, F(3, 36) = 6.27, p < .002. All three 
features significantly predict students’ final math tests scores 
(Table 2) 

Table 2: Coefficient of Three Across Level Feature  Model 

 coeff Sig 
WrongResourceReviewDuration  0.008 t(38) =3.05 

p =0.004 
GoalOrientedExperimentSuccessTry  -0.55 t(38) =3.20 

p =0.003 
ExactDurationNoActivity 
 

-0.005 t(38) =2.25 
p =0.03 

 
In addition to the fact that both WrongResourceReviewDuration 
and GoalOrientedExperimentSuccessTry showed up in the best 
predicted models when considering level 2 alone and when 
considering the whole game play, in both models the former is 
positively correlated with students’ school math performance 
while the latter is negative correlated. Additionally, note that the 
best model when considering level 2 alone beat the best model 
across level: R2 =0.43 vs. R2 =0.34. 

When using the same three best features used in the level 2’s best 
model to predict students’ final math tests scores, the model is still 
significantly predict the student’s school performance: R2 = .25, 
F(3, 36) = 4.01, p = .01. We found that 
WrongResourceReviewDuration significantly predicted students’ 
final math test scores (β = 0.006, p = 0.02), as did 
GoalOrientedExperimentSuccessTry (β = -0.44, p = 0.02), but not 
TryErrorPick, (p = 0.95) 
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Again, note that none of the game-play performance related 
features were included in the final best three-feature model. This 
again suggests that when considering the whole game play, the 
choice-based assessment still be a better predictor than the game-
embedded knowledge-based assessments. 

Furthermore, our results also suggested that the choice-based 
assessment when using level 2 alone is more predictive than the 
choice-based assessment using the whole game play. So it 
suggested that it is important to note that for certain skills, the 
choice-based assessment should be nimble. 5 minutes on Lightlet 
is more efficient to detect effective learners than asking student to 
spend 20 minutes on it.  

Finally, we have shown that choice-based assessment is more 
predictive than game-embedded knowledge-based assessment. 
One more interesting question to answer is: did the choice student 
made during the game play help their performance in the game?  
There is insufficient space in this paper to go into detail.  But our 
overall finding is that the choice student made during the game 
play indeed significantly predicts their performance in the game.  
For this analysis, we treat the third level of Lightlet as a posttest 
for level 2. If students make good learning choices on level 2 and 
learn about additive color, then they should do well on level 3. It 
turns out that the same choice pattern in level 2 that predicted 
learning in students’ math class also predicted performance on 
level 3 (how efficient they clear the game board on level 3):  R2 = 
.32, F(3, 36) = 5.61, p = .003. We found that only one feature  
WrongResourceReviewDuration significantly predicted student’s 
level 3’s performance (β = -0.19, p = 0.0004) while the other two 
were not significantly predictive: TryErrorPick, (p = 0.10) 
GoalOrientedExperimentSuccessTry (p = 0.15). 

To summarize, students who chose to explore the Catalog were 
more likely to do better in school. In fact, the amount of time 
students committed to figuring out the Catalog entries shortly 
after the Catalog became available predicted about 43% of the 
variation in the students' grades in their mathematics classes (the 
only classes for which we had records). In other words, all 
students tried to level-up in our game, but those who chose not to 
engage in critical thinking while doing so were also doing worse 
in school. 

8. Conclusions 
For many, assessments are a lighthouse in the fog of education— 
a clear guide by which to make safe decisions. But in reality, 
assessments create the fog. Current assessments perpetuate beliefs 
that the proper outcomes of learning are static facts and routine 
skills—stuff that is easy to score as right or wrong. Interest, 
curiosity, identification, self-efficacy, belonging, and all the other 
goals of informal learning cannot even sit at the assessment table, 
because these outcomes are too far removed from current beliefs 
about what is really important.  
Assessments seem to be built on the presupposition that people 
will never need to learn anything new after the test, because 
current assessments miss so many aspects of what it means to be 
prepared for future learning. These frozen-moment assessments 
have influenced what people think counts as useful learning, 
which then shows up in curricula, standards, instructional 
technologies, and people’s pursuits. 

Teachers may tell students about the importance of persistence, 
critical thinking, interest development, and a host of other keys to 
a successful life. But tests provide the empirical evidence that 
students use to decide what is truly valued. If an assessment 
focuses on the retrieval and procedural application of narrow 

skills and facts, this is what students will think counts as useful 
learning. By changing assessments to concentrate on choices, we 
should be able to improve beliefs about what constitutes useful 
learning. 

If the fog were lifted, we would see that most of the stakeholders 
in education care first and foremost about people’s abilities to 
make good choices. Making good choices depends on what people 
know, but it also depends on much more, including interest, 
persistence, and a host of twenty-first-century soft skills that are 
critical to learning. Where we can anticipate a stable future—
decoding letters into words is likely to be a stable demand for the 
next fifty years—then knowledge- and skill-based assessments 
make sense. In relation to those aspects of the future that are less 
stable, though, people will need to choose whether, what, when, 
and how to learn. Hence, it is important to focus on choices that 
influence learning, and assessments should measure those choices. 
Choice is the critical outcome of learning, not knowledge. 
Knowledge is an enabler; choice is the outcome. 

Assessing choices during learning has a number of attractive 
properties. Foremost, choice-based assessments are process 
oriented. They examine learning choices in action rather than only 
the end products. This process focus makes it possible to connect 
the learning behaviors during the assessment to processes that 
occur in a learning environment. Second, the assessments reveal 
what students are prepared to learn, so they are prospective as 
opposed to retrospective. Third, choice resonates with the rest of 
the social sciences that examine the movements of people, money, 
and ideas. Fourth, choices do not lend themselves to simplistic 
reifications whereby things like people’s knowledge or 
personality traits are misinterpreted as independent of context and 
immune to change. Fifth, choices can measure a much greater 
range of learning outcomes than fact retrieval and procedural 
application. Sixth, learning choices are a good candidate for 
inclusion in standards, which currently define what knowledge 
students should have but stay strangely silent about the processes 
of learning themselves. 
Recent advancements in technology create a special opportunity 
for moving toward a new paradigm of assessment. There are risks, 
however. People may only use technology to make us faster and 
more entrenched in doing the wrong thing. When used well, 
technology makes it possible to create and validate choice-based 
assessments by using the rapid generation of interactive 
environments, crowdsourcing, automated logging, and educational 
data mining. Thus, it is possible for choice to become the core of 
assessment (and not in the degraded sense of multiple-choice 
tests). In this paper, we provided an anchoring example of a 
computerized, choice-based assessment, Lightlet. 
Tracking the process of learning is different from simply detecting 
whether a student knows an answer or not, which is the output of 
most tests. Choice-based assessments can provide a much richer 
corpus of information from which to draw actionable information 
about learners. We can locate the source of the problem rather 
than just the consequence. The students who were doing the worst 
in math class, for instance, were those who used the Experiment 
Room to solve each problem through trial and error. These 
students, instead of trying to develop an overall understanding of 
additive color, were simply attempting to get the right answer for 
each problem in turn. In the best case, identifying this pattern of 
choices can help a teacher address the underlying learning issue, 
which is that the students are trying to solve each problem in turn 
rather than discovering the general principle that governs the 
solutions to all problems. 
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In an initial study using a similar environment with sixth grade 
children, the results were quite clear. Children who chose to look 
at the Catalog of charts during the game were doing better in 
school. In fact, the different choice patterns students committed 
during the game play predicted about 43 percent of the variation 
in the students’ grades in their mathematics classes. While all the 
students seemed happy to play the game, those who chose not to 
engage in critical thinking were also the students who performed 
worse in mathematics. The 43 percent level of prediction is high, 
especially considering that Lightlet has little to do with solving 
math problems as they appear on the children’s mathematics tests. 
The assessment captured something crucial about how these 
children go about learning that is affecting their success in 
mathematics—and will likely do so in the future.  
Overall our results offer two take-home messages. First, by 
assessing students' choices during game playing, we can discover 
a great deal about the processes they do or do not use to learn. 
Second, we can assess choices that are critical to learning, but that 
are missed by most tests.  
 
To summarize, with more choices and interactivity comes more 
information about the learner. Performance assessments, such as 
portfolio and project-based assessments, have tried to capitalize 
on the increased information found in choice-rich environments 
(e.g., Resnick and Resnick 1994). Richard Shavelson, Gail Baxter, 
and Jerome Pine (1991), for example, describe a kit-based 
performance assessment for science. Students conduct physical 
experiments to determine which brand of paper towel absorbs 
more water. The assessment provides information about the 
students’ abilities (or inclinations) to use experimental logic and 
take careful measurements. Unfortunately, the authors also point 
out that performance assessments can be prohibitively expensive 
to deploy and score at scale. Technology can help overcome the 
difficulties associated with increased information. Computers can 
deliver assessments where students make choices about how to 
learn, and the computers can automatically log all user behaviors 
that might be of interest to a teacher, assessor, or researcher, 
ranging from chat logs to virtual interpersonal distance to 
direction of gaze. It is an ethnographer’s thick description for free. 
Computers provide new efficiencies that make tractable what was 
once impracticable. And with new empirical capabilities, new 
theories are sure to follow.  

People generally in system performance measure for predictive 
analysis.  Our research, however, shows that behaviors features 
can be far more informative 
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ABSTRACT 

In association rule mining, interestingness refers to metrics that 

are applied to select association rules, beyond support and 

confidence. For example, Merceron & Yacef (2008) recommend 

that researchers use a combination of lift and cosine to select 

association rules, after first filtering out rules with low support 

and confidence. However, the empirical basis for considering 

these specific metrics to be evidence of interestingness is rather 

weak. In this study, we examine these metrics by distilling 

association rules from real educational data relevant to established 

research questions in the areas of affect and disengagenment. We 

then ask three domain experts to rate the interestingness of the 

resultant rules. We finally analyze the data to determine which 

metric(s) best agree with expert judgments of interestingness. We 

find that Merceron & Yacef (2008) were right. Lift and cosine are 

good indicators of interestingness. In addition, the Phi 

Coefficient, Convinction, and Jaccard also turn out to be good 

indicators of interestingness.  

Keywords 

Association Rules, Interestingness, Cosine, Phi Coefficient, 

Human Rating 

1. INTRODUCTION 
In recent years, Association Rule Mining has become a central 

method in the field of Educational Data Mining. It plays a 

prominent role in reviews of the field, including reviews by 

Romero & Ventura (2007, 2010), Baker & Yacef (2009), Scheuer 

& McLaren (2012), and Baker & Siemens (in press), referred to 

this method as a core type of relationship mining.  In Association 

Rule Mining, algorithms search for patterns where a set of values 

of variables (the “if-clause”) predict another variable’s value (the 

“then-clause”). (It is also possible for a then-clause to have 

multiple variables, but less common). 

In these reviews, it was noted that Association Rule Mining has 

several potential applications. It is excellent for generating 

 

hypotheses to study further, and for finding unexpected 

connections within data.  

Association Rule Mining has been applied to several applied 

research problems within the educational data mining community 

and related research communities. Some notable examples 

include: Freyberger and colleagues have used association rules to 

analyze interactions between students and intelligent tutoring 

systems, in order to find models that predict student's success 

(Freyberger, Heffernan & Ruiz, 2004); Lu (2004) used association 

rules to match suitable learning materials based on each student 

learning needs; Garcia, Romero, Ventura & De Castro (2009) 

have used association rules to make recommendations to 

instructors for how to improve the effectiveness of a web adaptive 

course; in a similar example, association rules have been 

implemented to provide information to teachers about students’ 

behavior in intelligent tutoring systems (Ben-Naim, Bain & 

Marcus, 2009).  

A subset of Association Rule Mining, Sequential Pattern Mining, 

has also seen extensive use in the educational data mining 

community, as well as being highlighted in reviews of the field 

(e.g. Romero & Ventura, 2007; Baker & Yacef, 2009; Scheuer & 

McLaren, 2012; Baker & Siemens, in press). Sequential Pattern 

Mining consists of finding association rules where the contents of 

the then-clause occur temporally after the contents of the if-clause 

(Agrawal & Srikant, 1995). In the case of educational data 

mining, Kinnebrew, Loretz, & Biswas (2012) have used 

Sequential Pattern Mining to analyze how students engage in the 

different activities within an intelligent tutoring system over time, 

in particular studying the different sequences seen in high-

performing and low-performing students. In another example, 

Perera et al. (2009) used Sequential Pattern Mining to analyze 

how groups of students use online tools, studying the work 

patterns of successful and unsuccessful groups, in order to provide 

feedback to the groups about their work strategies.  One more 

example in education comes from the research done by Romero, 

Ventura, Delgado & De Bra (2007), who integrated Sequential 

Pattern Mining techniques in an algorithm within an educational 

system in order to provide personalized recommendations to 

students about possible links they should explore. 

Association rules are typically initially selected on the basis of 

rules’ confidence and support (Agrawal & Srikant, 1995). The 

support of a rule corresponds to the percentage of data points that 

contain both the if-clause and then-clause. The confidence of the 

rule is expressed as the percentage of data points that contain both 
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the if-clause and also includes the then-clause, divided by the 

number of data points that contain the if-clause (Garcia, Romero, 

Ventura & Calders, 2007).  

However, the combination of support and confidence is 

insufficient to select good association rules. By definition, support 

and confidence find variable values that are frequently seen 

together. As such, these metrics often end up selecting 

combinations of variable values that are trivially associated, such 

as finding that students who take advanced biology probably took 

introductory biology, or finding that students who fail a course’s 

exams fail the course as well.  

What is desirable is to instead find association rules that are 

novel, that are surprising, that are unexpected. Frequently, after 

rules are filtered by looking for all rules with a minimum support 

and confidence, the next step is to use an alternate metric that can 

give some indicator of novelty; that can determine if an 

association rule is interesting. 

To this end, researchers have tried to decide which metrics best 

capture an association rule’s interestingness, both in general (Tan, 

Kumar & Srivastava, 2004), and in the specific case of 

educational data mining (Meceron & Yacef, 2008). Merceron and 

Yacef (2008) recommend Lift/Added Value (Lift and Added 

Value are mathematically equivalent) and Cosine as excellent 

interestingness measures for educational data because their 

meaning is easily understood even to people not expert in data 

mining (e.g., teachers, school administrators, and so on); in 

addition, Cosine does not depend on the data set size. In 

particular, they recommend that researchers consider an 

association rule to be interesting if it has a high value for either of 

these measures. 

Moreover, there are additional metrics identified that have the 

potential to measure interestingness. Tan et al. (2004) review the 

potential candidates for an interestingness measure, finding over 

twenty in the published literature. Their list includes lift and 

cosine, but also includes the Phi coefficient, Goodman-Kruskal’s, 

the Odds ratio, Yule’s Q, Yule’s Y, Cohen’s Kappa, Mutual 

information, the J-Measure, the Gini Index, Laplace, Conviction, 

Piatetsky-Shapiro,  Certainty Factor, Added Value, Collective 

strength, Jaccard, and Klosgen. Such variety of possible 

interestingness measures has made it complicated to identify 

which one is the most appropriate.  

Further complicating the matter of choosing an appropriate 

interestingness measure (or measures) is the fact that the research 

on interestingness measures has thus far been mathematical or 

intuitive: interestingness measures have been selected based on 

their mathematical properties, and in some cases based on the 

intuitive perceptions of expert data miners. 

In this paper, we consider an alternate strategy for selecting 

interestingness measures: using data mining to determine which 

interestingness measure is best, based on expert judgments of 

interestingness. In other words, instead of selecting a metric 

formally or intuitively, we can actually collect data on which 

association rules are seen as being the most interesting by domain 

experts, the population that could best take advantage of new 

hypotheses and unexpected findings in a domain. We then analyze 

this data to determine which metrics, or combination of metrics, 

best matches the domain experts’ perception of specific rules’ 

interestingness. 

In the following sections, we take real data from online learning. 

We then distill association rules for that data relevant to 

established research questions in the field. We then ask three 

domain experts to rate the interestingness of the resultant rules. 

We finally analyze the data to determine which metric(s) best 

agree with expert judgments of interestingness. In doing so, we 

will explicitly compare our findings to claims in Merceron & 

Yacef (2008) as to which metrics best represent interestingness. 

2. Method 

2.1 Data 
In order to study domain experts’ assessments of which 

association rules are interesting, we generated association rules 

from real student data, relevant to established research questions 

in the field. We use domain experts, under the hypothesis that 

what experts consider interesting may be different than what 

novices consider interesting (and we believe that finding rules that 

are interesting for an expert is a more valuable use of association 

rule mining, though opinions could differ). We use genuine data 

to create these rules rather than simulated data, due to the concern 

that the metrics that predict the interestingness of genuine data 

may not be the same as the metrics that predict interestingness in 

simulated data. This would be a particular concern if the 

simulated data were to produce association rules that were 

actually false; and using generic operators would eliminate the 

potential to leverage domain expertise. 

To this end, we used models that assess student affect and 

disengaged behaviors within a widely-used online learning 

environment, to examine association rules about the relationships 

between student´s affect and disengaged behaviors. The study of 

student disengagement and affect has been a research topic of 

considerable interest to researchers in EDM and related fields. 

Sabourin, Rowe, Mott, & Lester (2011) have analyzed the relation 

between engaged and disengaged behaviors with positive and 

negative affective states in students while interacting with a 

learning system, finding that different patterns of affect correlate 

to engaged and disengaged behaviors. Hershkovitz, Baker, 

Gobert, & Nakama (2012) have found evidence that boredom 

mediates between the student´s tendency to avoid novelty and off-

task behavior. Baker, D’Mello, Rodrigo & Graesser (2010) find 

that gaming the system is often preceded and followed by 

boredom. Chauncey & Azevedo (2010) show a relationship 

between induced affect and cognitive engagement/meta-cognition, 

leading to differences in performance. 

These rules were generated from data from the ASSISTments 

system (Razzaq, Heffernan, Feng & Pardos, 2007). ASSISTments 

is an educational web-based system that provides students with 

intelligent tutor-based online problem solving activities, while 

providing teachers with dynamic formative assessment of the 

students’ mathematical abilities. The system has been found to be 

effective at enhancing student learning. (Razzaq et al., 2007), and 

is used by over 50,000 students a year. Figure 1 shows a screen 

shot of the ASSISTment system. 

Data was obtained  from the logs of 724 middle school students 

from the Northeastern United States, who answered different 

problems that measure 70 different mathematics skills. Within this 

data set, there were a total of 107,382 problems solved by 

students within the ASSISTment software. Student actions in this 

data set were classified in terms of affective states and disengaged 

behaviors from machine-learned affect and behavior detectors. 

The detectors inferred if the student:  
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 was detected as being bored or not, 

 was detected as being concentrated or not, 

 was detected as being frustrated or not, 

 was detected as being confused or not, 

 was detected as being on task or off task, 

 was detected as being gaming the system or not, 

 

The following  additional features were also included in the data 

set:  

 the student providing a correct answer  

 the student providing an incorrect answer 

 the student asking for a hint. 

 

 

Figure 1. Example of an ASSISTment item 

 

The detection of these binary categories of affective 

states/behaviors was done using the detectors presented in Pardos 

et al (2013). These detectors were developed by distilling features 

of the students´ interactions with the software, and synchronizing 

those features with field observations collected by two trained 

coders during the students’ interactions with ASSISTments. The 

log data entry and the field observations were synchronized and 

segmented in 20 second windows to develop the detectors. 

Detector performance was evaluated using student-level cross-

validation (5-fold). All detectors performed substantially better 

than chance, being able to distinguish each affective 

state/behavior between 63%-82% of the time (the A’ statistic), 

performance that was 23%-51% better than chance (the Kappa 

statistic). The detectors provide confidence values of the 

probability that an affective state or behavior occurred. To support 

the association rule mining analyses discussed below, we convert 

these probabilities into binary predictions, using a 50% 

probability threshold (the Kappa values listed above represent the 

model goodness when this transformation is used). Pardos et al. 

(2013) and San Pedro et al. (2013) provide a detailed description 

of the detectors and their use in multiple discovery with models 

analyses. Table 1 summarizes the frequency and proportion of 

each of these behaviors/affective states. Regarding table 1, it 

shows some of the average confidences are higher than what 

should be expected. Here we point out that, as it is indicated in 

San Pedro et al. (2013), some detectors used in the current 

research presented some systematic error in prediction, which 

impacted in a higher or lower average confidence of the resultant 

models compared to the proportion of the affective states in the 

original data set. This type of bias does not affect correlation to 

other variables since relative order of predictions is unaffected, 

neither affects A’ or Kappa, but it can reduce model 

interpretability. We did not rescaled the detectors, as it is 

proposed in Pardos et al. (2013) since we are considering final 

binary predictions from the detectors, where Kappa is the relevant 

goodness statistic, we use non-rescaled confidences in this paper. 

The association rules were created in way that each rule described 

how a set of the affective states/ behaviors seen in the first attempt 

at a problem was associated with a single affective state or 

behavior in the student’s first action on the next problem. In this 

analysis, simple association rules were created that predicted 

affect or behavior from a combination of the elements at the 

previous action. 

2.2 Generation of Association Rules 
Association rules were created using the arules package (Hahsler, 

Gruen, & Hornik, 2005; Hahsler et al., 2009) in R version 2.15.2 

(R Development Core Team, 2012). In specific, the apriori 

algorithm implemented within the arules package was used to 

discover the association rules (Agrawal et al., 1994). This process 

in R resulted in a list of 431,768 rules, for which support, 

confidence, and lift were automatically computed. A total of 120 

different association rules were selected from the 431,768 

measures obtained; these 120 rules were selected to be the rules 

with the highest support and confidence that were representative 

of different numbers of elements in the if-clauses and were 

representative of all variables in the then-clauses of the rules. All 

rules selected had a support over 0.05 and confidence over 0.1; 

most were considerably higher.  

Table 1. Frequency and average confidence for each affective 

/behavioral state in the data 

  

Frequency Percentage 

Rescaled 

Average 

Confidence 

Bored 52080 48.49 0.2469 

Engaged 

concentration 
47854 44.56 0.5160 

Frustrated 10929 10.17 0.0988 

Confused 20308 18.91 0.1372 

Off-Task 18135 16.88 0.0406 

Gaming the 

system 
9805 9.13 0.0182 

Used Hints 16216 0.15  

Answer was 

Correct 
45116 0.42  

 

2.3 Expert Rating of Association Rules 
Once the rules had been created, they were rated for their 

interestingness by domain experts. In specific, four scientific 

researchers with scientific expertise in the areas of affect and 

disengagement in online learning. They rated the extent to which 

each of the 120 association rules was “scientifically interesting”. 
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A Likert scale was used in rating, ranging from 1 to 5, where 1 

was “Not at all interesting” and 5 was “Extremely interesting”. 

Based on these expert ratings, the average inter-rater 

interestingness value was calculated for each rule, giving an 

indicator of how interesting the experts found each rule. In 

addition, measures of the degree of agreement between the experts 

were calculated, and are discussed in Section 3.1.  

 

2.4   Computing Association Rule Metrics 
After the expert coders rated the 120 selected association rules, 

additional interestingness measures from Tan et al. (2004) were 

computed in Microsoft Excel. The following metrics were 

computed for each rule:  

 Phi Coefficient  

 Cosine 

 Piatetsky-Shapiro 

 Jaccard, Laplace 

 Certainty Factor 

 Added Value 

 Klosgen 

 Odds Ratio 

 Cohen’s Kappa 

 Gini Index 

 Conviction 

 J Measure 

 Collective Strength 

 

In addition, non-standard metrics were created, under the 

hypothesis that these metrics might also capture some key aspects 

of expert perception of interestingness in this domain, where an 

expert might be looking for evidence of successful students or 

unsuccessful students: 

 The number of elements in a rule with values equal to 

Yes, Correct, and/or On task behavior. 

 The number of elements in a rule with values equal to 

No, Incorrect, and/or Off task behavior. 

3. Results 
The findings of the research are presented in this section. First, 

examples of some association rules rated as very interesting, not 

interesting, and with mixed rating, are presented. Then, results 

about the inter-rater agreement are included. Finally, correlations 

between the experts´ ratings and the association metrics are 

described, and regression models are presented that make 

combined predictions of expert ratings from a combination of 

association metrics. 

3.1 The Most and Least Interesting Rules 
As discussed in the previous section, each rule was rated for 

perceived interestingness by each of the four expert coders. 

Below, we present some of the most interesting and least 

interesting rules, in their perception. Note that each rule 

represents a transition from time t1 (left side of rule) and time t2 

(right side of rule). Note also that rules are presented with the 

exact same operators as generated by the algorithm, which means 

that some redundancy is present. 

The most interesting rules according to the experts (e.g. the rules 

with the highest average interestingness) were:  

{Got incorrect answer, not frustrated}  {Gaming the system} 

{Gaming the system, bored, not in engaged concentration, got the 

incorrect answer and did not request a hint}}  {Confused} 

{Off-task, confused, not bored, got the correct answer, and did not request 

a hint}   { Off-task} 

The following rules were rated as least interesting by the experts 

(in terms of average rating). 

{In engaged concentration, did not request a hint, not bored or frustrated 

or confused or off-task or gaming the system}   {Off-task} 

{In engaged concentration, got correct answer, did not request a hint, not 

frustrated or confused or off-task or gaming }   {Not gaming the 

system} 

{In engaged concentration, got correct answer, did not request a hint, not 

bored or frustrated or confused or off-task or gaming the system}  {Not 

frustrated} 

However, some rules obtained a high rating from two experts but 

low rating from the other two: 

{Got incorrect answer, did not request a hint, not in engaged 

concentration or frustrated or off-task or gaming}  {Confused} 

{Got incorrect answer, did not request a hint, bored, not concentrated or 

frustrated or confused or gaming}  {Not being frustrated} 

The first of these rules was rated as not interesting by two 

members of the same research group (experts 2 and 3 below) but 

rated as very interesting by two members of other research groups. 

The second rule, however, was rated highly by experts 1 and 2, 

who belong to different research groups, and it was rated as less 

interesting by experts 3 and 4. 

3.2 Agreement among raters 
Though there was generally good agreement between experts, 

some rules led to disagreement between the coders in terms of 

interestingness, as shown above. To see the degree of agreement 

(and to evaluate whether it was feasible to use these expert codes 

as a basis for studying which metrics best evaluate 

interestingness), we checked to make sure there was consistency 

among the four domain experts, using multiple metrics. The 

estimated Cronbach´s Alpha coefficient for the consistency in 

rating among the four experts was 0.845, which indicates there is 

a high covariation among experts in their ratings of 

interestingness of different rules. The general Intraclass 

Correlation for the agreement among the four raters was 0.487, 

which indicates a moderate agreement among the experts (Bartko, 

1966). It is worth noting that while Cronbach’s Alpha expresses a 

measure of covariation in the ratings among experts, Intraclass 

Correlation estimates reliability as the magnitude of 

disagreement/agreement among the experts (Hallgren, 2012). 

Hence, the difference among both measures reflects a discrepancy 

of what each statistic estimates. In the context of our results, these 

statistics mean that while the experts showed consistency in the 

way they rated each rule, only a moderate agreement among 

experts was achieved. 

Additionally, Spearman correlation coefficients were calculated to 

determine the degree of agreement between each pair of experts 

based on their rating of interestingness to the 120 association 

rules. Results of the Spearman correlation coefficients are 

included in the table 2, which indicate there was a significant 

degree of consistency among the four experts. As this table shows, 

all four experts had a reasonable degree of consistency, but 

experts 1 and 2 showed higher agreement with each other, while 

experts 3 and 4 had higher agreement with each other. Overall, 

there was moderate to high agreement among the experts in their 

rating of interestingness of different association rules. 
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Table 2. Spearman correlation coefficients among experts. 

 
Expert 1 Expert 2 Expert 3 Expert 4 

Expert 1 1 
   

Expert 2 .744 1 
  

Expert 3 .548 .590 1 
 

Expert 4 .580 .516 .674 1 

 

3.3 Correlation between expert judgments 

and association metrics 
Though there was some structure in terms of agreement (e.g. 

coders 1 and 2 agreed more, and coders 3 and 4 agreed more), the 

overall agreement between coders was sufficient to create a single 

metric representing the interestingness of each rule. This metric 

was created by taking the average of the four coders’ ratings for 

each rule.  

Next, Spearman correlation coefficients were calculated to 

analyze the degree of association between the expert ratings of 

interestingness and the metrics of interestingness computed in R 

(R Development Core Team, 2012; Gamer et al., 2012; Fletcher, 

2010) and Excel. The resultant correlation coefficients are 

presented in Table 3. This table shows that the experts’ ratings of 

interestingness were highly correlated with some association rule 

measures. 7 of the 24 metrics were more highly correlated with 

the expert ratings of interestingness than the experts’ ratings of 

interestingness correlated with one another, on average. The most 

highly correlated metrics were Jaccard (r= -0.838), Cosine (r= -

0.835), and Support (r = -0.82).  As shown in Table 3, the metrics 

that agreed least well with expert ratings of interestingness were 

Added Value (r= -0.014) and Kappa (r=-0.029). Merceron & 

Yacef’s (2008) recommendation to use Cosine agrees with our 

findings here; their recommendation to use Lift does not, at least 

initially. But they recommend using these metrics in concert, not 

individually. In the next section, we consider what mixture of 

metrics best predicts human judgments of interestingness. 

 

3.4 Predicting Expert Perception of 

Interestingness from a Combination of Metrics 
 

After looking at the predictive power of each metric, taken 

individually, we built a model that predicted expert judgments 

using a combination of metrics. Doing so may allow us to create a 

meta-metric that could be a better representation of interestingness 

than any single metric by itself. 

A linear regression model was created to predict the average 

expert judgment of interestingness. For this full model, no 

variable selection was conducted – e.g. all metrics listed above 

were incorporated into this model. Although the model had 

statistically significant fit statistics (r= 0.938, r2 = 0.879, Cross-

validated r2 =0.73, AIC = 123.2702, BIC = 181.8075; F(19, 100) 

= 38.24, p-value = 0.001), it also had a high degree of 

multicollinearity among the predictors, measured by the Variance 

Inflation Factor (VIF). Multicollinearity can lead to over-fitting, 

as well as making it very difficult to interpret the estimated values 

for the regression coefficients and their standard errors. This 

model is reported in table 4.  

 

Table 3. Spearman correlation among inter-rater average and 

association rules metrics. 

  
Correlation to 

Inter-Judge 

Average 

p-value 

Jaccard -0.838 <0.001 

Cosine -0.835 <0.001 

Support -0.82 <0.001 

Certainty Factor 0.775 <0.001 

Confidence -0.747 <0.001 

Laplace rule -0.647 <0.001 

Count var. of 1´s -0.609 <0.001 

Conviction -0.432 <0.001 

Count var. of 0´s -0.368 <0.001 

Klosgen -0.327 <0.001 

Gini Index -0.32 <0.001 

Odds Ratio -0.31 0.001 

Yule's Q -0.31 0.001 

Yule's Y -0.31 0.001 

Piatetsky-Shapiro -0.303 0.001 

J Measure -0.303 0.001 

Collective Strength -0.298 0.001 

Phi Coefficient -0.29 0.001 

Lift 0.202 0.027 

Kappa -0.029 0.754 

Added Value -0.014 0.876 

 

Table 4. Regression model with all association rules metrics 

and counting variables as predictors 

Predictor Coeff S.E. T P-val VIF 

Intercept 106.44 33.13 3.21 0.001  

Count var. of 1´s -0.042 0.097 -0.43 0.664 4.2 

Count var. of 0´s -0.01 0.081 -0.13 0.896 13.3 

Support 44.085 19.83 2.22 0.028 2375.2 

Confidence 0.899 1.617 0.55 0.579 230.6 

Lift -28.56 13.46 -2.12 0.036 2117.1 

Phi Coefficient 47.673 26.51 1.79 0.075 1422.1 

Cosine 34.443 47.58 0.72 0.470 24213.7 

Piatetsky Shapiro -80.69 509.0 -0.15 0.874 18302.8 

Jaccard -108.6 57.81 -1.87 0.063 16274.3 

Laplace -10.62 9.39 -1.13 0.260 3832.8 

Certainty Factor -17.37 8.473 -2.05 0.042 347.8 

Added Value 49.036 36.95 1.32 0.187 2257.6 

Klosgen -78.83 187.3 -0.42 0.674 6543.2 

Odds Ratio -0.235 4.097 -0.05 0.954 10700.1 

Kappa 172.97 70.26 2.462 0.015 6245.3 

Gini Index -437.2 283.4 -1.54 0.126 712.7 

Conviction -2.369 5.516 -0.42 0.668 7758.5 

J Measure 1038.7 502.4 2.068 0.041 1851.9 

Collective Strength -68.02 36.70 -1.85 0.066 8265.7 
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A second linear regression model was tested including just 

statistically significant association metrics as predictors with small 

multicollinearity among them. The predictors excluded from this 

analysis were: Support, Confidence, Piatesky Shapiro, Jaccard, 

Laplace, Certainty Factor, Added Value, Klosgen, Odds Ratio, 

Kappa, Gini Index, J Measure, and Collective Strength. Those 

omitted predictors presented moderate to high correlations with 

one or more association metrics included in the model 

summarized in table 5. The criteria for exclusion were high 

correlations among the predictors that, consequently, resulted in 

VIF values higher than 10 for a given model. 

Results of this second regression model showed that two 

association rule metrics –Lift and Conviction– had a positive 

prediction coefficient, while other two metrics – the Phi 

Coefficient and Cosine– had a negative coefficient. The model fit 

statistics were statistically significant and explained almost as 

much of the variance as the full model, which achieved a  

substantially higher cross-validated correlation (r= 0.902, r2 = 

0.814, Cross-validated r2 =0.791, AIC = 144.4186, BIC = 

161.1436; F = 126.4, df1 = 4, df2 = 115, p-value = 0.001). Table 5 

summarizes the second regression model. The lower values of 

BIC in the second model confirm it is a better and more simple 

model compared with the former one. 

Table 5. Regression model with association rules metrics with 

restriction for multicollinearity 

Predictor Coeff S.E. T P-val VIF 

Intercept 0.404 1.023 0.395 0.6937  

Lift 3.848 0.790 4.870 <0.001 5.477 

Phi Coef. -11.179 2.220 -5.034 <0.001 7.491 

Cosine -5.783 0.585 -9.880 <0.001 2.752 

Conviction 0.469 0.116 4.013 <0.001 2.616 

 

Although Jaccard presented the highest correlation with the inter-

rater average score, it also presented a very high correlation with 

many other metrics, including Cosine (r = 0.96). Thus, many 

models that included Jaccard also presented a high degree of 

multicollinearity among the predictors; as a consequence, Jaccard 

was excluded in the combined model presented in table 5. Table 6 

demonstrates a model similar to the model in table 5 but replacing 

Cosine with Jaccard. The model in this case was not better in 

terms of multicollinearity and was only slightly better in terms of 

goodness-of-fit (r = 0.908, r2 = 0.825, Cross-validated r2 =0.81, 

AIC = 137.5014, BIC = 164.2263; F(4, 115) = 135.6, p-value = 

<0.001). 

Table 6. Regression model including Jaccard instead of Cosine 

Predictor Coeff S.E. T P-val VIF 

Intercept 0.547 0.986 0.556 0.579  

Lift 3.502 0.778 4.496 <0.001 5.638 

Phi Coef. -7.528 2.370 -3.177 0.002 9.038 

Jaccard -8.896 0.847 -10.49 <0.001 2.780 

Conviction 0.207 0.121 1.721 0.088 2.945 

 

Regression models were also computed for each individual metric 

used in the combined models. The results, which are summarized 

in table 7, show that single-feature models presented less 

desirable fit statistics (i.e., r2, AIC, and BIC) than the combined 

model. The model including just Jaccard as predictor has the best 

fit statistics among the single-variable models (with Cosine close 

behind), but the combined model is still superior. 

.  

Table 7. Regression models with single predictors 

Predictor 
Coeff – Intercepet 

(S.E.) 
p Fit Stats. 

Lift 
2.81*Lift – 0.80 

(0.729) 
<0.001 

R2 = 0.112 

CV-R2= 0.074 

AIC = 326.43 

BIC = 334.79 

Phi  

Coefficient 

-6.744*Phi + 2.78 

(1.754) 
<0.001 

R2 = 0.111 

CV-R2= 0.098 

AIC = 326.56 

BIC = 334.93 

Cosine 
-7.72*Cosine + 5.39 

(0.387) 
<0.001 

R2 = 0.771 

CV-R2= 0.754 

AIC = 163.71 

BIC = 172.07 

Conviction 
-0.69*Conviction + 3.2 

(0.152) 
<0.001 

R2 = 0.149 

CV-R2= 0.119 

AIC = 321.24 

BIC = 329.61 

Jaccard 
-11.56*Jaccard + 4.84 

(0.552) 
<0.001 

R2 = 0.787 

CV-R2= 0.779 

AIC = 154. 84 

BIC = 163.21 

 

4. Discussion and Conclusions 
As seen in this paper, several standard association rule metrics can 

predict human expert ratings of interestingness of an association 

rule. Most commonly used interestingness metrics showed 

statistically significant correlations with the experts’ ratings of 

interestingness, but not all of them were included in the final 

combined model given the high common variation among them. 

The best metrics – Jaccard, Cosine, and Support – achieved an 

absolute correlation higher than 0.80 with the average expert 

human judgment, which is higher than the average correlation of 

the ratings between experts. Hence, we see that these association 

metrics are a good substitute for human ratings of interestingness 

In particular, our findings agree with Merceron and Yacef (2008) 

that Cosine and Lift are useful, as they were successful predictors 

in the final combined model in this data set. Taken individually, 

Cosine was good predictor, while Lift explained considerably less 

variance. The association metric Cosine consistently had a high 

negative correlation with the raters’ scores of interestingness and 

significantly predicted expert ratings of interestingness, both in a 

single-predictor model and in combination with other association 

metrics. The association metric Lift had a positive correlation and 

significantly predicted the average score of interestingness among 

the experts in combination with other metrics and in a single-

predictor model; however, Lift was relatively weak compared to 

other metrics when taken by itself.  

However, one surprise is that Cosine, while important in both our 

findings and in Merceron & Yacef, was correlated to 

interestingness in the negative direction in our findings (i.e. low, 

while Merceron & Yacef recommend looking for high Cosine). 

This finding is surprising, and merits further study. One 

possibility is that once support and confidence are accounted for, 
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then interestingness links in some ways to rarity. Perhaps that is 

not surprising –facts that are already known are not particularly 

interesting– but it does show that the association rule mining 

conception of interestingness may not quite match intuitive 

notions of this construct. In our view, this finding is itself 

impressive. In general, this result suggests that Cosine is indeed 

important, but may reflect interestingness in a different way than 

previously understood.  

In addition, other association rule metrics – the Phi Coefficient, 

Conviction and Jaccard – that have not been widely used in 

educational data mining also explained a significant proportion of 

the variance in the combined model and a in single-predictor 

models. Therefore, it might be useful to also consider these 

metrics in future research using association rule mining in 

educational data sets. 

On the whole, results in this study show that the recommended 

metrics of interestingness proposed by Merceron and Yacef 

(2008) are useful, as well as other metrics not considered by those 

authors.   

It is worth considering some limitations of this study. First, only 

linear correlations and linear regression models were considered. 

Although these approaches achieved good fit to the data, and 

explained much of the variance, it could be useful to consider 

models with non-linear relations among the association rules 

metrics and the expert ratings. Second, given the high correlation 

among different association rules metrics, other measures could be 

considered as alternative predictors of the inter-rater score of 

interestingness instead of the four measures chosen in the final 

regression model reported. Third, this paper represents a single 

analysis in a single educational research domain. Results might 

vary in a different educational research domain, or indeed outside 

of education. However, the fact that Cosine and Lift were 

prominent both in our models and in the recommendations in 

Merceron & Yacef (2008) is a positive sign, given that their work 

involved a very different area of educational research.  

Overall, the use of association mining to understand complex and 

interesting relations among different variables is a method with a 

lot of potential in educational data mining research. Association 

rules can be understood at an intuitive level, and can provide 

useful information for a variety of stakeholders who are not 

experts in EDM, including students, teachers, administrators, and 

policy makers. However, given the huge numbers of association 

rules that can be generated, it is important to try to filter not just 

by support and confidence, but by interestingness as well. By 

using the metric or combination of metrics that matches an 

intuitive conception of interestingness, we can provide the most 

interesting information to users of association rules first, 

improving the efficiency of this method.  
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ABSTRACT
Using data from student use of educational technologies to
evaluate and improve cognitive models of learners is now a
common approach in EDM. Such naturally occurring data
poses modeling challenges when non-random factors drive
what data is collected. Prior work began to explore the
potential parameter estimate biases that may result from
data from tutoring systems that employ a mastery learn-
ing mechanism whereby poorer students get assigned tasks
that better students do not. We extend that work both by
exploring a wider set of modeling techniques and by using
a data set with additional observations of longer-term re-
tention that provide a check on whether judged mastery is
maintained. The data set at hand contains math learning
data from children with and without developmental dyscal-
culia. We test variations on logistic regression, including the
Additive Factors Model and others explicitly designed to ad-
just for mastery-based data, as well as Bayesian Knowledge
Tracing (BKT). We find these models produce similar pre-
diction accuracy (though BKT is worse), but have different
parameter estimation patterns. We discuss implications for
use and interpretation of these different models.

Keywords
learning curves, logistic regression models, knowledge trac-
ing, parameter fitting, prediction accuracy

1. INTRODUCTION
Modeling student knowledge is a fundamental task when
working with intelligent tutoring systems. The selection of
tasks and actions is based on the student model, therefore an
accurate prediction of student knowledge is essential. The
accuracy of the student model depends on the quality of the
parameter fit. Parameter fitting is, however, not only im-
portant for prediction accuracy; the parameters of a model
also contain information on how students learn.

A variety of approaches to assess, interpret and predict stu-
dent knowledge have been proposed. Popular techniques to
model student learning include Bayesian Knowledge Tracing
(BKT) [8], Bayesian networks [4, 9, 10], performance factors
analysis [21] and Additive Factors Models (AFM) [5, 6].

BKT is one of the most popular approaches for student mod-
eling. Prediction accuracy of the original BKT model has
been improved using clustering approaches [20] or individ-
ualization techniques, such as learning student- and skill-
specific parameters [16, 19, 24, 26] or modeling the param-
eters per school class [21].

The AFM is a generalized linear mixed model [2] applying
a logistic regression. It is widely used to fit learning curves
and to analyze and improve student learning. AFM helps
identify flat or ill-fitting learning curves that indicate op-
portunities for tutor or model improvement. Consistently
low error curves indicate opportunities to reallocate valu-
able student time [5]. Consistently high error curves with
poor fit indicate a miss-specified skill model that can be im-
proved [15, 23] and used to design better instruction [14].
However, when working with mastery learning data sets,
averaging over students who have different initial knowledge
states and learning rates may lead to learning curves which
show little student learning. It has been shown [17] that
disaggregating a learning curve into curves for different sub-
populations or mastery-align the learning curves provides
more accurate metrics for student learning. However, so far
there exist no comparisons between the properties of the dif-
ferent models, such as the parameter fit. Furthermore, the
models were also not validated regarding prediction accu-
racy.

In this work, we therefore extensively evaluate the properties
and parameters of different logistic regression models when
fitting learning curves to a mastery learning data set contain-
ing students with heterogeneous knowledge levels. We turn
the suggestions of [17] for fitting learning curves in BKT into
logistic regression models and also introduce a further alter-
native model to the AFM. The data set at hand was collected
from an intelligent tutoring system for learning mathematics
and includes log files from 64 children with developmental
dyscalculia and 70 control children. Our findings show that
similar regression models predict very different amounts of
learning for the same data. Furthermore, we demonstrate
that different parameter fits lead to the same prediction ac-
curacy on unseen data. For further validation, we compare
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prediction accuracy of logistic regression models to that of
BKT and analyze how well these models generalize to new
students. Our results demonstrate that logistic regression
models outperform BKT regarding prediction accuracy on
unseen data.

2. METHOD
In the following, we first introduce different logistic regres-
sion models and their properties. We then give a short
overview of BKT and finally explain the experimental setup.

2.1 Logistic regression models
Logistic regression models are used in Item Response The-
ory (IRT) [25] to model the response (correct/wrong) of a
student to an item. IRT is based on the idea that the prob-
ability of a correct response to an item is a mathematical
function of student and item parameters. The logistic re-
gression models presented in the following are based on this
concept.

Additive Factors Model (AFM). The AFM [5, 6] is
a logistic regression model fitting a learning curve to the
data. In a logistic regression model, the observations of the
students follow a Bernoulli distribution. A Bernoulli dis-
tribution is a binomial distribution with n = 1. Letting
ypi ∈ {0, 1} denote the response of student p on item i, we
obtain ypi ∼ binomial(1, πpi). The linear component πpi of
the AFM can then be formulated as follows:

πpi = logit(θp +
∑

k

qik · (βk + γk · Tpk)), (1)

with θp ∼ N (0, σ2

θ). The AFM is a generalized linear mixed
model with a random effect θp for student proficiency and
fixed effects βk (difficulty) and γk (learning rate) for the
skills k (knowledge components). The learning rate γk is
constrained to be greater than or equal to zero for AFMs.
qik is 1, if item i uses skill k and 0 otherwise. Finally, Tpk de-
notes the number of practice opportunities student p had at
skill k. The AFM is related to the linear logistic test model
(LLTM) [25] and the Rasch model [25]. When removing the
third term (γk ·Tpk) of Equation 1, we obtain an LLTM. Ad-
ditionally assuming a unique-step skill model (one skill per
step) results in the Rasch model. The intuition of the AFM
is that the probability of a student getting a step correct
is proportional to the amount of required knowledge of the
student θp, plus the difficulty of the involved skills βk and
the amount of learning gained from each practice opportu-
nity γk.
Learning curves are averaged over many students. The AFM
aligns the students by opportunity count. When applied to
mastery learning data, it therefore suffers from student at-
trition with increasing numbers of opportunities. Well per-
forming students need few opportunities to master a skill
and thus only the weaker students remain in the analysis
for higher opportunity counts. This student attrition can
lead to an underestimation of the learning rates γk. In the
following, we therefore introduce alternative logistic regres-
sion models that adjust for mastery-based data.

Learning Gain Model (LG). With the LG model, we in-
troduce a new alternative to the AFM. The LG model avoids
student attrition by aligning the students at their first sam-
ple (when they start the training) and at their last sample,

i.e., when they end the training (independent of whether
they mastered the skill or not). The linear component of
this model is very similar to that of the AFM:

πpi = logit(θp +
∑

k

qik · (βk + γk ·Npk)), (2)

whereNpk ∈ [0, 1] denotes the normalized opportunity count
of student p at skill k, i.e., we normalize over all opportuni-
ties student p had at skill k during the training. Rather than
measuring the amount learnt per opportunity, this model es-
timates the learning gain of the students over the course of
the training.

Alternative logistic regression models. To adjust for
mastery-based data, alternative ways to fitting the curves
have been proposed [17] for BKT. In the following, we refor-
mulate these suggestions and apply them to logistic regres-
sion models. The Mastery-Aligned Model (MA) can be
formulated using Equation 1, but with a different definition
of Tpk. For the MA model, we count backwards: Tpk is the
number of opportunities student p had at skill k as seen from
mastery. Tpk is 0 at mastery, 1 at one opportunity before
mastery and so on. Thus, the MA model aligns students at
mastery, which solves the problem of student attrition. A
different way to deal with student attrition is to group stu-
dents by the number of opportunities needed to first master a
skill. The linear component of this Disaggregated Model
(DIS) can be defined as follows:

πpi = logit(θp +
∑

k,m

qik · (βk,m + γk,m · Tpk)), (3)

where the difficulty βk,m and the learning rate γk,m are fit
by skill k and mastery group m. By combining the MA and
the DIS models, the Mastery-Aligned and Disaggre-
gated Model (DISMA) can be constructed. This model
disaggregates students into groups based on the number of
opportunities needed until mastering the skill and further-
more aligns the students at mastery.

All models presented are generalized linear mixed models
(GLMM) as the linear predictor πpi contains random effects
(for the students) in addition to the fixed effects (for the
skills). GLMMs are fit using maximum likelihood, which
involves integration over the random effects [3]. Integration
is performed using methods such as numeric quadrature or
Markov Chain Monte Carlo.

2.2 Bayesian Knowledge Tracing
BKT [8] is a popular approach for modeling student knowl-
edge. BKT models are a special case of Hidden Markov
Models (HMM) [22]. In BKT, student knowledge is mod-
eled by one HMM per skill (or knowledge component). The
latent variable of the model represents the student knowl-
edge. It indicates whether a student has mastered the skill
in question and is therefore binary. The state of this vari-
able is inferred by binary observations, i.e., correct or wrong
answers to tasks associated with the skill in question. A
HMM can be specified using five parameters. The transmis-
sion probabilities of the model are defined by the probability
pL of a skill transitioning from not known to known state
and the probability pF of forgetting a previously known skill.
The slip probability ps of making a mistake when applying a
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known skill and the guess probability pg of correctly apply-
ing an unknown skill define the emission probabilities of the
model. And finally, p0 denotes the probability of knowing a
skill a-priori. In BKT, the forget probability pF is assumed
to be 0 and therefore a BKT model can be specified with
the four parameters θ = {p0, pL, ps, pg}.

An important task when working with BKT models is pa-
rameter learning. The learning task can be formulated as
follows: Given a sequence of student observations y = {yt}
with t ∈ [1, T ], what are the parameters θ = {p0, pL, ps, pg}
that maximize the likelihood of the data p(y|θ). BKT mod-
els have been fit using expectation maximization [7], brute-
force grid search [1] or gradient descent [26].

2.3 Experimental setup
The training environment we use in this work consists of
Calcularis, a tutoring system for children with difficulties
in learning mathematics [11]. The program transforms cur-
rent neuro-cognitive findings into the design of different in-
structional games, which are classified into two parts. The
first part focuses on the training of different number repre-
sentations and number understanding. In the second part,
addition and subtraction are trained at different difficulty
levels. Task difficulty depends on the magnitude of num-
bers involved, the complexity of the task and the means
allowed to solve the task. The employed student model is
a dynamic Bayesian network modeling different mathemat-
ical skills and their dependencies. The controller acting on
the skill net is rule-based and allows forward and backward
movements (increase and decrease of difficulty levels) [12,
13].

The data set used for the experimental evaluation was col-
lected in a large-scale user study in Switzerland and Ger-
many with 134 participants (69% females). 64 participants
(73% females) were diagnosed with developmental dyscal-
culia (DD) and 70 participants (66% females) were control
children (CC). All children were German-speaking and vis-
ited the 2nd-5th grade of elementary school (mean age: 8.68
(SD 0.84)). Children trained with the program for six weeks
with a frequency of five times per week during sessions of
20 minutes. The collected log files contain at least 24 com-
plete sessions per child. On average, each child solved 1521
tasks (SD 269) during the training. Results of the external
pre- and post-tests demonstrated a significant improvement
in spatial number representation, addition and subtraction
after the training [11].

We investigated 20 addition and subtraction skills in the
number range 0 − 100. For our analyses, we used two ver-
sions of the data set. The first version (denoted as Version 1

in the following) contains the samples of all children at the
respective skills, while the second version (denoted as Ver-

sion 2 in the following) includes only children that mastered
the respective skills. Version 2 of the data set makes the
inclusion of the MA and DISMA models possible. However,
it excludes students not mastering a skill from the analysis,
which leads to a more homogeneous, but due to the drop-
out of many children with DD, also less interesting data
set. Version 1 of the data set contains 36′350 solved tasks,
while Version 2 consists of 20′784 tasks. External paper-
pencil and computer-based arithmetic tests conducted at

the beginning and at the end of the study demonstrated
significant improvement in addition and subtraction in the
number range 0− 100.

3. EVALUATION AND RESULTS
In a first study, we analyzed the parameter fit of different
regression models and evaluated their performance in pre-
diction of new items. Furthermore, we compared prediction
accuracy of regression models to that of traditional BKT.
We used all the samples until the children mastered a skill
and predicted the outcome of the first re-test. In a second
experiment, we evaluated the prediction accuracy of regres-
sion models as well as BKT when generalizing to new stu-
dents. We fitted the model based on a subset of students
and predicted the outcome for the rest of the students. Pre-
diction accuracy for both experiments was measured using
the root mean squared error (RMSE), the accuracy (num-
ber of correctly predicted student successes/failures based
on a threshold of 0.5) and the area under the ROC curve
(AUC). Prediction accuracy was computed using bootstrap
aggregation with re-sampling (n = 200) in the first experi-
ment and a student-stratified 10-fold cross validation in the
second experiment.
Fitting for the regression models was done in R using the
lme4 package. To be able to compare the parameter fit of
the different models, we did not constrain γk to be greater
than or equal to zero. Parameters for BKT were estimated
by maximizing the likelihood p(y|θ) using a Nelder Mead
simplex optimization [18]. This minimization technique does
not require the computation of gradients and is for exam-
ple available in fminsearch of Matlab. The following con-
straints were imposed on the parameters: pg ≤ 0.3 and
ps ≤ 0.3.

3.1 Analysis of parameter fit
In this experiment, we investigated the parameter fit of three
regression models on the data set Version 1 : The AFM, the
LG model and the DIS model. The three models obtain very
different parameter estimations for the same data. While
the AFM model predicts learning (positive γk) for 50% of
the skills, the LG model fits positive learning rates γk for all
skills and the DIS model obtains positive learning rates γk,m
for 92% of the cases. We therefore analyze the residuals and
prediction accuracy of the different models in the following.

Residual analyses. All three models tend to overestimate
the outcome for badly performing students and underesti-
mate the outcome for well performing students. This finding
is also visible in Fig. 1, which displays the mean residuals r
with r = fitted outcome - true outcome by estimated student
proficiency θp. Furthermore, the residuals r are strongly
correlated to student proficiency (ρAFM = −0.9621, ρLG =
−0.9612, ρDIS = −0.9532). These results are as expected,
because the models’ predictions are averaged over all the stu-
dents. While the residuals r are very similar for the AFM
and the LG models, the DIS model exhibits less variance
in student proficiency. As the students are grouped by the
number of opportunities needed to master a skill, student
proficiency within a group is more homogeneous.

For the AFM and the LG model, we also analyzed the mean
residuals r regarding the skill parameters βk and γk from
the models. There are no significant correlations between
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Figure 1: Mean residuals r by estimated student proficiency θp for the AFM (left), the DIS (middle) and the
LG (right) model.
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Figure 2: Mean residuals r by estimated skill diffi-
culty βk for the AFM (top) and the LG model (bot-
tom).

skill difficulty βk and mean residuals r neither for the AFM
(ρAFM = 0.1677, pAFM = .4798) nor for the LG model
(ρLG = 0.3777, pAFM = .1066). From Fig. 2, which dis-
plays the mean residuals r by estimated skill difficulty βk, it
is also obvious that these measures are not related for both
models. The residuals r are also not correlated to the es-
timated learning rate γk (ρAFM = 0.2058, pAFM = .3840;
ρLG = 0.1051, pLG = .6592) as displayed in Fig. 3. Fig-
ure 3 demonstrates how different the parameter fits of the
two models are regarding the learning rates γk. The AFM
fits learning rates γk in a very small range around 0 and 45%
of the learning rates are not significantly different from zero.
The outlier stems from a skill played by only two students re-
sulting in a total of 14 solved tasks. Learning rates γk fitted
by the LG model are all positive and exhibit a larger vari-
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Figure 3: Mean residuals r by estimated learning
rates γk for the AFM (top) and the LG model (bot-
tom).

ance. This larger variance appears to result from AFM hav-
ing a bias to underestimate learning rate (because mastery
leaves more poor students contributing to high opportunity
counts) and LG having a bias to overestimate learning rate
(because the adjusted end-point of all learning curves, the
last opportunity that achieves mastery, is always successful
whether or not it is a true or false positive).

The mean residuals r over time are displayed in Fig. 4. For
the AFM and the DIS model, an averaging window (n = 10)
was used to compute the mean residuals r with increasing
opportunity count. Both models underestimate the outcome
for less than 20 opportunities and overestimate it for larger
numbers. For the AFM, this observation is confirmed by
the significant positive correlation between the opportunity
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Table 1: Prediction accuracy of first re-test for data set Version 1 and 2. The values in brackets denote the
standard deviations. The best model per error measure is marked (*).

RMSE Accuracy AUC

Data set:
Version 1

AFM 0.3562 (0.0101)* 0.8391 (0.0119) 0.6825 (0.0230)*

LG 0.3587 (0.0125) 0.8451 (0.0113)* 0.6778 (0.0250)

DIS 0.3780 (0.0140) 0.8394 (0.0122) 0.6054 (0.0255)

BKT 0.3614 (0.0111) 0.8428 (0.0118) 0.6033 (0.0250)

Data set:
Version 2

AFM 0.3563 (0.0114)* 0.8474 (0.0123)* 0.6622 (0.0250)*

LG 0.3666 (0.0124) 0.8416 (0.0107) 0.6602 (0.0245)

DIS 0.3765 (0.0141) 0.8416 (0.0120) 0.5998 (0.0290)

MA 0.3633 (0.0117) 0.8401 (0.0114) 0.6508 (0.0255)

DISMA 0.3783 (0.0133) 0.8396 (0.0116) 0.6011 (0.0256)

BKT 0.3613 (0.0111) 0.8423 (0.0115) 0.6102 (0.0302)
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Figure 4: Mean residuals r by opportunity count for the AFM (left) and the DIS (middle) model and by
normalized opportunity count for the LG (right) model.

count and the mean residuals r (ρAFM = 0.3950, pAFM <

.001). This result probably stems from the fact that the well
performing students master the skills much faster and there-
fore student numbers drop with higher opportunity counts.
The DIS model exhibits a lower variance, as this model
groups the students by the number of opportunities needed
to master a skill and thus student performance within a
group is more homogeneous (ρDIS = 0.0860, pDIS = .4785).
For the LG model, the mean residuals r are plotted by the
normalized opportunity count in Fig. 4 (right). The LG
model underestimates the outcome in the beginning and in
the end and overestimates in-between. Through normalizing
the opportunity count, we align the beginning and the end
of the training for each student. We therefore end up with
more observations from low performing students in the mid-
dle and the model overestimates the outcome in this part.

Re-test prediction. The residual analyses demonstrate
that the models interpret the same data very differently,
i.e., the parameter fit and properties of the models vary
a lot. To validate these different parameter fits, we com-
puted the prediction accuracy for the first re-test (data set
Version 1 ) and compared it to a BKT model. The ob-
served mean outcome over all re-tests is high with 0.8419.

The AFM underestimates the true outcome with an aver-
age prediction of 0.8287, while the LG (average prediction
0.9108) and DIS models (average prediction 0.9488) overes-
timate the true outcome. Prediction accuracy for the dif-
ferent models is listed in Tab. 1. The AFM shows the best
RMSE (RMSEAFM = 0.3562) and AUC (RMSEAUC =
0.6825), while the LG models exhibits the highest accu-
racy (AccuracyLG = 0.8451). As the performance of stu-
dents is generally high, RMSE and AUC are, however, bet-
ter quality measures than accuracy. The LG model per-
forms second best in RMSE (RMSELG = 0.3587) and AUC
(AUCLG = 0.6778). However, the small differences be-
tween the AFM and the LG model along with the high
variances of the error measures indicate that there are no
significant differences between the two models. The DIS
model on the other hand demonstrates a considerably higher
RMSE (RMSEDIS = 0.3780) and also exhibits a low AUC
(AUCDIS = 0.6054) compared to the two other regression
models. The DIS model estimates the parameters βk,m and
γk,m by skill and mastery group. The resulting large num-
ber of parameters produces overfitting. Performance on the
training data set supports the overfitting hypothesis: The
DIS model outperforms the AFM and the LG model in
RMSE, accuracy and AUC on the training data set.
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Figure 5: Mean residuals r by estimated student proficiency θp (left), skill difficulty βk (center left), learning
rates γk (center right) and opportunity count (right) for the MA model.

Interestingly, the AFM and the LG model also outperform
the BKTmodel. The RMSE of BKT (RMSEBKT = 0.3614)
is higher than those of the two regression models, but stan-
dard deviations are again large. BKT exhibits especially a
lower performance in AUC (AUCBKT = 0.6033). The bet-
ter performance of the regression models might come from
two facts: First, the regression models fit the parameter
θp for the individual student’s proficiency, while traditional
BKT does not do any student individualization. Second,
BKT assumes that there is no forgetting, while the regres-
sion models are allowed to fit negative learning rates γk.
However, the time between mastering a skill and the first
re-test tends to be long. On average, the first re-test was
done after 140 opportunities. A logistic regression analysis
shows, that there is indeed a small, but significant amount
of forgetting (intercept = 1.8545, slope = -0.0012) in the
data. The probability of being correct at mastery amounts
to 0.8647 and decreases to 0.8419 after 140 opportunities.
Note, however, that the forgetting hypothesis is only valid
for the AFM, as learning rates γk are all positive for the LG
model.

Experiments on data set Version 2 . To be able to in-
clude the MA and DISMA models in our analyses, we also
evaluated prediction accuracy for the first re-test based on
data setVersion 2.
For this version of the data set, the LG and MA models pre-
dict positive learning rates γk for 100% of the skills, while the
AFM fits positive learning rates γk for 54% of the skills. The
DIS and DISMAmodels show positive learning rates γk,m for
90% of the mastery groups. Residuals r of the DISMAmodel
are very similar to those of the DIS model and we therefore
only discuss the mean residuals r for the MA model. Fig-
ure 5 displays the mean residuals r by estimated student
proficiency θp (left), skill difficulty βk (center left), learn-
ing rates γk (center right) and over time (right). Similarly
to the other models, the MA model tends to overestimate
the well performing students and underestimate the weaker
students (see Fig. 5 (left)). The correlation between esti-
mated student proficiency θp and mean residuals r is again
strong (ρMA = −0.9497, pMA < .001). As for the other
models, mean residuals r are uncorrelated to skill difficulty
βk (ρMA = 0.2916, pMA = .3118) and to learning rates γk
(ρMA = −0.2993, pMA = .2986). The MA model fits posi-
tive learning rates γk for all skills k (see Fig. 5 (center right)).
To compute the mean residuals r by opportunity count, we
again used an averaging window (n = 10). Unlike the other

models, the MA model overestimates the outcome in the be-
ginning and underestimates it with increasing opportunity
count. This result is due to the mastery alignment of the
model: As well performing students need less opportunities
to master a skill, student attrition occurs in the beginning,
where only weaker students remain in the analysis.

We again validated the parameter fit of the different mod-
els by predicting the first re-test and comparing predic-
tion accuracy to BKT. Prediction accuracy for the differ-
ent models is listed in Tab. 1. The AFM performs best
for all error measures (RMSEAFM = 0.3563, AUCAFM =
0.6622). The performance of the LG model (RMSELG =
0.3666, AUCLG = 0.6602) is again very close to that of
the AFM. Interestingly, the MA model performs well in
RMSE (RMSEMA = 0.3633) and also exhibits a large AUC
(AUCMA = 0.6508). The high variances again indicate
that differences between the AFM, the LG and the MA
models are not significant. The DIS and DISMA models
perform considerably worse in RMSE and AUC than the
best three regression models. The performance of BKT is
similar to the first version of the data set, with an RMSE
(RMSEBKT = 0.3613) in the range of the best regression
models and a significantly lower AUC (AUCBKT = 0.6102).

3.2 Generalization to new students
In a second experiment, we investigated how well the dif-
ferent regression models generalize to new students using a
student-stratified 10-fold cross validation. For new students
(i.e., the students in the test set), the number of oppor-
tunities to mastery is not known, therefore only the AFM
and the LG model were included in this analysis. Predic-
tion accuracy along with standard deviations for the re-
gression models as well as BKT is listed in Tab. 2. The
LG model shows the best performance in all error mea-
sures for Version 1 of the data set. The performance of
the AFM is very close to that of the LG model in RMSE
(RMSELG = 0.4164, RMSEAFM = 0.4200). The high
variance indicates that there are no significant differences
between the two models regarding RMSE. The AUC of the
LG model is, however, considerably higher than that of the
AFM (AUCLG = 0.6931, AUCAFM = 0.6693).
Both regression models again outperform BKT in RMSE
(RMSEBKT = 0.4236) and AUC (AUCBKT = 0.6688), but
the high variance indicates that there are no significant dif-
ferences in RMSE between all three models and also not in
AUC between the AFM and the BKT model.
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Table 2: Prediction accuracy of student-stratified cross-validation for data set Version 1 and 2. The values
in brackets denote the standard deviations. The best model per error measure is marked (*).

RMSE Accuracy AUC

Data set:
Version 1

AFM 0.4200 (0.0184) 0.7525 (0.0300) 0.6693 (0.0222)

LG 0.4164 (0.0175)* 0.7583 (0.0248)* 0.6931 (0.0211)*

BKT 0.4236 (0.0216) 0.7546 (0.0304) 0.6688 (0.0244)

Data set:
Version 2

AFM 0.4008 (0.0247) 0.7850 (0.0296) 0.6755 (0.0335)

LG 0.3936 (0.0241)* 0.7859 (0.0295)* 0.7199 (0.0260)*

BKT 0.4032 (0.0241) 0.7849 (0.0297) 0.6810 (0.0289)

The results for Version 2 of the data set show a similar pic-
ture. As expected, all models demonstrate a higher predic-
tion accuracy for Version 2 of the data set. As this version
of the data set includes only students that mastered a skill,
overall performance is more homogeneous and therefore pre-
diction is easier.

4. DISCUSSION
AFMs are widely used to analyze and improve student learn-
ing [5, 15, 23]. However, AFMs are prone to student attri-
tion when applied to data from mastery learning: As stu-
dents are aligned by opportunity count, the right hand side
of the learning curve fitted by an AFM is dominated by
students, who require a large number of opportunities to
master a skill, which might in turn lead to underestima-
tion of learning rates γk. Indeed, [17] observed that averag-
ing over different students with different initial knowledge
states and learning rates may result in aggregated learn-
ing curves that appear to show little student learning, even
though a mastery learning student model such as BKT iden-
tified the students as mastering the skills at runtime. This
issue can be solved by using alternative models for fitting
the learning curves [17]. Our experiments on data from
a mastery learning student model (dynamic Bayesian net-
work) with confirmed learning (significant improvement in
external post-tests) support these results: AFM fitted pos-
itive learning rates γk for about half of the skills and only
70% of the positive γk were significantly different from zero.
Alternative models, such as the LG and MA models pre-
dicted positive learning for all skills and learning rates γk
and generally showed a higher variance, i.e., learning rates
differed from skill to skill. Our results demonstrate that dif-
ferent (although very similar) regression models explain the
same data in a different way and that alternative regression
models predict different patterns of learning.

Despite the different parameter fits, prediction accuracy of
the regression models is very similar. When it comes to
generalizing to new students, the LG model shows the most
accurate prediction. However, as we observe a high variance
in accuracy measures, there is most likely no significant dif-
ference in prediction accuracy between the AFM and the LG
model. Although the AFM performs best in predicting the
first re-test, the high variance of the error measures indicates
that there is no significant difference between the AFM, the
LG and the MA models. The disaggregated models (DIS,
DISMA) perform significantly worse than the other regres-

sion models. As the disaggregation into different subpopu-
lations increases the number of parameters, the lower per-
formance of these models might be due to overfitting. This
hypothesis is supported by the fact that the disaggregated
models outperform the other regression models on the train-
ing data set in all error measures. Nonetheless, [17] demon-
strated the potential of disaggregated models. Prediction
accuracy of these models should therefore be evaluated on
larger data sets.

BKT models are outperformed by most of the regression
models when it comes to prediction accuracy on unseen data.
The AFM and the LG model show a higher accuracy when
predicting the first re-test, while the AFM, the LG and the
MA model generalize better to new students than BKT. Al-
though these differences are probably not significant (due
to the high variance in the error measures), they are still
interesting. One reason for this observation might be that
BKT does not model forgetting. Our analyses have, how-
ever, shown that there is forgetting in the data. As the LG
and MA models fit only positive learning rates γk, this ex-
planation is only valid for the AFM model. Another reason
for the superiority of the logistic regression models could be
that traditional BKT does not have any student individu-
alization. However, [26] demonstrated on a different data
set that a student individualized parameter p0 does not lead
to significant improvements. The reason for the difference
in prediction accuracy between BKT and logistic regression
models therefore needs to be investigated further.

5. CONCLUSION
In this work, we presented alternative logistic regression
models to AFMs, which are able to adjust for mastery-based
data sets. Our results demonstrate that the parameter fits
for different (although very similar) regression models vary a
lot. We also showed that despite the differences in parame-
ter fit, most of the regression models cannot be distinguished
regarding prediction accuracy on unseen data. Finally, our
evaluations revealed that logistic regression models outper-
form BKT, when assessing performance in prediction.

In the future, we would like to further analyze the differ-
ences between the proposed modeling techniques. Pre-post
gain data might be used to evaluate the different logistic
regression models. Is the pre-post gain better predicted by
improvement on all skills, as per the LG and MA models,
or improvement on a subset of skills, as per the AFM. It
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could be that, as with the retention measure, AFM some-
what under predicts learning gain and LG somewhat over
predicts learning gain. Furthermore, we would like to ana-
lyze the differences in prediction between BKT and logistic
regression models.
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ABSTRACT
The Programme for International Student Assessment, PISA,
is a worldwide study to assess knowledge and skills of 15-
year-old students. Results of the latest PISA survey con-
ducted in 2012 were published in December 2013. Accord-
ing to the results, Finland is one of the few countries where
girls performed better in mathematics than boys. The pur-
pose of this work is to refine the analysis of this observation
by using education data mining techniques. More precisely,
as part of standard PISA preprocessing phase certain scale
indices are constructed based on information gathered from
the background questionnaire of each participating student.
The indices describe, e.g., students’ engagement, drive and
self-beliefs, especially related to mathematics, the main as-
sessment area in PISA 2012. However, around 30% of the
scale indices are missing so that a nonstructured sparsity
pattern must be dealt with. We handle this using a special,
robust clustering technique, which is then applied to Finnish
subset of PISA data. Already direct interpretation of the
created clusters reveals interesting patterns. Clusterwise
analysis through relationship mining refines the confidence
on our final conclusion that attitudes towards mathemat-
ics which are often gender-specific are the most important
factors to explain the performance in mathematics.

Keywords
PISA, robust clustering, frequent itemset, association rule

1. INTRODUCTION
PISA (Programme for International Student Assessment) is
an international assessment programme by the Organisation
for Economic Co-operation and Development (OECD) that
studies students’ learning outcomes in reading, mathemat-
ics, and scientific literacy triennially. It is referred as the
”world’s premier yardstick for evaluating the quality, equity
and efficiency of school systems” [21]. More than seventy
countries and economies have already participated in PISA.

Finland has consistently been one of the top-performing
countries in the assessment [11]. Each time the study is
repeated the main learning outcome focus area changes. In
the latest assessment (PISA 2012) it was mathematics. A
database of the results is publicly available1.

One general key finding from PISA 2012 was the gender dif-
ference in mathematics performance: On average, boys out-
perform girls in mathematics. Finland, however, is, accord-
ing to the assessment, one of the eight countries where girls
perform better than boys in mathematics: The mean score
of girls in mathematics was 520 while boys had the mean
score of 517 [23]. Despite the slightly better performance in
mathematics women are, also in Finland, underrepresented
in mathematics related jobs [28].

The purpose of this work is to apply educational data mining
approch and corresponding techniques to study the perfor-
mance of Finnish student population in mathematics, focus-
ing especially on gender-related findings. As part of stan-
dard PISA preprocessing phase, certain scale indices are con-
structed based on information gathered from the background
questionnaire for each participating student [21]. These in-
dices describe, e.g., students’ engagement, drive and self-
beliefs, especially related to mathematics. However, around
30% of the scale indices are missing due to lack of reliable
student responses for the background questions. This means
that the knowledge discovery process is realized with data
having a nonstructured sparsity pattern. We handle this
using a special, robust clustering technique as proposed in
[4]. Furthermore, the clustering result obtained is further
analyzed using itemset mining [1] to foster the generation of
novel information and new knowledge.

The contents of the paper is as follows: First, we provide
a short summary on PISA data and how students’ capabili-
ties and attributes are presented. We then describe a certain
set of scale index variables that are associated with the per-
formance in mathematics. Subsequently, we apply methods
from two (see [7] for a complete categorization) of the main
branches in educational data mining. In Section 3, we utilize
a special clustering approach to find groups of students with
similar characteristics with respect to scale indices. In or-
der to further refine the characterization of student groups,
we then apply frequent itemset mining and association rule
learning to selected clusters in Section 4. Finally, we sum-

1See http://www.oecd.org/pisa/pisaproducts/.
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marize and conclude our study in Section 5.

2. ON PISA DATA
We apply educational data mining for the PISA 2012 data
subset of Finland. In each country participating PISA, the
schools and students selected for the survey reflect the whole
population and characteristics of the educational context. In
Finland, 311 schools and 10157 students from these schools
were sampled for the assessment in 2012. Out of the sampled
students 8829 participated in the actual PISA test. Hereby,
each student that takes part has to (i) solve a set of cognitive
items/tasks and (ii) fill out one background questionnaire2

with demographic questions.

Finnish PISA data is stored in two different data sets: One
data set includes all the students that participated in the
test, and the second one includes all sampled schools. The
student data set has more than 600 variables. A set of those
variables directly encode the students answers given in the
background questionnaire. Moreover, since the participating
students should reflect all 15-year-old students in Finland,
certain weights are assigned to each student to align the sam-
ple with the true population. In PISA reports and learning
analysis, student abilities are not given as direct responses
to task questions but in the form of the so-called Plausible
Values (PVs).

Since a very broad domain of knowledge and skills should be
tested but the testing time for each student is limited, only
certain subsample of students respond to each item/task.
In order to reliably compare results of different students,
even if they have not answered exactly to the same set of
items, PISA uses a generalized form of the Rasch Model
[19]. Depending on how many students have solved a task
correctly, a certain ”difficulty value” is assigned to each tasks
and depending on how many tasks a student solved, a certain
”competence value” is assigned to each student. PVs are es-
timated based on difficulty and competence scores and then
scaled so that the OECD average in each domain (mathe-
matics, reading and science) is 500 and the standard devia-
tion is 100.

Usually, five PVs are drawn from each student’s compe-
tence distribution for each main assessment area to describe
the performance. For instance, in the Finnish data set for
2012 we have have five PVs for each student in reading, sci-
ence, and mathematics. Moreover, since mathematics was
the main assessment area, five PVs for each of the 7 sub-
scales, i.e. subtopics in mathematics (change and relation-
ship, quantity, space and shape, uncertainty and data, for-
mulate, employ, interpret) are enclosed.

2.1 PISA Scale Indices
PISA scale indices (see Table 1) are derived variables based
on information gathered from the background questionnaires.
The scale indices are constructed in order to better char-
acterise students dispositions, behaviours, and self-beliefs.
Indeed, many of the self-reported indicators of engagement
in school are strongly associated with the performance in

2An example of such background questionnaire can be
found from http://nces.ed.gov/surveys/pisa/pdf/MS12_
StQ_FormA_ENG_USA_final.pdf.

mathematics. Especially, the index of economic, social and
cultural status (ESCS) explains 46% of the performance vari-
ation among OECD countries so that a socio-economically
more advantaged student scores 39 points higher in mathe-
matics3 than a less advantaged student [20]. Furthermore,
according to [19], the ESCS is the ”strongest single factor
associated with performance in PISA”.

Table 1 provides an overview of the PISA scale indices used
in this study. In the first two columns, we provide the name
of the index and it’s abbreviation used in the data set. It
should be noted that some indices emphasize negative orien-
tation with respect to mathematics. For example, it usually
is not beneficial to the performance in mathematics if a stu-
dent has a high value in the index which measures the anx-
iety towards mathematics (ANXMAT). Each index in the
PISA data is standardized to have mean zero and scaled to
have standard deviation one across OECD countries. Hence,
a positive score index does not necessarily mean that a stu-
dent has replied positively to the corresponding questions
but that the answers are above the OECD average.

Correlations between the scale indices and the overall per-
formance in mathematics are provided in the third column
in Table 1. In the fourth column, ranking of the correla-
tions based on their absolute values is given. We notice that
the three indices having highest linear relationship with per-
formance in mathematics are mathematics specific whereas
the fourth index in ranking describes readiness for problem
solving, and only the fifth one is the already mentioned sta-
tus indicator ESCS. The correlations are computed using
the subset of Finnish students for which a particular index
is available. In order to obtain reliable estimates we have,
as recommended in [19], analyzed each PV separately. This
means that we have first computed five correlation coeffi-
cients and then used their mean as the actual result.

As already observed, not every student in the data set has
a value for each of the indices. In fact, 33.24% of the index
values are missing/invalid. There are different reasons why
a specific scale index for a particular student is unusable.
First of all, not all background questions were administered
to all students. Students, that were not administered the
questions included in the index had missing value by design.
Second of all, it might be that the student got the questions
but did not answer them. Finally, a reason for a missing
index value can be that questions were answered but answers
were found to be unreliable or invalid in manual scanning.

3. CLUSTER ANALYSIS USING ROBUST
PROTOTYPES

Clustering is an unsupervised data analysis technique, where
a given set of objects is divided into subsets (clusters) such
that objects in the same cluster are similar to each other and
dissimilar to objects in other clusters. Even if this appears
as a simple rule, there are many approaches for clustering
[10]. The classical division of algorithms is the separation
into partitional and hierarchical clustering methods [16, 29].
Hierarchical clustering is usually applied for small data sets
since most of the algorithms have quadratic or higher com-
putational complexity [9]. However, the main difference be-

339 score points equal nearly one year of schooling.
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Table 1: PISA scale indices and correlation to mathematics performance
PISA scale index abbreviation corr rank
economic, social and cultural status ESCS 0.36 5
sense of belonging BELONG 0.01 15
attitude towards school: learning outcome ATSCHL 0.15 11
attitude towards school: learning activities ATTLNACT 0.08 12
perseverance PERSEV 0.31 6
openness to problem solving OPENPS 0.42 4
self-responsibility for failing in mathematics FAILMAT -0.20 10
interest in mathematics INTMAT 0.25 7
instrumental motivation to learn mathematics INSTMOT 0.23 9
self-efficacy in mathematics MATHEFF 0.51 2
anxiety towards mathematics ANXMAT -0.44 3
self-concept in mathematics SCMAT 0.52 1
behaviour in mathematics MATBEH 0.04 13
intentions to use mathematics MATINTFC 0.23 8
subjective norms in mathematics SUBNORM -0.02 14

tween these methods is related to the shape of clusters which
is readily amplified in the interpretation of the clustering re-
sult. Hierarchical clustering is based on connecting locally
similar objects so that the global shape of a cluster can be al-
most arbitrary. Partitional methods, which rely on creating
subsets with respect to global similarities, are quaranteed
to produce geometrically closed subsets. Moreover, the spe-
cial prototype characterizing the properties of all the cluster
members provides a well-defined pattern for the interpreta-
tion of the clustering result.

Prototype-based partitional clustering methods, such as k-
means, a popular algorithm utilized also in many EDM stud-
ies [30], can be described using an iterative relocation algo-
rithmic skeleton with an explicitly defined score function [12]
(see Algorithm 1). Partitional clustering creates a k−partion
C = {C1, ..., Ck} (k ≤ n) of data X, such that

1) Ci 6= ∅ with i = 1, ..., k;

2)
⋃k
i=1 Ci = X; and

3) Ci
⋂
Cj = ∅ with i, j = 1, ..., k and i 6= j.

In order to realize a prototype-based partitative clustering
algorithm some further issues need to be addressed. First
of all, all iterative relocation algorithms search better parti-
tions locally so that the final result depends on the initial-
ization. Although a lot of work has been attributed to this
problem, still no universal method for identifying the initial
partition exists (actually such an approach would provide
an approximate solution to the clustering problem itself).
Another main issue is to define the similarity measure that
reflects the closedness in the data space. To this end, the
amount of clusters must be determined in order to end up
with one, final clustering result for the interpretation.

Our data to be clustered is problematic, because there is
an arbitrary pattern of missing scale indices to deal with.
Such missing values could be considered as extreme out-
liers because they can have any value from each variable’s
value range. Hence, second order statistics and least-mean-
squares estimates that are sensitive to nonnormal degre-
dations are not suitable, and we use instead the so-called
nonparametric, robust statistical techniques and distance

measures [15, 27, 14]. Out of the simplest robust location
estimates, median and spatial median, we use spatial me-
dian due to it’s multidimensional nature which allows bet-
ter utilization of the local/clusterwise available data pattern
[17]. Spatial median has many attractive statistical proper-
ties and, especially, it’s breakdown point is 0.5, i.e. it can
handle up to 50% of contaminated data.

In [4], a robust approach utilizing the spatial median to clus-
ter sparse and noisy data was introduced. The k-spatial-
medians clustering algorithm is based on the algorithmic
skeleton as presented in Algorithm 1. As the score function
one utilizes

J =

k∑
j=1

nj∑
i=1

‖P i(xi − cj)‖2, (1)

where the last sum is computed over the subset of data at-
tached to cluster j. Here the projections P i, i = 1, . . . , N,
capture the existing variable values of the ith observation,
i.e.

(P i)j =

{
1, if (xi)j exists,

0, otherwise.

In Algorithm 1, the projected distance as defined in (1) is
used in the first step, and recomputation of the prototypes,
as spatial median with the available data, is realized using
the SOR (Sequential Overrelaxation) algorithm [4] with the
overrelaxation parameter ω = 1.5.

3.1 Initialization and Number of Clusters
It is a well-known problem that all iterative clustering al-
gorithms are highly sensitive to the initial placement of the
cluster prototypes and, thus, such algorithms do not guar-
antee unique clustering [18, 9, 6, 16]. Numerous methods
have been introduced to address this problem. Random ini-
tialization is still often chosen as the general strategy [31].
However, several researchers (e.g., [3, 5]) report that having
some other than random strategy for the initialization often
improves final clustering results significantly. Having these
issues in mind, we developed the following deterministic and
context-sensitive approach to find good initial prototypes.

For a subset of 2520 students in the Finnish data, there are
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Algorithm 1: Iterative relocation clustering algorithm

Input: Dataset X with n observations and a given number
of clusters k.

Output: A set of k clusters, which minimizes the score
function.

Select k points as the initial prototypes;
repeat

1. Assign individual observation to the closest
prototype;
2. Recompute the prototypes with the assigned
observations;

until The partition does not change;

Figure 1: Ray-Turi index for k = 2, . . . , 11

no missing scale index values. For this subset we want to find
(i) the most suitable amount of clusters k and (ii) the initial
prototypes for the clustering algorithm with the whole data.
For this purpose, we utilize a simple search strategy with
two nested loops. The first loop iterates through different
values of k and the second loop repeats the k-spatialmedians
algorithm with random initialization ten times. For each
clustering result, we then compute the so-called Ray-Turi
index, see [25]. This index captures the principal purpose
of clustering prototypes, i.e. accurate presentation of sepa-
rate subset of data, and it is computed by simply dividing
the score function (1) with the distance of the two closest
prototypes. Figure 1 visualizes the plot of the Ray-Turi in-
dex for a set of values for the number of clusters. From
the visualization we observe that the clustering result (Ray-
Turi index) is decreasing when more clusters are introduced.
However, after four clusters the speed of improvement is de-
creased. Moreover, for four clusters the result is very stable
because all the ten random repetitions provide exactly the
same clusters and prototypes. To this end, based on these
observations, k = 4 is used as the number of clusters and the
unique result for the full data as initialization for the whole,
sparse data set clustering with Algorithm 1. The obtained
result, characterized by four prototypes with available value
for all scale indices, is to be interpreted next.

3.2 Interpretation of Clustering Result
The four cluster prototypes are depicted in Figure 2. Ta-
ble 2 provides information about the students in the dif-

ferent clusters. Hereby, valid indices shows the percentage
of existing index values in each cluster. As can be seen, the
available data is quite evenly distributed among the clusters.
While sample size denotes the actual number of students in
the data, population size of target group is the same but
each student is weighted so that they represent the whole
Finnish population of 15-year-old students. WA math score
is the weighted average of the mathematics scores from the
students in the respective cluster.

As can be inferred from Figure 2 in combination with Ta-
ble 2, we have one clear ”high performance” and one clear
”low performance” national cluster: The students in Cluster
1 have mean performance in mathematics of 571.53 and they
are on average the most advantaged students with highest
beliefs in themselves. In all indices that are associated with
highperformance in mathematics, the prototype that repre-
sents this cluster has the highest value. Solely in the ”inten-
tions” to use mathematics later in their life, the students in
Cluster 1 lack behind the students in Cluster 3. Cluster 4,
on the other hand, represents the most disadvantaged stu-
dents in Finland, with lowest mean score in mathematics,
and also lowest beliefs in themselves.

Cluster 2 and Cluster 3 are, at the same time, similar and
very different. According to the average performance of the
students in those two clusters, both belong to PISA score
Level 3 (see Table 4). As specified in the proficiency level
descriptions in [22] this means that students in both of these
clusters are able to, for example, solve tasks with clearly
described procedures, but are unlikely to be able to (this
proficiency is attributed to students from higher levels) also
solve tasks that involve constraints or call for making as-
sumptions. However, the prototypes (see Figure 2) show
that students from these clusters can be opposite to each
other by means of many scale indices.

While the students in Cluster 2 generally are slightly more
socially and economically advantaged, feel that they belong
to school, and commonly have very positive attitude towards
school, they definitely have below OECD average intentions
to use mathematics, so that they also score worse in mathe-
matics. Cluster 2 is predominantly populated by girls. Clus-
ter 3, on the other hand, has the lowest percentage of girls
in it. This cluster consists of mostly boys who do not have
the best attitude towards school. They also do not feel like
they belong to school and generally are socially and econom-
ically less advantaged than the students in Clusters 1 and 2.
However, they have the highest intentions to use mathemat-
ics later in their life, and pursue mathematics-related studies
or careers in the future. They also tend to attribute failure
in mathematics more to external factors than to themselves,
have less anxiety towards mathematics than the OECD av-
erage, and are (although they do not seem to be interested
in school in general) more interested in mathematics than
the OECD average. It seems that they have already decided
to have a career in a mathematics related profession, on the
contrary to the (mostly female) students in Cluster 2.

As for the correlations before, we also created a ranking
of indices to clarify the interpretation of the clustering re-
sult. The distance that defines the ranking to distinguish
Clusters 2 and 3 is just the absolute difference between the

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 63



www.manaraa.com

Figure 2: Clustering results

Table 2: Facts of clusters
valid sample population size of target group WA math score

cluster indices size all ♀ (in %) ♂ ∅ ♀ ♂
C1 64% 1967 12884 5302 (41%) 7582 571.53 578.66 566.55
C2 69% 2192 14038 8598 (61%) 5440 509.82 516.76 498.85
C3 67% 2450 16751 6434 (38%) 10317 536.02 541.74 532.45
C4 66% 2220 16374 8876 (54%) 7498 467.21 472.96 460.40
C1-C4 67% 8829 60047 29210 (49%) 30837 518.75 520.19 517.39

Table 3: Separation of clusters
all clusters Cluster 2 -3

index distance rank distance rank
ESCS 0.62 15 0.15 10
BELONG 0.98 13 0.53 6
ATSCHL 1.38 9 0.78 4
ATTLNACT 1.54 7 1.40 2
PERSEV 1.35 10 0.07 13
OPENPS 1.66 6 0.08 12
FAILMAT 0.83 14 0.17 8
INTMAT 1.86 3 0.44 7
INSTMOT 1.71 4 0.11 11
MATHEFF 1.68 5 0.16 9
ANXMAT 1.46 8 0.65 5
SCMAT 2.00 1 0.81 3
MATBEH 1.14 12 0.04 15
MATINTFC 1.91 2 1.63 1
SUBNORM 1.30 11 0.06 14

index values of the two prototypes. This is generalized as
the distance between all clusters by simply summing the
three absolute differences between individually ordered pro-
totype indices. These two distances and the implied rank-
ings are provided in Table 3. As can be seen from Table 3,
the students’ self-concept in mathematics, the index which
also correlates the most with the performance in mathemat-
ics (see Table 1), discriminates all the clusters the most. It
seems that students’ beliefs in their own mathematics abili-
ties capture their true knowledge and skills fairly well. Addi-
tionally, the intentions to use mathematics and the interest
in this subject provide a good separation of the four clusters.
Those two indices describe the students’ drive and interest
to learn mathematics because they perceive this subject as

profitable and appealing to their future. The two interesting
clusters, Cluster 2 and Cluster 3, are separated the most by
the intentions to pursue a career in mathematics and by the
attitudes towards school concerning learning activities.

4. ASSOCIATION RULE DISCOVERY
The goal of association rule mining, one of the most utilized
methods in EDM according to [8, 26], is to automatically
find patterns that describe strongly associated attributes in
data. The discovered patterns are usually represented in
the form of implication rules or attribute subsets [1, 32].
We have two explicit clusters - Cluster 1 which consists of
the highest performing students and Cluster 4 which con-
sists of the lowest performing students - but for the two re-
maining clusters with mixed profile, Cluster 2 and Cluster
3, we want to find patterns/rules that further characterize
these students. Hence, we form for each student that be-
longs to one of these two clusters an itemset which contains
the gender of the student (first subset in Table 4), all the
scale indices (central subset in Table 4), and the categorized
proficiency level in mathematics (last subset in this table).

PISA score levels define the performance level of the stu-
dents. For example, for PISA 2012 the range of difficulty of
tasks generates six levels of mathematics proficiency. Stu-
dents with a performance score within the range of Level 1
are likely to be able to successfully complete Level 1 tasks,
but are unlikely to be able to complete tasks at higher levels.
Level 6 reflects tasks that are the most difficult in terms of
mathematical skills and knowledge [22]. On average, both
student clusters of interest belong to performance Level 3
(see Table 2). Therefore, in the corresponding item, we only
distinguish three categories: below, within, or above Level
3 (see the last subset in Table 4).
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Table 4: Items for Association Rules
id item
1 girl
2 boy
3 & 4 (+,−) ESCS
5 & 6 (+,−) BELONG
7 & 8 (+,−) ATSCHL
9 & 10 (+,−) ATTLNACT
11 & 12 (+,−) PERSEV
13 & 14 (+,−) OPENPS
15 & 16 (+,−) FAILMAT
17 & 18 (+,−) INTMAT
19 & 20 (+,−) INSTMOT
21 & 22 (+,−) MATHEFF
23 & 24 (+,−) ANXMAT
25 & 26 (+,−) SCMAT
27 & 28 (+,−) MATBEH
29 & 30 (+,−) MATINTFC
31 & 32 (+,−) SUBNORM
33 Level 2 or below: ≤ 482.38
34 Level 3: 482.38− 544.68
35 Level 4 or above: ≥ 544.68

In order to separate an individual student from main bulk
of students, we fix a threshold value of 0.2 to define whether
an item is part of the itemset for that particular student.
The threshold 0.2 is chosen because it provides the median
(rounded to one decimal place) of the absolute values of
scale indices of all cluster prototypes. If a positive index
value for a certain student is above the threshold, then the
first id in the matrix (see Table 4) will be part of the item-
set. Similarly, if a negative index value is below the nega-
tive threshold, then the second id (see Table 4) will belong
to the itemset. Again, we utilize only the available indices.
This means that in case the student’s index value is inside
[−0.2, 0.2] or missing/invalid, it is not included in the item-
set. For finding frequent itemsets based on the encoding, we
used the implementation described in [13], and for generat-
ing association rules from the obtained frequent itemsets we
utilized the implementation explained in [2].

4.1 Basic Concepts of Frequent Itemsets
Let I be the set of all items. An important property of an
itemset is its support count, which refers to the number of
transactions that contain a particular itemset. Let S1 be a
subset of the set of items (S1 ⊆ I). Logically, a transaction
ti ∈ T , where T denotes the set of all transactions, is said
to contain itemset S1 if S1 is a subset of ti. Mathematically,
the support count, σ(S1), for an itemset S1 can be stated as
follows:

σ(S1) = |{ti | S1 ⊆ ti, ti ∈ T}|,

where | · | stands for the number of elements in a set. An
Association Rule is then an implication expression of the
form S1 → S2, where S1, S2 ⊆ I and S1 ∩ S2 = ∅.

The support, s(S1 → S2), determines how often a rule is
applicable to a given data set. Furthermore, the confidence,
c(S1 → S2), determines how frequently items in S2 appear
in the transactions that contain S1. Mathematically this can

be expressed as follows:

s(S1 → S2) = σ(S1∪S2)
|T | and c(S1 → S2) = σ(S1∪S2)

σ(S1)
,

Support measures how well a rule is covered by the data.
Therefore, if a rule has a too low support, it could be that
it occurred solely by chance. Confidence is an important
measures as it provides the the reliability and accuracy of a
rule.

4.2 Obtained Rules and Interpretation
When we use the applied implementation of the famous
Apriori Algorithm, we obtain many trivial rules. For ex-
ample, it is already obvious from the clustering prototypes
that those students who have highly positive attitude to-
wards learning activities have also highly positive attitude
towards learning outcomes. However, as already discussed,
our itemsets can be divided into three subsets: the set that
contains the gender, the set which contains the performance
in mathematics, and the set which contains the different
scale indices. We are interested in the gender differences
and the performance in mathematics. Therefore, we search
inside the algorithm’s output for rules that have items of
the gender and/orperformance interval subsets at the right
hand side of the rule.

We start with high values for support and confidence and
lower then the confidence threshold. Since we are especially
interested in rules that contain the gender, the support has
to have a relatively small value, so we choose the minimum
value 0.1 while trying to keep the confidence value as high
as possible. Starting with confidence of 1 and lowering it
successively, we obtain the first rule that has gender on the
right side with confidence 0.71:

{-ATTLNACT, +SCMAT, +MATINTFC} ⇒ {boy} (2)

In words (2) means that those students who have negative
attitudes towards school but a high self-concept and high
intentions in mathematics are boys.

The first rule that we obtain for girls with confidence 0.69
is of the form:

{ -MATHEFF, - MATINTFC} ⇒ {girl} (3)

Rule (3) says that those students who have negative self-
efficacy and no intention to use mathematics are girls.

If we lower the minimal acceptable support into 0.095, we
obtain the following interesting rule (4): Those students who
have positive attitudes towards school but no intention to
use mathematics later in life are girls.

{+ATTLNACT, -MATINTFC} ⇒ {girl} (4)

Next, with the same minimal support we are searching ex-
plicitly for rules that have performance value below or above
Level 3 at the left-hand side of the rule and gender at the
right-hand side. Here, we first obtain the following rule with
a confidence value of 0.6:

{+ATTLNACT, above Level 3 performance} ⇒ {girl} (5)

According to (5), those students with a proficiency level
above 3 and a clearly above average positive attitude to-
wards learning activities in school are girls.
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With confidence 0.52 we obtain the first rule for boys:

{+SCMAT, above Level 3 performance} ⇒ {boy} (6)

Rule (6) means that those students with a proficiency level
above 3 and a clear above average self-concept in mathemat-
ics are boys.

Subsequently, we are searching for rules wich have both gen-
der and below or above Level 3 performance at the left-hand
side of the rule. Such rule with the highest confidence (0.65)
reads as:

{-ATSCHL -ATTLNACT +OPENPS -FAILMAT

+SCMAT} ⇒ {boy, above Level 3 performance}
(7)

According to (7), those students with negative attitudes to-
wards school (both, learning outcome as well as learning
activities) but with clearly above average openness to prob-
lem solving, a high self-concept in mathematics and strictly
below average self-responsibility for failing in mathematics,
are boys that perform above Level 3.

For girls the rule with the highest confidence (0.63) is given
by (8):

{-ESCS +ATTLNACT +ANXMAT -SCMAT}
⇒ {girl, below Level 3 performance}

(8)

This means that those students who are socially and eco-
nomically less advantaged, have high anxiety towards math-
ematics and a low self-concept in mathematics, but still
clearly above average attitude towards school, are girls who
perform below Level 3.

If we unite the rules given in (2)-(8), we see that in all the
rules that contain boys the item which represents the high
self-concept in mathematics is present. In general, high-
performing boys are also convinced that they can succeed
(see 6). Moreover, even when they fail in mathematics, they
are more likely to see other individuals or factors responsible
on this than themselves (see 7). In addition, they have the
highest intentions to use mathematics later in their life (see
2). However, according to the rules, male students can have
negative attitude towards school (see 2 and 8), whereas the
most positive attitudes appear only in the rules that include
girls. Even the below average performing and socially and
economically more disadvantaged girls with low self-concept
and high anxiety towards mathematics, perceive the learn-
ing activities in their schools as very important (see 8). The
same positive attitude towards school is also associated with
the highest performing girls (see 5). Moreover, female stu-
dents are much less confident about their mathematic skills
(see 3) and have least intentions to pursue a mathematics
related career (see 3 and 4).

To sum up, we conclude that specific characteristics and at-
titudes in the two middle performing clusters are, indeed,
often gender-specific. Since we explicitly searched for rules
that have certain items in them, we can not express pre-
cisely how typical these situations are. Nevertheless, when
we combine all obtained rules with the clustering result two
main characterizations appear: On the one hand, we have a
specific subgroup of mainly girls who we nominated ”to-be-
nurses”: they seem to be capable of performing well if they

want to, having strongly positive attitude towards school.
However, these students have low beliefs in themselves to
be able to succeed in mathematics, and even a somewhat
fear towards mathematics. On the other hand, we have a
subgroup of mainly boys which we refer as ”to-be-engineers”.
These students do not seem very interested in school in gen-
eral. Yet, they trust in their capabilities and are extremely
confident about their skills to perform well in mathematics.
Even if they fail, they attribute this failure rather to other
external factors than to themselves.

5. SUMMARY AND CONCLUSIONS
Although Finland is one of the few countries in which, on
average, girls perform slightly better than boys in mathe-
matics, professional careers related to this subject are also
in here still dominated by men. We have applied methods
from two of the main educational data mining branches on
PISA data to obtain more gender-specific knowledge which
might explain this observation.

First of all, we utilized a special robust clustering approach
to group the students according to those PISA scale indices
that are associated with performance in mathematics. The
index that represents the students’ self-concept in mathe-
matics (SCMAT), and which also was the variable that cor-
relates the most with the students’ performance in mathe-
matics (see Table 1), is the most important discriminator for
the four clusters that we obtained (see Table 3). Combined
with the other attributes we conclude that those students
who have a higher self-concept, and tend to be socially and
economically more advantaged, perform better than their
less advantaged peers. They also have better attitudes to
school, trust more in their own capabilities, and have greater
expectation for their future careers (see Figure 2).

Two of the clusters we obtained, Cluster 1 representing
the ”high performing” and Cluster 4 representing the ”low
performing” students, can to a large extend be explained
by these differences. However, the two ”medium” clusters
show the opposite behaviour: Socially and economical more
advantaged students with very positive attitudes towards
school and learning from Cluster 2 perform worse in math-
ematics than the somewhat more disadvantaged students in
Cluster 3. We found that these clusters are separated the
most by the index that measures the student’s intentions to
pursue a mathematics related career. Since Cluster 2 is with
61% dominated by girls, while Cluster 3 consists of a larger
percentage (62%) of boys we assumed that this difference
could be explained by the gender of the student.

Association rule mining in the data subset of these two re-
maining medium clusters revised the gender-specific atti-
tudes even more, and confirmed our assumption. Those 15-
year-old students from this subset who already seem to have
decided to pursue a mathematics related career are mostly
boys. On the other hand, the attribute that is the most
ascribable to girls is the positive attitude towards school.
Altogether, the results of our study suggest that there are
distinct groups of high and low performing students. How-
ever, the bulk of the girls with average performance seem to
have no intentions to pursue a mathematics related profes-
sion. This is neither connected to their social status nor to
their attitudes towards school. In fact, they often show a
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better feeling of belonging to school and have very positive
attitudes towards school and learning. While boys often con-
sider mathematics as a great part of their future even when
they do not show obvious skills, girls tend to be discour-
aged much faster and to easier favour other subjects. We
feel that this is an important finding that should be studied
further, especially concerning when such a gender-specific
orientation starts to emerge.
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ABSTRACT
The growing prevalence of e-learning systems and on-line courses
has made educational material widely accessible to students of vary-
ing abilities, backgrounds and styles. There is thus a growing need
to accomodate for individual differences in such e-learning sys-
tems. This paper presents a new algorithm for personliazing educa-
tional content to students that combines collaborative filtering algo-
rithms with social choice theory. The algorithm constructs a “dif-
ficulty” ranking over questions for a target student by aggregating
the ranking of similar students, as measured by different aspects of
their performance on common past questions, such as grades, num-
ber of retries, and time spent solving questions. It infers a difficulty
ranking directly over the questions for a target student, rather than
ordering them according to predicted performance, which is prone
to error. The algorithm was tested on two large real world data sets
containing tens of thousands of students and a million records. Its
performance was compared to a variety of personalization methods
as well as a non-personalized method that relied on a domain ex-
pert. It was able to significantly outperform all of these approaches
according to standard information retrieval metrics. Our approach
can potentially be used to support teachers in tailoring problem sets
and exams to individual students and students in informing them
about areas they may need to strengthen.

1. INTRODUCTION
Education is increasingly mediated by technology, as attested by
the prevalence of educational software in schools and the explosion
of on-line course opportunities. As a result, educational content
is now accessible to student communities of varied backgrounds,
learning styles and needs. There is thus a growing need for per-
sonalizing educational content to students in e-learning systems in
a way that adapts to students’ individual needs [20, 1]. A popular
approach towards personalization in e-learning is to sequence stu-
dents’ questions in a way that best matches their learning styles or
gains [2, 28].

This paper provides a novel algorithm for sequencing content in
e-learning systems that directly creates a “difficulty ranking” over
new questions. Our approach is based on collaborative filtering [6],
which generates a difficulty ranking over a set of questions for a

target student by aggregating the known difficulty rankings over
questions solved by other, similar students. The similarity of other
students to the target student is measured by their grades on com-
mon past question, the number of retries for each question, and
other features. Unlike other uses of collaborative filtering in edu-
cation, our approach directly generates a difficulty ranking over the
test questions, without predicting students’ performance directly on
these questions, which may be prone to error.1

Our algorithm, called EduRank, weighs the contribution of these
students using measures from the information retrieval literature. It
allows for partial overlap between the difficulty rankings of a neigh-
boring student and the target student, making it especially suitable
for e-learning systems where students differ in which questions
they solve. The algorithm extends a prior approach for ranking
items in recommendation systems [15], which was not evaluated on
educational data, in two ways: First, by using social choice theory
to combine the difficulty rankings of similar students and produce
the best difficulty ranking for the target student. Second, EduRank
penalizes disagreements in high positions in the difficulty ranking
more strongly than low positions, under the assumption that errors
made in ranking more difficult questions are more detrimental to
students than errors made in ranking of easier questions.

We evaluated EduRank on two large real world data sets contain-
ing tens of thousands of students and about a million records. We
compared the performance of EduRank to a variety of personal-
ization methods from the literature, including the prior approach
mentioned above as well as other popular collaborative filtering ap-
proaches such as matrix factorization and memory-basedK nearest
neighbours. We also compared EduRank to a (non-personalized)
ranking created by a domain expert. EduRank significantly outper-
formed all other approaches when comparing the outputted diffi-
culty rankings to a gold standard.

The contribution of this paper is two-fold. First, we present a novel
algorithm for personalization in e-learning according to the level of
difficulty by combining collaborative filtering with social choice.
Second, we outperform alternative solutions from the literature on
two real-world data sets. Our approach can potentially be used
to support both teachers and students, by automatically tailoring
problem sets or exams to the abilities of individual students in the
classroom, or by informing students about topics which they need
to strengthen. Lastly, it can also augment existing ITS systems by
integrating a personalized order over questions into the interaction
process with the student.

1To illustrate, in the KDD cup 2010, the best preforming grade
prediction algorithms exhibited prediction errors of about 28% [25]
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2. BACKGROUND
In this section we briefly review relevant approaches and metrics in
recommendation systems, social choice, and information retrieval.

2.1 Recommendation Systems and Collabora-
tive Filtering

Recommender systems actively help users in identifying items of
interest. For example, the prediction of users’ ratings for items,
and the identification of the top-N relevant items to a user, are pop-
ular tasks in recommendation systems. A commonly used approach
for both tasks is Collaborative Filtering (CF), which uses data over
other users, such as their ratings, item preferences, or performance
in order to compute a recommendation for the active user.

There are two common collaborative filtering approaches [6]; In the
memory-based K nearest neighbor approach, a similarity metric,
such as the Pearson correlation, is used to identify a set of neigh-
boring users. The predicted rating for a target user and a given item
can then be computed using a weighted average of ratings of other
users in the neighborhood. In the model based approach, a statisti-
cal model between users and items is created from the input data.
For example, the SVD approach [21] computes a latent feature vec-
tor for each user and item, such that the inner product of a user and
item vectors is higher when the item is more appropriate for the
user.

While rating prediction and top-N recommendations are widely re-
searched, not many recommendation system applications require
ranking. Thus, there were only a few attempts to use CF approaches
to generate rankings. Of these, most methods order items for target
users according to their predicted ratings. In contrast, Liu et al. de-
veloped the EigenRank algorithm [15] which is a CF approach that
relies on the similarity between item ratings of different users to di-
rectly compute the recommended ranking over items. They show
this method to outperform existing collaborative filtering methods
that are based on predicting users’ ratings.

Using the ratings of similar users, EigenRank computes for each
pair of items in the query test set so-called potential scores for the
possible orderings of the pair. Afterward, EigenRank converts the
pair-wise potentials into a ranked list. EigenRank was applied to
movie recommendation tasks, and was shown to order movies by
rating better than methods based on converting rating predictions
to a ranked list.

2.2 Social Choice
Social Choice Theory originated in economics and political sci-
ence, and is dealing with the design and formal analysis of methods
for aggregating preferences (or votes) of multiple agents [11]. Ex-
amples of such methods include voting systems used to aggregate
preferences of voters over a set of candidates to determine which
candidate(s) should win the election, and systems in which voters
rank a complete set of candidates using an ordinal scale. One such
approach which we use in this paper is Copeland’s method [8, 17]
ordering candidates based on the number of pairwise defeats and
victories with other candidates.

The Copland score for an alternative qj is determined by taking the
number of those alternatives that qj defeats and subtracting from
this number those alternatives that beat qj . A partial order over the
items can then be inferred from these scores. Two advantages of
this method that make it especially amenable to e-learning systems

with many users (e.g., students and teachers) and large data sets are
that they are quick to compute and easy to explain to users [22].
Pennock et al. [19] highlighted the relevance of social choice to CF
and the importance of adapting weighted versions of voting mech-
anisms to CF algorithms. Our algorithm represents an application
of this approach to e-learning systems.

2.3 Metrics for Ranking Scoring
A common task in information retrieval is to order a list of results
according to their relevance to a given query [29]. Information
retrieval methods are typically evaluated by compering their pro-
posed ranking to that of a gold standard, known as a “reference
ranking”, which is provided by the user or by a domain expert.

Before describing the comparison metrics and stating their rele-
vance for e-learning systems, we define the following notations:
Let

(
L
2

)
denote the set of all non ordered pairs in L. Let � be a

partial order of a set of questions L. We define the reverse order of
� over L, denoted � as a partial order over L such that if qj � qk
then qk�qj . Let �1 and �2 be two partial orders over a set of
questions L, where �1 is the reference order and �2 is the sys-
tem proposed order. We define an agreement relation between the
orders �1 and �2 as follows:

• The orders�1 and�2 agree on questions qj and qk if qj �1

qk and qj �2 qk.

• The orders �1 and �2 disagree on questions qj and qk if
qj �1 qk and qk �2 qj .

• The orders �1 and �2 are compatible on questions qj and
qk if qj �1 qk and neither qj �2 qk nor qk �2 qj .

Given a partial order � over questions Q, the restriction of � over
L ⊆ Q are all questions (qk, ql) such that qk � ql and qk, ql ∈ L.

2.3.1 Normalized Distance based Performance
The Normalized Distance based Performance Measure (NDPM) [26,
24] is a commonly used metric for evaluating a proposed system
ranking to a reference ranking . It differentiates between correct or-
ders of pairs, incorrect orders and ties. Formally, let δ�1,�2(qj , qk)
be a distance function between a reference ranking �1 and a pro-
posed ranking �2 defined as follows:

δ�1,�2(qj , qk) =


0 if �1 and �2 agree on qjand qk,
1 if �1 and �2 are compatible on qjand qk,
2 if �1 and �2 disagree on qjand qk.

(1)

The total distance over all question pairs in L is defined as follows

β�1,�2(L) =
∑

(qj ,qk)∈(L2)

δ�1,�2(qj , qk) (2)

Let m(�1) = argmax�β�1,�(L) be a normalization factor which
is the maximal distance that any ranking � can have from a refer-
ence ranking �1 . The NDPM score sND(L,�1,�2) comparing
a proposed ranking of questions �2 to a reference ranking �1 is
defined as

sND(L,�1,�2) =
β�1,�2(L)

m(�1)
(3)

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 69



www.manaraa.com

Intuitively, the NDPM measure will give a perfect score of 0 to dif-
ficulty rankings over the set in L that completely agree with the
reference ranking, and a worst score of 1 to a ranking that com-
pletely disagrees with the reference ranking. If the proposed rank-
ing does not contain a preference between a pair of questions that
are ranked in the reference ranking, it is penalized by half as much
as providing a contradicting preference.

The evaluated ranking is not penalized for containing preferences
that are not ordered in the reference ranking. This means that for
any question pair that were not ordered in the true difficulty rank-
ing, any ordering predicted by the ranking algorithm is acceptable.
Not penalizing unordered pairs is especially suitable for e-learning
systems in which some questions for the target student in L may
not have been solved by other students and these questions may
remain unordered in the difficulty ranking.

2.3.2 AP Rank Correlation
A potential problem with the NDPM metric is that it does not con-
sider the location of disagreements in the reference ranking. In
some cases it is more important to appropriately order items that
should appear closer to the head of the ranked list, than items that
are positioned near the bottom. For example, when ranking movies,
it may be more important to properly order the movies that the user
would enjoy, than to properly order the movies that the user would
not enjoy. Similarly, we assume that the severity of errors in rank-
ing questions depends on their position in the ranked list. As we are
interested in sequencing questions by order of difficulty, properly
predicting how easy questions should be ordered is not as important
as avoiding the presentation of a difficult question too early, result-
ing in frustration and other negative effects on the student learning
process. Therefore, when evaluating a ranked list of questions, it
is often important to consider the position of the questions in the
ranked list. We would like to give different weights to errors de-
pending on their position in the list.

To this end, we can use the AP correlation metric [27], which gives
more weight to errors over items that appear at higher positions in
the reference ranking. Formally, let �1 be the reference ranking
and�2 be a proposed ranking over a set of items. The AP measure
compares the order between each item in the proposed ranking �2

with all items that precede it with the ranking in the reference rank-
ing �1.

For each qk, qj ∈ L, k 6= j, let the set Zk(L,�2) denote all ques-
tion pairs (qk, qj) in L such that qj �2 qk. These are all the ques-
tions that are more difficult to the student than question qk.

Zk(L,�2) = {(qj , qk) | ∀qj 6= qk s.t. qj �2 qk and qj , qk ∈ L}
(4)

We define the indicator function IA(qj , qk,�1,�2) to equal 1 when
�1 and �2 agree on questions qj and qk.

LetAk(L,�1,�2) be the normalized agreement score between�2

and the reference ranking �1 for all questions qj such that qj �i

qk.

Ak(L,�1,�2) =
1

k − 1

∑
(qj ,qk)∈Zk(L,�2)

IA(qj , qk,�1,�2)

(5)
The AP score of a partial order�2 over L given partial order�1 is

defined as

sAP (L,�1,�2) =
1

|L| − 1

∑
k∈|L|

Ak(L,�1,�2) (6)

The sAP score gives a perfect score of 1 to systems where there
is total agreement between the system proposed difficulty ranking
and the reference ranking for every question pair above location i
for all i ∈ L. The worst score of 0 is given to systems were there
is no agreement between the two ranked lists.

3. PROBLEM DEFINITION AND
APPROACH

We now formalize our problem and the approach used. The “dif-
ficulty ranking problem” includes a target student si, and a set of
questionsLi, for which the algorithm must predict a difficulty rank-
ing �̂i over Li. The predicted difficulty ranking �̂i is evaluated
with respect to a difficulty reference ranking �i over Li using a
scoring function s(�̂i,�i, Li).

To solve this problem, we take a collaborative filtering approach,
which uses the difficulty rankings on Li of other students simi-
lar to si to construct a difficulty ranking over Li for student si.
Specifically, the input to the problem includes: (1) A set of students
S = {s1, s2, ..., sm}; (2) A set of questions Q = {q1, q2, ..., qn};
(3) For each student sj ∈ S, a partial difficulty ranking �j over a
set of questions Tj ⊆ Q.

For every student sj ∈ S there are two disjoint subsets Tj , Lj ∈ Q,
where the difficulty ranking of sj over Tj is known, and is a restric-
tion of�j over all the questions in Q. Intuitively, for a a target stu-
dent si ∈ S, Ti represent the set of questions that the target student
si has already answered, while Li is the set of questions for which
a difficulty ranking needs to be produced.

The collaborative filtering task is to leverage the known rankings of
all students sj over Tj in order to compute the required difficulty
ranking �̂i over Li for student si.

4. THE EDURANK ALGORITHM
We now present our EduRank algorithm for producing a personal-
ized difficulty ranking over a given set of questions Li for a target
student si. EduRank estimates how similar other student are to si,
and then combines the ranking of the similar students over Li to
create a ranking for si. There are two main procedures to the al-
gorithm: computing the student similarity metric, and creating a
difficulty ranking based on the ranking of similar users.

For comparing the target student si to potential neighbors, we use
the sAP metric to encourage greater similarity between students
with high agreement in top positions in their respective rankings.

For aggregating the different students’ rankings to create a diffi-
culty ranking for the target student, we use the Copeland method
(Section 2.2). We treat each question as a candidate and look at
the aggregated voting of neighbors based on their similarity metric.
In our aggregated voting calculation, candidate i beats candidate j
if the similarity normalized number of wins of i over j computed
over all neighbors is higher than the similarity normalized number
of loses. The Copeland method then computes for each candidate
question the overall number of aggregated victories and aggregated
defeats and ranks the candidates accordingly. Before presenting
the algorithm we first define γ(qk, ql,�) over question pairs qk, ql

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 70



www.manaraa.com

Algorithm 1 EduRank
INPUT:
Set of students S.
Set of questions Q.
For each student sj ∈ S, a partial ranking �j over Tj ⊆ Q.
Target student si ∈ S.
Set of questions Li to rank for si.
OUTPUT: a partial order �̂i over Li.
1: for each q ∈ Li do
2: c(q) =

∑
ql∈L\q

rv(q, ql, S)
3: end for
4: �̂i ← {∀(qk, ql) ∈

(
Li
2

)
, qk�̂iql iff c(qk) > c(ql)}

5: return �̂i

given a difficulty ranking � as follows:

γ(qk, ql,�) =


1 if qk � ql
−1 if ql � qk
0 otherwise

(7)

The relative voting rv(qk, ql, S) of two questions qk, ql given the
difficulty rankings of a group of (neighboring) students S is

rv(qk, ql, S) = sign(
∑

j∈S\i

sAP (Ti,�i,�j) · γ(qk, ql,�j)) (8)

The Copeland score c(q, S, Li) of a question q given the difficulty
rankings of students S and test questions Li is

c(q, S, Li) =
∑

ql∈Li\q

rv(q, ql, S) (9)

The EduRank algorithm is shown in Algorithm 1. The input to the
EduRank algorithm is a set of students S = {s1, . . . , sn}, each
with a known ranking over a set of questions Tj , such that Q =
T1 ∪ . . . ∪ Tn. In addition the algorithm is given a target student
si ∈ S, and a set of questions Li ⊆ Q that needs to be ranked for
si. The output of the algorithm is a ranking of the questions in Li.

The algorithm computes a ranking score c(q) for each question q ∈
Li, which is the Copeland score for that question, as defined above.
The algorithm returns a partial order for student si over the test set
Li where questions are ranked by decreasing Copeland score c(q).

5. EMPIRICAL EVALUATION
We now describe a set of experiments comparing EduRank to other
algorithms on the difficulty ranking problem. We describe the datasets
that were used and our method for defining a difficulty ranking,
then we discuss the performance of the various algorithms.

5.1 Datasets
We conducted experiments on two real world educational datasets.
The first dataset was published in the KDD cup 2010 by the Pitts-
burgh Science of Learning Center (PSLC) 2 [13]. We used the
Algebra 1 dataset from the competition, containing about 800,000
answering attempts by 575 students, collected during 2005-2006.
We used the following features for each question: question ID, the
number of retries needed to solve the problem by the student, and

2https://pslcdatashop.web.cmu.edu/KDDCup

the duration of time required by the student to submit the answer.3

If the number of retries needed to solve the problem was 0, this
means the students solved the problem on a first attempt (we refer
to this event as “correct first attempt”).

The second dataset, which we call K12, is an unpublished dataset
obtained from an e-learning system installed in 120 schools and
used by more than 10,000 students. The records in this dataset
were anonymized and approved by the institutional review board of
the Ben-Gurion university. This dataset contains about 900,000 an-
swering attempts in various topics including mathematics, English
as a second language, and social studies. We used the following
features for each question: question ID, the answer provided by the
student and the associated grade for each attempt to solve the ques-
tion. Unfortunately, this dataset does not contain time stamps for
each provided response, so we cannot compute the duration of time
until a question was answered.

5.2 Feature Selection for Difficulty Ranking
EduRank assumes that each student has a personal difficulty rank-
ing over questions, as described in Section 3. In this section we
show how we inferred this ranking from the features in the dataset.
An obvious candidate for the difficulty ranking are the grades that
the student got on each question. There are several reasons however
as to why grades are an insufficient measurement of difficulty. First,
in all questions in the PSLC dataset, the “Correct First Attempt”
score is either 0 or 1. There were a number of multiple choice ques-
tions (between 3 and 4 possible answers) in the datasets, but the
dichotomy between low and high grades was also displayed here.
To understand this dichotomy, note that students were allowed to
repeat the question until they succeeded. It is not surprising that
after several retries most students were able to identify the correct
answer. A zero grade for a question occurs most often when it was
not attempted by the student more than once.

An alternative approach is to consider additional features in ad-
dition to grades (or correct first attempts), that are present in the
datasets, and which correlate with the difficulty of the question for
the individual student. Specifically, we assumed that questions that
were answered correctly on a first attempt were easier for the stu-
dent, while questions that required multiple attempts were harder.
We also assumed that questions that required more solution time,
as registered in the log, were more difficult to the students.

We realize that these two properties are not perfect indicators of
question difficulty for the student. Indeed, it may occur in multiple
choice questions that a student guessed the correct answer on the
first attempt, even though the question was quite difficult. We also
do not account for “gaming the system” strategies that have been
modeled in past ITS work [4]. It may also be the case that the
length of time reported by the system represents idle time for the
student who was not even interacting with the e-learning software,
or simply taking a break. However, as we show later in this section,
these properties provide a reasonable estimation for the difficulty of
the question.

We proceed to describe the following method for identifying the
difficulty ranking. We begin by ranking questions by grades. In
the PSLC dataset we use “correct first attempt” for this, and in the
K12 dataset we find it more informative to use the grade that the

3Note there were other features in this data-set that were not used
in the study.
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(a) Grades (b) Difficulty Ranking

Figure 1: Distribution over grades and difficulty ranking positions for K12 dataset

student got on her first attempt. After ranking by grade, we break
ties by using the number of attempts that the student took before
submitting the correct answer. When the student did not achieve a
correct answer we use all the attempts that the student has made.
Then, we break ties again on the PSLC dataset using the elapsed
time.

To demonstrate that in general, these properties provide a reason-
able estimation for the difficulty of the question, Figure 1 shows a
distribution over students’ grades (left) and positions in the inferred
difficulty ranking which considered grades and retries (right). Note
that the different values for grades represent answers to multiple se-
lect questions. For example, a grade of 0.9 will be achieved when
9/10 correct answers were selected by the student. As can be clearly
seen from the figure, there are substantially more classes in the dif-
ficulty ranking when adding additional features.

5.3 Methods
We used two ranking scoring metrics — NDPM and AP (Sec-
tion 2.3). Many papers in information retrieval also report NDCG,
which is a ranking metric for datasets where each item has a score,
and thus measures the difference in scores when ranking errors oc-
cur. In our case, where we do not have meaningful scores, only
pure rankings, NDCG is less appropriate [12].

We compared the performance of a number of different methods to
EduRank. First, we used the original EigenRank algorithm, which
differs from EduRank in the similarity metric between users as well
as the aggregation of the neighbor rankings.

As we explained in section 2.1, a popular alternative in the rec-
ommendation systems literature is to predict a score for an item,
and then rank by sorting predicted scores. Thus we also used two
popular collaborative filtering methods — a memory-based user-
user KNN method using the Pearson correlation (denoted UBCF
for User Based Collaborative Filtering), and a matrix factorization
method using SVD (denoted SVD) to compute latent factors of
items and users [6, 30]. In both cases we used the Mahout4 im-
plementation of the algorithms [23].

The collaborative filtering algorithms require an item score as an

4https://mahout.apache.org/

input. We used the following scores; We began with the grade
(first attempt) that the user got on a question, normalized to the
[0 − 1] range. For each retry of the question we reduce this grade
by 0.2 points. For the PSLC dataset, we reduce the (normalized)
elapsed time solving the question from the score. This scoring
method closely captures the difficulty ranking order we describe
above. In the K12 dataset we also compared to a non-personalized
difficulty ranking from 1-5 for each question, supplied by a domain
expert (typically the researcher or teacher authoring the question).
We denote this content expert ranking using CER.

Finally, it is common in the educational literature to identify the
mastery level of the student on various topics, and then predict the
performance of a question from the mastery level of the topic of
the question [9]. To implement such an approach we computed the
average score (using the scoring mechanism above) that the student
got for all questions that belong to the same topic. We then rank
the topics by decreasing average score, and rank the questions by
the topic they belong to. We denote this method the Topic-Based
Ranker (TBR). This measure was used only on the K12 dataset
where we have available topic data.

5.4 Results
Based on the problem defined in section 3, we ran the following
experiment— for each student si we split her answered questions
into two sets of equal size: a train set Ti, which is given as input
to the various algorithms, and a test set Li that the algorithms must
rank. The split is performed according to the time stamp of the
answers. Later answers are in the test set. We then compare the
result of each algorithm to the difficulty ranking explained above
using NDPM and AP.5 Notice that for NDPM, the lower the score,
the better the ranking, while for AP, better rankings result in higher
scores. For all approaches, we ordered difficulty ranking in de-
creasing order of difficulty (harder questions were ranked higher in
the list).

As can be seen in Figure 2 EduRank is better than all other ap-
proaches on both datasets using both metrics. The results are sta-
5Note that the AP metric is also used to measure similarity between
neighboring students in EduRank. We note that (1) it is standard
practice in ML to use the same metric in the algorithm and the
evaluation, and (2) the AP measure was computed over the training
set in the algorithm, but over the test set in the evaluation.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 72



www.manaraa.com

(a) AP score (higher is better) (b) NDPM score (lower is better)

Figure 2: Performance Comparison

tistically significant (p < 0.05, paired t-test between EduRank and
the leading competing algorithm).

Looking at the other collaborative filtering methods we can see that
EigenRank and UBCF present comparable performance. This is
not very surprising, because these 2 methods do not take as input a
ranking, but an item score, as we explain above. As the score is only
a proxy to the actual ranking, it is no surprise that these algorithms
do not do as well in predicting the true difficulty ranking.

Of the non-CF methods,TBR does relatively well. Our intuition is
that identifying the student mastery level in topics is an important
factor in establishing the difficulty of a question for that particu-
lar student. It is hence interesting to investigate in future research
how EduRank can also benefit from the information encapsulated
in topics. Nonetheless TBR can be too limiting in practice, because
when a teacher wants to create a practice assignment in a particular
topic, perhaps one that the student has not yet mastered, then TBR
cannot be used to rank questions within that topic.

The method that performed the worst is the content expert ranking
(CER). This is especially interesting as this is the only information
that is currently available to teachers using the K12 e-learning sys-
tem for deciding on the difficulty of questions. There can be two
sources to this sub-optimal performance; First, it may be that it is
too hard, even for experts, to estimate the difficulty of a question
for students. Second, this may be an evidence that personalizing
the order of questions for a particular student is truly important for
this application.

5.5 Case Study
To further demonstrate the behaviour of the various algorithms, we
took one of the students in the K12 dataset and present the results
of the algorithms for that particular student. Table 1 presents a list
of 34 test questions for this student and the rankings that were out-
putted by the different algorithms, in decreasing order of difficulty.
The 15 most difficult questions appear in bold. Each question is de-
noted by (1) its knowledge component (KC) which was determined
by a domain expert (this information was not in the database and
the algorithms did not use it), and (2) the position of the question in
the true difficulty ranking (the gold standard) of the student. This
gold standard was used by the NDPM and AP metrics as a refer-
ence ranking to judge the performance of all algorithms. As shown

in the table, question types involving “multiplication of big num-
bers” and “order of operations” appear prominently in the 15-most
difficulty list, while questions in topics of geometry (“rectangles”,
“polygons”) were easier for the student.

The other columns in the table show the suggested rankings by the
various algorithms. For each algorithm, we present the ranking
location of each question, and the true ranking of this question as
obtained from the gold standard. As can be seen from the results,
for this particular student, the UBCF algorithm performed poorly,
placing many easy questions for the student at high positions in the
ranking (e.g., “Multiply Eq 54” which appears at the top of the list
but is ranked 12th in the gold standard, and “div mod” appears in
4th position in the list and ranked 11th in the gold standard.) The
EigenRank and SVD algorithms demonstrated better results, but
still failed to place the most difficult question for the student (e.g.,
order of operations) at the top of the ranked list. Only the EduRank
algorithm was able to place the questions with “multiplication of
big numbers” and “order of operation” type problems in the top
15 list, providing the best personalized difficulty ranking for this
student.

Table 2 shows the execution time of each algorithm for building
the models and computing the recommended rankings. The dataset
used is the K12 dataset with 918,792 records. Our experiments
were conducted on a Mac Book Air 1.7GHz Intel Core i7 with 8GB
RAM.

Algorithm Run Time (Sec)

CER 197.6
UBCF 445.2
TBR 625.2
EduRank 631.8
EigenRank 795.9
SVD 1490

Table 2: Execution Time

6. RELATED WORK
Our work relates to several areas of research in education and ed-
ucational data mining. Several approaches within the educational
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Gold Standard EduRank Ranking EigenRank Ranking UBCF Ranking SVD Ranking

KC True Rank KC True Rank KC True Rank KC True Rank KC True Rank
Order of Operations, choose options 1 Order of Operations, choose options 1 Order of Operations, Brackets 7 Multuply, Equals 54 12 Multiply, Big Numbers 4
Letters Order 1 Natural Numbers, Verbal Claims 3 Natural numbers, In between 12 Multiply, Choose Between 2 12 Multiply, Bigger than 10
Multiply, Equals 40 2 Add, Sub, Equals 30 10 Div, No Mod, Mod 1 11 Multiply, Bigger than 10 Order of Operations, Brackets 5
Natural Numbers, Verbal Claims 3 Letters Order 1 Div, Div and Mod 11 Div, No Mod, Mod 1 11 Order of Operations, Equals 5 6
Multiply, Big Numbers 4 Add, Sub, Verbal Claims 7 Multiply, Big Numbers 7 Div, No Mod, Mod 2 12 Natural Numbers, Verbal Claims 3
Order of Operations, Brackets 5 Order of Operations, Equals 5 6 Div, Exists? 8 Multiply, Big Numbers 4 Add, Sub, Equals 30 10
Zero, Equals Zero 5 Order of Operations, Brackets 5 Multiply, Equals 40 2 Natural Numbers, Verbal Claims 3 Order of Operations, Brackets 7
Order of Operations, Equals 5 6 Zero, Equals Zero 5 Div, Mod 2 12 Order of Operations, choose options 1 Div, Mod 2 12
Order of Operations, Brackets 7 Multiply, Big Numbers 4 Multuply, Choose between 2 12 Order of Operations, Equals 5 6 Add, Sub, Verbal Claims 7
Add, Sub, Verbal Claims 7 Div, Mod 2 12 Order of Operations, Which is bigger 11 Multiply, Choose between 2 12 Order of Operations, choose options 1
Multiply, Big Numbers 7 Div, No Mod, Mod 2 12 Order of Operations, Brackets 5 Multuply, Choose between 2 12 Multuply, Equals 54 12
Div, Exists? 8 Order of Operations, Brackets 7 Div, Mod 1 11 Order of Operations, Brackets 7 Div, Exists? 12
Substruction 9 Order of Operations, Which is bigger 11 Order of Operations, only %, / 11 Order of Operations, Brackets 5 Div, No Mod, Mod 2 12
Multiply, Bigger than 10 Order of Operations, only %, / 11 Polygon, Parallel sides 10 Letters Order 1 Multiply, Big Numbers 7
Add, Sub, Equals 30 10 Multiply, Big Numbers 7 Letters Order 1 Rectangle, Identify 12 Natural numbers, In between 12
Polygon, Parallel sides 10 Div, Exists? 12 Order of Operations, Equals 5 6 Multiply, Big Numbers 7 Zero, Equals Zero 5
Order of Operations, only +, - 11 Substruction 9 Substruction 9 Polygon, Identify 12 Order of Operations, Which is bigger 11
Order of Operations, only %, / 11 Polygon, Parallel sides 10 Add, Sub, Verbal Claims 7 Zero, Equals Zero 5 Div, Div and Mod 11
Order of Operations, Which is bigger 11 Order of Operations, only +, - 11 Multiply, Big Numbers 4 Order of Operations, only +, - 11 Letters Order 1
Div, Mod 1 11 Div, No Mod, Mod 1 11 Natural Numbers, Verbal Claims 3 Add, Sub, Equals 30 10 Angles, Find Bigger 12
Div, Div and Mod 11 Multiply, Bigger than 10 Add, Sub, Equals 30 10 Polygon, Parallel sides 10 Multiply, Choose between 2 12
Div, No Mod, Mod 1 11 Div, Exists? 8 Order of Operations, choose options 1 Add, Sub, Verbal Claims 7 Div, Mod 1 11
Natural numbers, In between 12 Div, Mod 1 11 Order of Operations, only +, - 11 Div, Mod 1 11 Multuply, Choose between 2 12
Multuply, Equals 54 12 Multiply, Equals 40 2 Zero, Equals Zero 5 Div, Mod 2 12 Div, No Mod, Mod 1 11
Multiply, Choose between 2 12 Div, Div and Mod 11 Div, No Mod, Mod 2 12 Div, Div and Mod 11 Polygon, Parallel sides 10
Multuply, Choose between 2 12 Multuply, Choose between 2 12 Div, Exists? 12 Order of Operations, only %, / 11 Div, Exists? 8
Div, Mod 2 12 Multiply, Choose Between 2 12 Multiply, Bigger than 10 Order of Operations, Which is bigger 11 Order of Operations, only %, / 11
Div, Exists? 12 Rectangle, Identify 12 Multiply, Choose Between 2 12 Div, Exists? 8 Substruction 9
Div, No Mod, Mod 2 12 Polygon, Identify 12 Rectangle, Identify 12 Div, Exists? 12 Order of Operations, only +, - 11
Angles, Find Bigger 12 Multuply, Equals 54 12 Multuply, Equals 54 12 Natural numbers, In between 12 Multiply, Equals 40 2
Angles, Find Bigger 12 Angles, Find Bigger 12 Angles, Find Bigger 12 Substruction 9 Angles, Find Bigger 12
Rectangle, Identify 12 Angles, Find Bigger 12 Angles, Find Bigger 12 Multiply, Equals 40 2 Multiply, Choose Between 2 12
Polygon, Identify 12 Natural numbers, In between 12 Multiply, Choose between 2 12 Angles, Find Bigger 12 Polygon, Identify 12
Multiply, Choose Between 2 12 Multiply, Choose between 2 12 Polygon, Identify 12 Angles, Find Bigger 12 Rectangle, Identify 12

Table 1: Rankings outputted by the different algorithms for a sample target student

data mining community have used computational methods for se-
quencing students’ learning items. Pardos and Heffernan [18] infer
order over questions by predicting students’ skill levels over action
pairs using Bayesian Knowledge Tracing. They show the efficacy
of this approach on a test-set comprising random sequences of three
questions as well as simulated data. This approach explicitly con-
siders each possible order sequence and does not scale to handling
large number of sequences, as in the student ranking problem we
consider in this paper.

Champaign and Cohen [7] suggest a peer-based model for content
sequencing in an intelligent tutor system by computing the similar-
ity between different students and choosing questions that provide
the best benefit for similar students. They measure similarity by
comparing between students’ average performance on past ques-
tions and evaluate their approach on simulated data. Our approach
differs in several ways. First, we don’t use an aggregate measure to
compute similarity but compare between students’ difficulty rank-
ings over questions. In this way we use the entire ranked list for
similarity computation, and do not lose information.6 Second, we
are using social choice to combine similar students’ difficulty rank-
ing over questions. Lastly, we evaluate our approach on two real-
world data sets. Li, Cohen and Koedinger [14] compared a blocked
order approach, in which all problems of one type are completed
before the student is switched to the next problem type to an in-
terleaved approach, where problems from two types are mixed and
showed that the interleaved approach yields more effective learn-
ing. Our own approach generates an order of the different questions
by reasoning about the student performance rather than determin-
ing order a-priori.

Lastly, multiple works have used Bayesian Knowledge Tracing as
a way to infer students’ skill acquisition (i.e., mastery level) over
time given their performance levels on different question sequences

6Consider student1 who has accrued grades 60 and 80 on questions
(a) and (b) respectively; and student2 who has accrued grades 80
and 60 on questions (a) and (b) respectively. The average grade
for both questions will be the same despite that they clearly differ
in difficulty level for the students (when ordered solely based on
grade).

[9]. These works reason about students’ prior knowledge of skills
and also account for slips and guessing on test problems. The mod-
els are trained on large data sets from multiple students using ma-
chine learning algorithms that account for latent variables [3, 10].
We solve a different problem, that of using other students’ perfor-
mance to personalize ranking over test-questions. In addition, these
works measure students’ performance dichotomously (i.e., success
or failure) whereas we reason about additional features such as stu-
dents’ grade and number of attempts to solve the question. We in-
tend to infer students’ skill levels to improve the ranking prediction
in future work.

Collaborative filtering (CF) was previously used in the educational
domain for predicting students’ performance. Toscher and Jahrer
[25] use an ensemble of CF algorithms to predict performance for
items in the KDD 2010 educational challenge. Berger et. al [5] use
a model-based approach for predicting accuracy levels of students’
performance and skill levels on real and simulated data sets. They
also formalize a relationship between CF and Item Response The-
ory methods and demonstrate this relationship empirically. Lastly,
Loll and Pinkwart [16] use CF as a diagnostic tool for knowledge
test questions as well as more exploratory ill-defined tasks.

7. SUMMARY AND FUTURE WORK
This paper presented a novel approach to personalization of educa-
tional content. The suggested algorithm, called EduRank, com-
bines a nearest-neighbor based collaborative filtering framework
with a social choice method for preference ranking. The algorithm
constructs a difficulty ranking over questions for a target student
by aggregating the ranking of similar students. It extends existing
approaches for ranking of user items in two ways. First, by in-
ferring a difficulty ranking directly over the questions for a target
student, rather than ordering them according to predicted perfor-
mance, which is prone to error. Second, by penalizing disagree-
ments between the difficulty rankings of similar students and the
target student more highly for harder questions than for easy ques-
tions.

The algorithm was tested on two large real world data sets and its
performance was compared to a variety of personalization meth-
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ods as well as a non-personalized method that relied on a domain
expert. The results showed that EduRank outperformed existing
state-of-the-art algorithms using two metrics from the information
retrieval literature.

In future work we plan to address the cold start problem by ap-
plying EduRank in a classroom setting in which we will personal-
ize educational content to both exiting and new students. We also
intend to evaluate Edurank’s performance when training on small
datasets and in MOOCs settings where the number of data points
may dramatically change over time.
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ABSTRACT
Understanding the differences in problem solving behavior
between groups of students is quite challenging. We have
mined the structure of interaction traces to discover different
approaches to solving logic problems. In a prior study, sig-
nificant differences in performance and tutor retention were
found between two groups of students, one group with ac-
cess to hints, and one without. The Approach Maps we
have derived help us discover differences in how students
in each group explore the possible solution space for each
problem. We summarize our findings across several logic
problems, and present in-depth Approach analyses for two
logic problems that seem to influence future performance in
the tutor for each group. Our results show that the students
in the hint group approach the two problems in statistically
and practically different ways, when compared to the control
group. Our data-driven approach maps offer a novel way to
compare behaviors between groups, while providing insight
into the ways students solve problems.

Keywords
Approach Maps, Logic Tutor, Data Driven Models

1. INTRODUCTION
Intelligent tutors have been shown to be as effective as hu-
man tutors in supporting learning in many domains, in part
because of their individualized, immediate feedback, enabled
by expert systems that diagnose student’s knowledge states
[20]. For example, students provided with intelligent feed-
back in the LISP tutor spent 30% less time and performed
43% better on post-tests when compared to other methods
of teaching [1]. Similarly, Eagle, and Barnes showed that
students with access to hints in the Deep Thought logic tu-
tor spent 38% less time per problem and completed 19%
more problems than the control group [5]. In another study
on the same data, Stamper, Eagle, and Barnes showed that
students without hints were 3.6 times more likely to drop
out and discontinue using the tutor [19].

Procedural problem solving is an important skill in STEM
(science, technology, engineering, and math) fields. Open-
ended procedural problem solving, where steps are well-
defined, but can be combined in many ways, can encourage
higher-level learning [2]. However, understanding learning
in open-ended problems, particularly when students choose
whether or not to perform them, can be challenging. The
Deep Thought tutor allows students to use logic rules in dif-
ferent ways and in different orders to solve 13 logic proof
problems for homework. In this paper, we analyze the 2009
Deep Thought data set analyzed by Stamper, Eagle, and
Barnes to further understand the differences between the
hint and control groups.

The rich interaction data saved by transactional tutor logs
offers many avenues to explore and understand student prob-
lem solving data, particularly for problems with multiple so-
lutions. By mapping Deep Thought transactional data into
an interaction network, and applying graph mining to derive
regions based on the structure of this network, we develop
a new Approach Map that illustrates the approaches that
groups of students take in solving logic problems. We built
Approach Maps for all 13 problems in the tutor, and illus-
trate a detailed analysis of two of these maps to explore the
differences in problem solving between the hint and control
groups.

The Approach Maps for problems 1.4 and 1.5 show that
the hint group explored productive regions of the interac-
tion network, while students in the control group were more
likely to explore unproductive regions that did not lead to
solutions. Problem 1.4 had available hints for the hint group.
Even though problem 1.5 has no hints for either group, the
Approach Map shows that the two groups still explore the
problem space differently, illustrating that prior access to
hints had a lasting effect. The Approach Maps help us
discover unproductive regions of the problem-solving space,
that we believe contributed to lower retention rates for the
control group. In these regions, proactive hints could be
used to direct students toward more productive approaches.

In section 2, we discuss related work and the prior study
with Deep Thought. In section 4, we describe our algorithm
for extracting Approach Maps from data. Section 5 presents
the results and illustrates two detailed Approach Maps on
problems 1.4 and 1.5. Finally, we discuss the results, con-
clusions, and future directions for this work.
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2. RELATED WORK
Although they can be very effective, the construction of in-
telligent tutors can be costly, requiring content experts and
pedagogical experts to work with tutor developers to identify
the skills students are applying and the associated feedback
to deliver [12]. One way to reduce the costs of building tutor-
ing systems is to build data-driven approaches to generate
feedback during tutor problem-solving. Barnes and Stamper
built the Hint Factory to use student problem-solving data
for automatic hint generation in a propositional logic tutor
[17]. Fossati at el. implemented Hint Factory in the iList
tutor to teach students about linked lists[7]. Evaluation of
the automatically generated hints from Hint Factory showed
an increase in student performance and retention [19]; more
details about this study are provided in section 3.1.

Although individual differences affect the ways that stu-
dents solve problems [11], it is difficult to examine the over-
all approaches that groups of students demonstrate during
problem-solving. While pre and posttests are useful for mea-
suring the change in behavior before and after an experimen-
tal treatment, we are interested in studying not only whether
a student can solve a problem, but how they are solving
the problem. In this study, we use interaction networks of
student behaviors to investigate how providing hints affects
student problem-solving approaches.

Interaction Networks describe sequences of student-tutor in-
teractions [6]. Johnson et al. showed that visualizations
of interaction networks in the InVis tool could be used to
better understand how students were using the Deep Thou-
ght logic tutor [10]. Interaction networks form the basis
of the data-driven domain model for automatic step-based
hint generation by the Hint Factory. Eagle et al. applyied
Girvan-Newman clustering to interaction networks to deter-
mine whether the resulting clusters might be useful for more
high-level hint generation [6]. Stamper et al. demonstrated
the differences in problem solving between the hint and con-
trol groups by coloring the edges between Girvan-Newman
clusters of interaction networks based on the frequencies be-
tween two groups, revealing a qualitative difference in at-
tempt paths [19]. In this paper we expand on these works
to develop Approach Maps that concisely illustrate the ap-
proaches that students take while solving problems.

The Girvan-Newman algorithm (GN) was developed to clus-
ter social network graphs using edge betweenness to find
communities of people [8]. The technique also works in
other domains. Wilkinson et al. applied GN in gene net-
works to find related genes [21]. Gleiser et al. used GN to
discover essential ingredients of social interactions between
jazz musicians [9]. We are the first to apply GN to interac-
tion networks consisting of problem-solving steps.

In this paper, we mine the interactions from student problem
solving data to summarize a large number of student-tutor
transaction data into an Approach Map, demonstrating the
diverse ways students solve a particular problem. We use
Approach Maps to better understand the differences in be-
havior between two groups, students who were given access
to hints, and those who were not, while completing home-
work in the Deep Thought logic proof tutor.

3. THE DEEP THOUGHT LOGIC TUTOR
In Deep Thought propositional logic tutor problems, stu-
dents apply logic rules to prove a given conclusion using
a given set of premises. Deep Thought allows students to
work both forward and backwards to solve logic problems
[3]. Working backwards allows a student to propose ways
the conclusion could be reached. For example, given the
conclusion B, the student could propose that B was derived
using Modus Ponens (MP) on two new, unjustified (i.e. not
yet proven) propositions: A → B,A. This is like a condi-
tional proof in that, if the student can justify A → B and
A, then the proof is solved. At any time, the student can
work backwards from any unjustified components (marked
with a ?), or forwards from any derived statements or the
premises. Figure 1 contains an example of working forwards
and backwards with in Deep Thought.

Figure 1: This example shows two steps within the
Deep Thought tutor. First, the student has selected
Z ∧¬W and performed Simplification (SIMP) to de-
rive ¬W . Second, the student selects X ∨S and per-
forms backward Addition to derive S.

3.1 Dataset and Prior Results
In 2012, Stamper, Eagle, and Barnes studied the effect of
data-driven hints using the Spring and Fall 2009 Deep Thou-
ght propositional logic tutor dataset [19]. Data was collected
from six 2009 deductive logic courses, taught by three profes-
sors. Each instructor taught one class using Deep Thought
with automatically-generated hints on half of the problems

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 77



www.manaraa.com

(hint group, n=105) and one without access to hints on any
problems (control, n=98). Students from the 6 sections were
assigned 13 logic proofs in Deep Thought as a series of three
graded homework assignments, with problems L1: 1.1-1.6,
L2: 2.1-2.5, and L3: 3.1-3.2.

Table 1 shows retention information for each group after
level L1; a χ2 test of the relationship between group and
dropout produced χ2(1) = 11.05, which was statistically
significant at p = 0.001. The hint group completed more
problems, with the effect sizes for these differences shown
in Table 2. Stamper et al. found that the odds of a stu-
dent in the control group dropping out of the tutor were
3.6 times more likely when compared to the group provided
with automatically generated hints [19].

Table 1: Number of students that continued or
dropped out of the tutor after L1

Group Total # Continued # Dropped % Dropped

Hint 105 95 10 9%
Control 98 71 27 28%

Total 203 166 37 18%

Table 2: The effect sizes of the differences between
hint group and control group for completion and
attempt rates by level.

L1 L2 L3

Completed d = 0.51* d = 0.64* d = 0.39*
Attempted d = 0.27 d = 0.44* d = 0.33*

Figure 2 charts the attempt and completion rates for hint
group and control group for each problem in Deep Thou-
ght. Both groups had similar problem attempt rates, shown
using solid lines, for L1 (1.1-1.5), but the hint group had
significantly higher attempt rates in L2 and L3. The com-
pletion rates for each group are shown with dashed lines in
Figure 2. Note that, after problem 1.4, the differences in at-
tempt rates and completion rates seem to diverge between
the groups.
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Figure 2: Attempt and complete rates per level, *in-
dicates a problem where the hint group was given
access to automatically generated hints.

We have investigated these results further. In another study,
we modeled the time spent in the tutor using survival anal-
ysis [5]. In this study, we model the approaches students
took to solve each problem.

4. METHODS
In Section 4.1, we describe how we use Deep Thought tutor
logs to create an interaction network of all the student-tutor
interactions within a single problem. We then show how we
refine this network into regions of densely connected sub-
graphs (Section 4.2) using the Girvan-Newman (GN) algo-
rithm. Finally, in Section 4.2.1 we define how we construct
Approach Maps from the GN regions. For both steps in the
process, we use the statistical environment R [14], and the
complex network research library iGraph [4].

4.1 Constructing an Interaction Network
We construct an interaction network using all observed solu-
tion attempts to a single problem. Each solution attempt is a
sequence of {state, action, resulting-state} interactions from
the problem start to the last step a student performs. The
state represents enough information to regenerate the tutor’s
interface at each step. An action is defined as a step taken,
and consists of the name of the rule applied, the statements
it was applied to, and the resulting derived statement. For
example, Figure 1 displays two Deep Thought interactions.
The first interaction works forward from STEP0 to STEP1
with action SIMP (simplification) applied to (Z ∧ ¬W ) to
derive ¬W . The second interaction works backward from
STEP1 to STEP2 with action B − ADD (backwards ad-
dition) applied to (X ∨ S) to derive the new, unjustified
statement S.

We use a state matching function to combine identical states,
that consist of all the same logic statements, but may have
been derived in a different order. This way, the state for
a step STEP0, STEP1, or STEP2 in Figure 1 is the set
of justified and unjustified statements in each screenshot,
regardless of the order that each statement was derived. We
use an action matching function to combine actions, and
preserve the frequency of each observed application.

If we treat the interactions used to create the networks as
samples of observed behavior from a population, we could
expect that the interaction networks constructed from differ-
ent populations may have observable differences. However,
rather than building two separate interaction networks and
attempting to compare them, we construct a single network
but keep track of the frequencies of visits by the hint and
control groups for each state (vertex) and action (edge).

4.2 Extracting Regions
We partition the interaction network into densely connected
subgraphs we call regions using Girvan and Newman’s edge-
betweenness clustering algorithm [8] and modularity score, a
measure of the internal verses external connectedness of the
regions [13]. We use following algorithm to apply region la-
bels to nodes in a Deep Thought interaction network. First,
we remove the problem start state and goal states from the
Interaction Network IN to create G1. Then, we iteratively
remove all edges in G1, in order of edge betweenness. Edge
betweenness (EB) for a particular edge e is calculated by
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computing all shortest paths between all pairs of nodes, and
counting the number of shortest paths that contain the edge
e. At each GN iteration i and graph Gi, we find the edge
with the highest EB, and call this bridge bi. We remove the
bridge bi from the graph Gi, and compute the modularity
score for the resulting graph Gi+1. The process is repeated
until all edges have been removed. Then, we assign identi-
fiers to all nodes in the disjoint regions in the intermediate
graph Gn with the best modularity score. At the end of this
process, we use Gn to construct the Approach Map with
nodes for the original start and goal states, and a new node
for each region in Gn. The Approach Map edges are the
edges that connect the start state and goals to the regions,
and the bridges between regions that were removed from the
interaction network to create Gn.

Regions represent sets of steps that are highly connected to
one another. When a solution attempt is within a region,
new actions will stay within the region, or take a bridge
edge into another region or goal. If an attempt is in a re-
gion with no goal bridges, the student must take a bridge to
another region to reach a goal. Therefore, paths on the Ap-
proach Map can be interpreted as a high-level approaches
to solving the problem. We hypothesize that we can use
the Approach Map to discover different problem-solving ap-
proaches. In the next section, we investigate Approach Maps
for two problems in Deep Thought, after which the hint and
control groups diverged in performance.

4.2.1 Approach Map
Here we provide a more detailed description of the algorithm
we use to generate an Approach Map from the interaction
network for a problem after its nodes have been labeled with
region identifiers. A region A (or action a) dominates a
region B if every path from the start of the problem to B,
must go through A (or a).

1. Combine all nodes with the same region identifier into
a single region node labeled with the identifier, and
remove all the edges with the same region identifier.

2. Combine all goal states that are dominated by a single
region into a single goal node.

3. Calculate chi-squared to find in-edge frequencies that
are different than expected between the groups (de-
scribed in more detail below).

4. Combine parallel bridge edges between two regions
into complex edges that represent the combination of
the actions.

5. Label each region with the post conditions (derived
statements) that result from the most frequent in-edge
actions.

6. Provide new region identifiers that indicate the signif-
icant regions by the group with larger than expected
frequency, with a number indicating the order in which
the region was formed. For example, the regions the
hint group visits more than expected are H1, H2, ...,
the regions the control group visits more than expected
are C1, C2, ..., and those that are visited as expected
by both groups are labeled N1, N2, etc.

We use a two-tailed chi-squared test to look for differences
between the hint and control groups in how they visit regions
in the Approach Map. The null hypothesis is that there is

no difference in the frequency of entering a particular region
between attempts in the hint group and the control group.
The alternative hypothesis is that the groups enter regions
with different than expected frequency. We use Bonferroni
correction [15] to compensate for the number of tests that we
run. When the p is less than the Bonferroni-corrected alpha,
we label the regions H1, H2, etc., blue for significantly higher
than expected participation by the hint group. Regions C1,
C2, etc., are bordered in orange and represent regions where
the control group was represented more frequently than ex-
pected. Regions N1, N2, etc., satisfy the null hypothesis in
that both groups visit these regions as expected.

The Approach Map for problem 1.4 is shown in Figure 3.
Each region node contains statements derived on the most
frequent in-edge. The bridge edges are those actions that
most frequently lead into and out of each region. The edges
are labeled with the action(s) taken and the number of at-
tempts using these actions. A bridge and its resulting region
can be read as, this many students performed the following
action(s) to derive the following proposition(s). For clar-
ity we do not draw edges with frequency less than ten, and
we delete actions and regions that become disconnected due
to these edge removals. The edges on the map are colored
on a spectrum based on the ratio between the groups from
blue (hint group) to orange (control group.) Paths in the
Approach Map can be interpreted as empirically-observed
problem solving approaches.

Each approach map is accompanied by a region table which
provides more detail about the frequencies of observed so-
lution attempts from each group. The columns Hint and
Control are the total frequencies of in-edges by each group,
or in other words, the number of solution attempts from each
group that visit at least one node in the region. Time refers
to the mean time a solution attempt stays in the region be-
fore exiting. Goals refers to the sum of the frequencies of
out-edges that lead to goal states. The p values are the
results of the chi-squared tests to compare group represen-
tation to expected values.

5. RESULTS & DISCUSSION
We perform our experiments on the Spring and Fall 2009
Deep Thought propositional logic tutor dataset as analyzed
by Stamper, Eagle, and Barnes in 2012[19]. The data set
is made up of 4301 student-attempts which contain 85454
student-tutor interactions across 13 problems. The prior
study compared the performance between the hint (n=105)
and control (n=98) groups, showing that students with avail-
able hints on the first 5 problems in L1 were 3.6 times more
likely to complete the tutor. In addition, the hint group
spent about 12 minutes per problem in the tutor, while the
control group took 21 minutes per problem. Although the
average total time in tutor between groups was not signifi-
cantly different, more in-depth analysis of time revealed that
this was because many students in the control group dropped
out of the tutor, and were less likely to complete problems
attempted in levels L2 and L3 [5]. In this section we present
the results of applying Approach Maps to 11 problems in this
data set, and illustrate the Approach Maps to two problems
1.4 and 1.5, just before the retention gap begins between the
hint and control groups.
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Table 3 summarizes our results from constructing Approach
Maps for 11 of the 13 Deep Thought problems (records for
problems 1.6 and 2.1 have not been normalized into our stan-
dard format). It is difficult to summarize the information
from each map in to a single row in a table, however we
have selected a few measures that provide an overview. In
Table 3, the Hint and Control columns count the number of
problem attempts for each group. Regions refers to the total
number of regions in each Approach Map. Sig-H and Sig-C
denote the number of regions visited significantly more than
expected by the hint and control groups respectively. Sig-
G denotes the number of significant regions that were also
goal regions. This table shows that most problems in Deep
Thought have 10-17 regions. In problems 1.4 and 1.5, more
than half of the regions were visited more than expected by
the hint or control groups.

Table 3: Summary of Approach Maps for 11 Deep
Thought tutor problems. An asterisk (*) indicates
problems where the hint group had access to hints.

Prob Hint Control Regions Sig-H Sig-C Sig-G

1.1* 348 447 16 1 7 2
1.2 196 187 16 1 2 1
1.3* 171 152 15 2 3 0
1.4* 138 219 16 5 4 2
1.5 155 218 18 4 6 2
2.2* 150 150 15 4 4 1
2.3* 129 108 14 4 3 1
2.4* 99 80 10 3 1 1
2.5* 112 79 10 3 0 1
3.1 173 114 17 0 1 0
3.2 147 100 12 1 2 0

We present detailed Approach Maps for problems 1.4 and 1.5
for three reasons. First, they occur before a large increase
in control group dropout, as shown in Figure 2 in Section
3.1. After these problems, the odds of the control group
dropping (no longer logging into the tutor) was 3.6 times
that of the hint group [19]. Second, these problems stand
out in Table 3, with high goal regions and more than half the
extracted regions being significantly different between the
groups. Third, in problem 1.4 the hint group had access to
hints, however in problem 1.5 neither group received hints.
This allows us to look for differences in behavior between
the groups when working in the tutor on equal terms. For
each of these problems we generated the Approach Map and
corresponding reference table and visualization as described
in Section 4.2.1.

5.1 Problem 1.4
Problem 1.4: Prove X ∨ S
Given: Z → (¬Y → X), Z ∧ ¬W,W ∨ (T → S),¬Y ∨ T

Problem 1.4 was designed to teach the Constructive Dile-
mma (CD) rule [((P → Q)∧ (R→ S))∧ (P ∨R)]→ (Q∨S).
For this problem, students in the hint group had access to
hints. Table 4 describes the regions of the Approach Map.
Figure 3 shows the Approach Map for problem 1.4. To show
differences in more detail, we have provided the most com-
mon attempts for each group in figure 4. In particular, this
figure shows that the control group has derived an unjusti-

fied statement T that cannot be proven.

Hints were available for the hint group on problem 1.4; Table
5 shows the number of hint requests at depths D1 to D4,
where students could request up to four consecutive hints
while in a single state. In Table 5, R is the region, D1–4
is the depth of the hint, Target Proposition refers to the
proposition the student is directed to derive, and Rule is
the rule that the student is directed to use. Depth D1 hints
direct students to the Hint column, while depth D2 hints
direct the students to the Rule column. Depth D3 tells
the student the preconditions needed to derive the target
proposition. The depth D4 hint is a bottom out hint that
directly tells the student what interface elements to click to
derive the target step.

Table 4: Detailed information on the regions in the
1.4 Approach Map shown in Figure 3.

Region Hint Control Time Goals p

H1 109 65 1.59 2 <0.001
H2 89 43 1.71 81 <0.001
H3 19 3 1.34 22 <0.001
C1 9 106 0.41 0 <0.001
C2 6 68 0.41 0 <0.001
C3 5 62 1.95 0 <0.001
C4 24 134 0.32 0 <0.001
N1 22 51 0.9 0 0.089
N2 9 15 1.41 20 0.811
N3 10 23 1.47 2 0.261
N4 14 38 0.13 0 0.056

Table 5: Number and depth of hints used by the
hint group in each region; PS=Problem Start

R D1 D2 D3 D4 Target Proposition Rule

PS 50 13 13 4 ¬W SIMP
H1 36 17 11 5 Z SIMP
H1 32 16 11 5 T → S DS
H1 29 17 10 3 ¬Y → X MP
H2 36 19 18 2 (¬Y → X) ∧ (T → S) CONJ
H2 21 17 12 3 X ∨ S CD

There are three obvious paths in the Approach Map in Fig-
ure 3, one for the hint group, one for the control, and one
with no differences between the groups. Figure 4 shows the
most common solution paths for the hint and control group,
with the same edges as the Approach Map. The Hint group
tends to work forward using simplification (SIMP) (H1 to
H2), while the control group was more likely to work back-
wards with addition (B-ADD) (C4 to C1). This backward
addition path is a buggy strategy, that does not lead to any
goals. We note that there are no backwards hints given in
Deep Thought, so students on this path do not get hints
regardless of group. Data on hint usage, shown in Table
5 and the statements derived in the H1-H3 regions suggest
that students in the Hint group are being “routed” toward a
successful strategy.

The Approach Map in Figure 3 shows that the control group
is more likely to visit regions that do not contain successful
goals. It seems that the effect of hints is to keep students
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Figure 3: The Approach Map for problem 1.4. Edges and vertexes can be read as the number of students
who performed action(s) to derive proposition(s). Three main approaches are revealed, with the hint group
strongly preferring to work the problem forwards. The control group often attempts to solve the problem by
wards with addition, there are no goals along this path. More detail is given in Table 4.

along a particular solution path, or prevent them from fol-
lowing the unproductive one taken by the control group. As
a prior study of this data suggests [18], these students with-
out hints are likely to abandon the tutor altogether. We
hypothesize that hints help students achieve small successes
and remain in the tutoring environment.

Figure 4: The most common attempt paths for each
of the main approaches in the approach map for
problem 1.4 (figure 3.) The highlighted nodes rep-
resent unjustified propositions.

5.2 Problem 1.5
Problem 1.5: Prove A∨¬C, given: B → (A→ E), B∨(A→
¬C), D ∧ ¬(A→ ¬C), E → ¬C.

Problem 1.5 was designed to teach the Hypothetical Syllo-
gism (HS) axiom [(P → Q)∧(Q→ R)]→ (P ∨R). Problem
1.5 is interesting, as this problem had no hints, but still has
large differences between the groups. The Approach Map is
shown in Figure 5, and additional information on the regions
is available in Table 6.

Table 6: Detailed information on the regions in the
1.5 Approach Map shown in Figure 5.

Region Hint Control Time Goals p

H1 53 39 0.42 82 0.002
H2 89 58 1.16 26 <0.001
C1 17 55 0.69 0 0.002
C2 36 106 0.19 0 <0.001
C3 24 65 2.41 0 0.005
C4 16 51 0.72 0 0.003
C5 30 81 1.2 0 0.002
C6 3 19 0.22 0 0.007
N1 7 14 2.27 0 0.434
N2 7 8 1.16 11 0.700
N3 2 12 3.38 0 0.037
N4 8 15 0.26 0 0.498

The Hint group approaches problem 1.5 by working forward
using simplification (SIMP) on D∧B to derive the separate
statements D and B; this could be a result of the forward di-
rected hints they received in the earlier problems. The hints
may have helped students develop a preference to working
forwards, as doing so allowed them to request help if they
became stuck. This preference carried over to the problems
where hints were not available.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 81



www.manaraa.com

Figure 5: Even in the absence of the automatically generated hints, the hint group still prefers a forward
solution. The control group explores regions that do not lead to goals. Details are given in Table 6.

When working problem 1.5, the control group systemati-
cally derives statements that do not lead to goals. The most
common attempt is to work backwards with disjunctive syl-
logism (B-DS) (region C2) to derive B∨(A→ ¬C),¬B from
the conclusion A → ¬C. This is likely because connecting
with the premise B ∨ (A → ¬C) seems like a promising di-
rection. However, it is not possible to justify the proposed
proposition ¬B in this problem. This discovery is important
as interventions can be added to warn away from regions
that do not lead to goals. For example, we could offer a
message that warns them that most students who attempt
the same type of proof are not successful. Fossati et al.
showed that human tutors helping students with the iList
tutor, suggest that students delete unproductive steps [7].

5.3 Working Backwards and Trailblazing
Although working backwards seems be unproductive for the
control group, we note that there are productive approaches
that work backwards, for example N1-N4 regions in prob-
lem 1.4 explored evenly by both groups. There are some
advantages to working backwards in Deep Thought. When
a student works backwards, Deep Thought asks whether
they would like to target the premises (extraction) or con-
struct their own hypothesized statement from the conclu-
sion. Then, the student clicks on one of just a few rules
that can be used backwards, limiting the search space for
the next step. Next, students are prompted to fill in the
blanks in statements derivable from the chosen rule.

Region N1 in Figure 3, shows variables p and r that stu-
dents can set to any proposition. Should the newly derived
statements seem to match the patterns of existing premises,
students keep them; otherwise they delete and try again.

Deep Thought will sometimes warn students when they try
to work backwards with something that is not justifiable.
However, this may lead students to think that the tutor can
always determine when working backwards is a viable strat-
egy. In this case, students might mistakenly suppose that
if there is no error message, they are closer to the solution.
This is not the case, as Deep Thought has no built-in mea-
sures to determine closeness to completion. Rather, a few
buggy rule applications are included in Deep Thought’s au-
tomated error detection.

5.3.1 Trailblazing Effect
Barnes and Stamper proposed that hints might limit the
breadth of student approaches to problems, causing a hint
‘trailblazing’ effect that might bias students toward expert
solutions when originally building the Hint Factory[16]. In
this analysis, we see some evidence of this effect. The dif-
ference in solution breadth between the two groups seems
to be significant on several problems. The hints provided
were limited to working forward, and the hint group demon-
strated a strong preference for working forward. It remains
to be seen whether providing hints for working backward
will allow for more breadth of the search space. In any case,
our results suggest that hints can cause a trailblazing effect,
even when no hints are provided. Therefore, hints should be
carefully constructed to include the diversity that a tutor
designer wishes to promote in the tutor.

5.4 Conclusions and Future Work
In this paper, we have presented Approach Maps, a novel
representation of student-tutor interaction data that allows
for the comparison of problem-solving approaches on open-
ended logic problems. The Approach Map visualization re-
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sults in a significant reduction in the space needed to de-
scribe a large amount of student-tutor data. It does this by
reducing the student attempts into regions that we can con-
sider as higher-level approaches to problem-solving. Deep
Thought problems each had an average of 330 solution at-
tempts, which were made up of about 6.5 thousand inter-
actions. Using our Approach Maps, we partition problems
into about 15 regions each (including 2–3 goal regions, as
shown in Table 3).

We have shown that we can use Approach Maps annotated
with frequencies of visits by two groups to identify regions
where a particular study group was over-represented. This
allowed us to examine the approaches each group took to
solving each proof. As we predicted, the automatically gen-
erated hints seemed to direct the students in the hint group
down a common path, and we were able to detect this with
the Approach Maps. Interestingly, even in problem 1.5,
where neither group had hints, the hint group still showed a
preference for working forwards, providing some evidence
for a persistent effect of the hints. Analyzing Approach
Maps also facilitated another important discovery that con-
trol group tended enter and remain in unproductive (or
buggy) regions. These observed differences help explain how
the automatically-generated hints produced the difference in
tutor performance and retention in the 2009 Deep Thought
study. Our investigations suggest that the patterns of be-
havior exhibited by students do result in meaningful regions
of the solution attempt search space. We believe that, since
the algorithms we applied to derive Approach Maps work
on general graphs, we may be able to apply Approach Maps
to understand problem-solving in domains where students
solve open-ended problems in a procedural way.

In our future work, we plan to use Approach Maps to provide
students with hints towards target sub-goals rather than
simple step-based hints. We could also combine this with
expert-created subgoals. We hypothesize that these more
abstract hints will help encourage student planning. We also
plan to use Approach Maps to provide proactive feedback to
students when they enter unproductive regions. We will also
apply Approach Maps to other open-ended problems to in-
vestigate their generalizability to other STEM fields.
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ABSTRACT
Knowledge Tracing is the de-facto standard for inferring stu-
dent knowledge from performance data. Unfortunately, it
does not allow modeling the feature-rich data that is now
possible to collect in modern digital learning environments.
Because of this, many ad hoc Knowledge Tracing variants
have been proposed to model a specific feature of interest.
For example, variants have studied the effect of students’
individual characteristics, the effect of help in a tutor, and
subskills. These ad hoc models are successful for their own
specific purpose, but are specified to only model a single
specific feature.

We present FAST (Feature Aware Student knowledge Trac-
ing), an efficient, novel method that allows integrating gen-
eral features into Knowledge Tracing. We demonstrate FAST’s
flexibility with three examples of feature sets that are rel-
evant to a wide audience. We use features in FAST to
model (i) multiple subskill tracing, (ii) a temporal Item Re-
sponse Model implementation, and (iii) expert knowledge.
We present empirical results using data collected from an
Intelligent Tutoring System. We report that using features
can improve up to 25% in classification performance of the
task of predicting student performance. Moreover, for fitting
and inferencing, FAST can be 300 times faster than models
created in BNT-SM, a toolkit that facilitates the creation of
ad hoc Knowledge Tracing variants.

Keywords
knowledge tracing, feature engineering, IRT, subskills

1. INTRODUCTION
Various kinds of e-learning systems, such as Massively Open
Online Courses and intelligent tutoring systems, are now

∗Both authors contributed equally to the paper.

producing large amounts of feature-rich data from students
solving items at different levels of proficiency over time. To
analyze such data, researchers often use Knowledge Trac-
ing [7], a 20-year old method that has become the de-facto
standard for inferring student knowledge. Unfortunately,
Knowledge Tracing uses only longitudinal performance data
and does not permit feature engineering to take advantage of
the data that is collected in modern e-learning systems, such
as student or item differences. Prior work has focused on ad-
hoc modifications to Knowledge Tracing to enable modeling
a specific feature of interest. This has led to a plethora of
different Knowledge Tracing reformulations for very specific
purposes. For example, variants have studied measuring the
effect of students’ individual characteristics [15, 18, 21, 29],
assessing the effect of help in a tutor system [3, 25], control-
ling for item difficulty [10, 20, 26], and measuring the effect
of subskills [28]. Although these ad hoc models are success-
ful for their own specific purpose, they are single-purpose
and require considerable effort to build.

We propose Feature-Aware Student knowledge Tracing (FAST),
a novel method that allows efficient general features into
Knowledge Tracing. We propose FAST as a general model
that can use features collected from digital learning envi-
ronments. The rest of this paper is organized as follows:
Section 2 describes the scope of the features FAST is able to
model; Section 3 describes the FAST algorithm; Section 4 re-
ports examples of using features with FAST; Section 5 com-
pares FAST’s execution time with models created by BNT-
SM; Section 6 relates to prior work; Section 7 concludes.

2. KNOWLEDGE TRACING FAMILY
In this section we define a group of models that we call
the Knowledge Tracing Family. We argue that a significant
amount of prior work has reinvented models in the Knowl-
edge Tracing Family for very diverse uses, yet their struc-
tures when represented as a graphical model are very similar.
As we will see, by design, FAST is able to represent all the
models in the Knowledge Tracing Family.

Figure 1 uses plate notation to describe the graphical models
for the Knowledge Tracing Family of models. In plate nota-
tion, the clear nodes represent latent variables; the light gray
nodes represent variables that are observed only in training;
dark nodes represent variables that are both visible in train-
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Figure 1: Plate diagrams of the Knowledge Tracing Family models.

Table 1: Variants of the Knowledge Tracing model

Feature Emission Transition Both

Student ability [21] [18, 29]
Item difficulty [10, 20] [26]
Subskills [28]
Help [25] [3]

ing and testing; plates represent repetition of variables.

Figure 1a describes the original Knowledge Tracing formula-
tion. Knowledge Tracing uses Hidden Markov Models [23] to
model students’ knowledge as latent variables. The binary
observation variable (yq,t) represents whether the student
gets a question correct at the tth learning opportunity of
skill q. The binary latent variable (kq,t) represents whether
the student has learned the skill q at the tth learning oppor-
tunity. In the context of Knowledge Tracing, the transition
probabilities between latent states are often referred to as
learning and forgetting probabilities. The emission proba-
bilities are commonly referred to as guess and slip proba-
bilities. Figures 1b and 1c describe two common modifica-
tions of Knowledge Tracing: adding features to parametrize
the emission probabilities (fq,t,e ), and adding features to
parametrize the transition probabilities (fq,t,l). In this con-
text, the features nodes are discrete or continuous variables
that affect the performance of students or their learning. It
is also possible to parametrize both the emission and the
transition features. Table 1 summarizes some prior work
that has reinvented the same graphical model with a differ-
ent interpretation of the feature nodes, and are in fact part
of the Knowledge Tracing Family.

To assist with the creation of models of the Knowledge
Tracing Family, previous research has proposed a dynamic
Bayesian network toolkit for student modeling [6]. Unfortu-
nately, extending Knowledge Tracing using dynamic Bayesian
networks is tractable only for the simplest models – exact
inference on dynamic Bayesian networks is exponential in
the number of parents a node has [19]. More specifically,
as the number of features increases (E in Figure 1b and L
in Figure 1c), the time and space complexity of the model
grows exponentially. We believe that this exponential cost
is the reason that although there is a plethora of Knowledge
Tracing variants, they are only used for a single purpose. In
the next section we describe FAST, a method that is able to
generalize all models of the Knowledge Tracing family using
a large number of features, but with a complexity that only
grows linearly to the number of features.

λ k

E step: Forward-Backward algorithm

M step: Maximum Likelihood Estimate using expected counts

Binomial parameters
(transition and emission)

latent states
(knowledge nodes)

Figure 2: EM algorithm.

λ k

E step: Forward Backward algorithm

M step: Maximal Likelihood of fractional counts

Binomial parameters
(transition and emission)

latent states
(knowledge nodes)

λ k

E step: unchanged

train weighted
logistic regression

Binomial parameters latent states

β
scale using
logistic regression

Figure 3: EM with Features algorithm [4].

3. FEATURE-AWARE STUDENT
KNOWLEDGE TRACING

FAST extends Knowledge Tracing to allow features in the
emissions and transitions using the graphical model struc-
ture in Figure 1d. Unlike conventional Knowledge Trac-
ing that uses conditional probability tables for the guess,
slip and learning probabilities, FAST uses logistic regression
parameters. Conditional probability tables make inference
exponential in the number of features, while FAST’s perfor-
mance is only linear in the number of features.

For parameter learning, FAST uses the Expectation Maxi-
mization with Features algorithm [4] – a recent modification
of the original Expectation Maximization (EM) algorithm
that is used in Knowledge Tracing. For simplicity, in this
paper we focus on only emission features. In preliminary ex-
periments we discovered that emission features outperform
transition features, and using both did not yield a statisti-
cally significant improvement.

The rest of this section discusses parameter learning. Sec-
tion 3.1 reviews the EM algorithm used in the Knowledge
Tracing Family, and Section 3.2 describes the EM with Fea-
tures algorithm.

3.1 Expectation Maximization
The EM algorithm is a popular approach to estimate the
parameters of Knowledge Tracing. Figure 2 shows the two
steps of the algorithm. The “E step”, uses the current pa-
rameter estimates (λ) for the transition and emission proba-
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bilities to infer the probability the student has mastered the
skill at each practice opportunity. Inferring mastery can be
efficiently computed with the Forward-backward algorithm.
The“M step”, recomputes the parameter estimates (λ) given
the estimated probabilities of mastery computed in the E
step. For example, the estimate of the emission parameter
of answering y′ at latent state k′ can be estimated as:

λy′,k′
= p(y = y′|k = k′) (1)

=
expected counts (y = y′ ∧ k = k′)

expected counts (k = k′)
(2)

3.2 Expectation Maximization with Features
The EM with Features algorithm was recently suggested
for computational linguistics problems [4]. It uses logis-
tic regression instead of probability tables to model features,
which can be discrete or continuous, and are observed during
both training and testing. Figure 3 shows the EM with Fea-
tures algorithm. The E step is unchanged from the original
EM algorithm, which gives the probability that the student
has mastered the skill at each practice opportunity. How-
ever, the M step changes substantially: the parameters λ are
now a function of weights β and features f(t). The feature
extraction function f constructs the feature vector f(t) from
the observations (rather than student responses) at the tth

time step For example, the emission probability from Equa-
tion 1 now is represented with a logistic function:

λ(β)y
′,k′

= p(y = y′|k = k′;β) (3)

=
1

1 + exp(−βT · f(t))
(4)

We learn β from data by training a weighted regularized
logistic regression using a gradient-based search algorithm,
called LBFGS. Training logistic regression requires a design
matrix (a matrix with the explanatory variables). Figure 4
visualizes the design matrix we use. Depending on how fea-
tures are encoded in the design matrix, FAST allows three
different types of features: (i) features that are active only
when the student has mastered the skill, (ii) features that
are active only when the student has not mastered the skill,
or (iii) features that are always be active. The number of
features in each type (m1, m2, m3 in Figure 4) can vary. By
design, FAST is able to represent the models in the Knowl-
edge Tracing Family. For example, when FAST uses only
intercept terms as features for the two levels of mastery, it
is equivalent to Knowledge Tracing.

To train the logistic regression, we weight each observation
proportionally to the likelihood of the observation being gen-
erated from the latent states. Therefore each observation is
duplicated during training: the first appearance is weighed
by the probability of mastering at current observation; the
second appearance is weighted by the probability of not mas-
tering at current observation. This likelihood is calculated
during the E step using the forward backward probabilities.
More formally, the instance weight is :

wy′,k′ = p(k = k′|Y;β) (5)

Then, the Maximum Likelihood estimate β∗ is:

β∗ = arg max
β

∑
y,k

wy,k · log λ(β)y,k︸ ︷︷ ︸
data fit

− κ||β||22︸ ︷︷ ︸
regularization

(6)
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Figure 4: Feature design matrix and instance weights of
FAST. During training, observations are duplicated.

where κ is a regularization hyper-parameter to penalize over-
fitting.

4. EXAMPLES
In this section we describe three case studies that demon-
strate FAST’s versatility. The rest of this section is or-
ganized as follows: Section 4.1 describes our experimental
setup; Section 4.2 describes how to model subskills using
FAST; Section 4.3 describes how to implement a Tempo-
ral Item Response Model using FAST; Section 4.4 describes
how to use expert knowledge to improve classification per-
formance.

4.1 Experimental Setup
We used student data collected by an online Java program-
ming learning system called JavaGuide [12]. JavaGuide asks
students to answer the value of a variable or the printed
output of a parameterized Java program after they have ex-
ecuted the code in their mind. JavaGuide automatically
assesses each result as correct or incorrect. The Java pro-
grams are instantiated randomly from a template on every
attempt. Students can make multiple attempts until they
master the template or give up. In total there are 95 differ-
ent templates.

Experts identified skills and subskills from the templates
aided by a Java programming language ontology [11]. Each
item is mapped to one of 19 skills, and may use one to eight
different subskills. Our dataset was collected during three
semesters (Spring 2012 to Spring 2013). It consists of 20,808
observations (from which 6,549 represent the first attempt
of answering an item) from 110 students. The dataset is
very unbalanced since 70% of attempts are correct (60% of
the first attempts are correct).

We evaluated FAST using a popular machine learning met-
ric, the Area Under the Curve (AUC) of the Receiver Op-
erating Characteristic (ROC) curve. The AUC is an overall
summary of diagnostic accuracy. AUC equals 0.5 when the
ROC curve corresponds to random chance and 1.0 for per-
fect accuracy. We reported two ways of calculating the AUC:
(i) overall AUC across all data points of all skills, and (ii)
average AUC of the skills as:

average AUC =
∑
s

AUC(skill s)

# of skills
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Figure 5: Subskill slip probabilities of the skill ArrayList
estimated by FAST. Original Knowledge Tracing estimates
the slip probability as 0.45 for the skill.

For the overall AUC, we reported the 95% confidence inter-
vals with an implementation of the bootstrap hypothesis test
method1, a method that corrects for the non-independence
of the points of the ROC. To train our classifiers, unless
explicitly noted, we modeled each skill independently, and
thus we have different model parameters for each of the 19
skills. In the rest of this section we discuss different feature
sets we used in FAST.

4.2 Multiple Subskills
The original Knowledge Tracing formulation is designed for
fitting a single skill with no subskills. A thorough survey
of how prior ad hoc variants of Knowledge Tracing have
accounted for multiple subskills can be found elsewhere [28].

To model subskills in FAST we just have to define binary
subskill indicator features. In this way, FAST is able to es-
timate slip and guess probabilities as a function of the sub-
skills present in the practice opportunity. Figure 5 compares
the slip probabilities of FAST and Knowledge Tracing for the
subskills that are used in the skill ArrayList. We calculate
the subskill’s slip probability by activating the subskill indi-
cator and intercept in the logistic regression (using Equation
4). The original Knowledge Tracing formulation does not ac-
count for differences in subskills, and therefore estimates a
single skill slip probability as 0.45. We now evaluate how
this improves forecasting performance.

Table 2 compares FAST with different models previously
used in the literature. For these experiments, we use a train-
ing set of a random sample of 80% of the students, and the
rest of the students are used to evaluate the models. The
training and testing set do not have overlapping students.
We use data on all of the attempts students had to solve an
item. We make predictions on all observations of the stu-
dents in the test set, and evaluate them using overall AUC
and mean AUC (when defined). The models we compare
are:

• FAST: FAST using subskill binary indicator features.
We allow FAST to learn different coefficients for guess
and slip for each subskill.
• PFA: Performance Factors Analysis [22] has been shown

to be effective in modeling multiple subskills [8].
• LR-DBN: A Knowledge Tracing Family member that

uses binary subskill indicators as transition features [28].

1http://www.subcortex.net/research/code/

Table 2: Overall AUC for multiple subskills experiments.

Model Overall AUC
FAST .74± .01
PFA .73± .01
LR-DBN .71± .01
KT(single skill) .71± .01
KT(weakest) .69± .01
KT(multiply) .62± .02

• KT: We evaluate different Knowledge Tracing variants:
– single skill: We fit each skill independently (original

formulation with no subskills).
– weakest: We fit each subskill independently, and

then take the minimum of each subskill’s predicted
probability of success as the final prediction. We up-
date the knowledge of this weakest subskill by the ac-
tual response evidence while we update other subskills
by the correct response [8].

– multiply: We fit each subskill independently, and
then multiply each subskill’s predicted probability of
success as the final prediction. We then update the
knowledge of each subskill by the same actual response
evidence [8].

FAST significantly outperforms all the above Knowledge
Tracing variants. In particular, FAST improves the overall
AUC of KT(multiply) by about 19% (significant at p�.01),
and outperforms KT(weakest) by over 7% (significant at
p�.01). We hypothesize that FAST’s better performance
comes from estimating each subskill’s responsibility using a
logistic regression. This avoids Knowledge Tracing variants’
crude assumption that each subskill accounts equally for a
correct or incorrect response during the parameter learn-
ing. FAST also outperforms the LR-DBN by 4% (signifi-
cant at p<.003), which may indicate parameterizing emis-
sion probabilities is better than parameterizing transitions in
this dataset. Improving over the original Knowledge Tracing
formulation (significant at p<.002) suggests that modeling
subskills is important. The fact that LR-DBN does not im-
prove over Knowledge Tracing questions its usefulness. We
do not find statistically significant differences between FAST
and PFA using this feature set in our dataset.

4.3 Temporal Item Response Theory
Knowledge Tracing and classical psychometric paradigms,
such as Item Response Theory (IRT), treat item difficulty
in different ways. The Knowledge Tracing paradigm as-
sumes that all items for practicing a skill have the same
difficulty [17]. For example, when a student struggles on
some items, the paradigm explains it by assuming there is
some subskill(s) that the student has yet to acquire. This
paradigm requires a very careful definition of skills and sub-
skills, which may be a very expensive requirement – skill
definitions are often done manually by an expert. A cheaper
alternative is to discover the skill definitions using data, but
such methods are still a relatively new technology [9].

On the other hand, IRT explicitly models item difficulty and
student ability. For example, the Rasch model [24], the sim-
plest IRT model, assumes that the correctness of a student’s
response on an item depends on the student ability and the
item difficulty. Unfortunately, IRT models are static, and
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Figure 6: Although experts consider the item complexity
increases in latter items, IRT estimates items become easier.
Hexagon colors indicate the number of points that fall within
the region. Binning is necessary to see overlapping points.

therefore, unlike Knowledge Tracing, do not account for stu-
dent learning.

Prior Knowledge Tracing variants have been proposed to
bridge between the Knowledge Tracing and IRT paradigm.
For example, Table 1 summarizes different models that try
to account for different student abilities or item difficulties in
a learning environment. In addition, Latent-Factor Knowl-
edge Tracing (LFKT) [15], a recent single-purpose special-
ized graphical model, bridges between both paradigms. FAST
takes an alternative approach and models Item Response
Theory using feature engineering. Although Rasch Model is
typically formulated with latent variables for item and stu-
dent differences, it can also be estimated using logistic re-
gression with binary variables indicators (sometimes called
dummy variables) for each student and each item [?, ?].

In Figures 6a and 6b we show binned scatter plots of the
item complexity and the estimated IRT difficulty, respec-
tively. The complexity of an item is defined objectively by
experts counting the number of Java concepts used in a ques-
tion.The item difficulty is estimated by a Rasch model. A
higher number of concepts and a higher value of item com-
plexity represent harder items. We run two univariate linear
regressions to fit item complexity and difficulty as a func-
tion of number of practice opportunities. Experts consider
that items practiced later in the tutor are more complex
(β=1.25, p<.0005), while IRT estimates that items become
easier (β=-0.06, p<.0005). The mismatch between IRT dif-
ficulty and item complexity happens because learning is get-
ting confounded with item difficulty. Even though items are
becoming harder, students are learning, and thus getting
better at them, resulting in the underestimation of item dif-
ficulty.

We believe we are the first to show this confounding. It is
unclear if prior work is able to deliver the promise of ac-
counting for student learning in the presence of items with
different difficulty, particularly because prior work only eval-
uates on classification accuracy. Aware of this caveat, we
use FAST using IRT features. As in previous work, we esti-
mated item difficulties using longitudinal data from students
answering items in almost the same order. However, we sug-
gest that future work should calibrate the item difficulty in
a controlled experiment first. This would be an easy modifi-
cation for FAST, as it would only require using a continuous
feature (item difficulty) instead of discrete variables (item
indicators). This would not be easy in previous work – a
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Figure 7: Static IRT (Rasch) and temporal IRT models.

Table 3: Overall and average AUC for IRT experiments.

features
static temporal

all avg. all avg
none .65± .03 .50 .67± .03 .56
+student .64± .03 .59 .67± .03 .60
+item .73± .03 .63 .73± .03 .63
+IRT .76± .03 .70 .76± .03 .70

new ad hoc model would be required.

Figures 7a and 7b show the plate diagram of the Rasch
model and temporal IRT as a Knowledge Tracing Family
member. We do not have to change anything in FAST: our
temporal IRT definition uses student and item binary indi-
cator features. The probability of getting a correct response
y′ of student j for item i on skill q, at the tth time step is:

p(y′q,t|Y ) =
∑

l∈{mastered,
not mastered}

p(kq,t = l|Y ) · Rasch(dq,it , θq,jt , cq,l) (7)

where Y is the corresponding observed sequence. Here, the
Rasch function is parametrized with item difficulty d, stu-
dent ability θ and and a bias c that is specific to whether
or not the student has mastered the skill. Both Knowledge
Tracing and IRT can be recovered from the combined model
with different choices of parameter values. For example,
when abilities and difficulties are zero, the combined model
is equivalent to Knowledge Tracing. When bias terms are
the same (i.e., cq,not mastered = cq,mastered), we get IRT.

Table 3 evaluates FAST using IRT features. To get a better
estimate of item difficulty, for these experiments we only use
data on the first attempt of a student solving an item. The
training set is a random sample of 50% of the students. For
students in the test set, we observe the first half of their prac-
tice opportunities and make predictions in the second half of
their practice opportunities. We compare static models that
assume no learning using logistic regression. For the tem-
poral models we use Knowledge Tracing (with no features)
or FAST (with features). We experiment with the following
feature sets:

• none. No features are considered for classifiers.
• student. We only use student indicator features.
• item. We only use item indicator features.
• IRT. We use both item and student indicator features.

FAST using IRT features outperforms the overall AUC of
Knowledge Tracing by over 13% (significant at p�.01) and
the mean AUC of Knowledge Tracing by 25%. Using item
features in FAST improves the overall AUC of Knowledge
Tracing by about 9% (significant at p�.01) and the mean
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Figure 8: Boxplot of Knowledge Tracing, FAST and IRT’s
estimates of student learning. The whiskers indicate min-
imum and maximum values, the lines in the box indicate
quartiles. IRT always estimates zero learning.

AUC by 13%. The Follow-up work [?] confirms in other
datasets that FAST with IRT features is able to significantly
outperform Knowledge Tracing.The overall AUC of Knowl-
edge Tracing is not significantly different from that of logistic
regression with no features (p>.2). The difference between
the mean and overall AUC of these models with no features
should be accounted by the expert knowledge introduced
by the expert’s skill definition. These results coincide with
previous work: adding item difficulty and student ability
features can greatly increase the performance of Knowledge
Tracing. However we do not find any significant differences
between the temporal and static models. This may be be-
cause the item difficulty is confounded with learning.

Even if Knowledge Tracing with IRT features does not out-
perform IRT, such a model could be preferable to IRT if
it allows modeling student learning. We estimate student
learning by subtracting the probability of mastery at the
first practice opportunity from the probability of mastery at
the last practice opportunity for each student-skill sequence:

learning ≡ p(kq,T = mastered|Y )− p(kq,0 = mastered|Y )

Figure 8 shows the box plot of average learning of students
across all skills for the models. Both Knowledge Tracing
and FAST+student are able to capture student learning
from data much better than models that account for item
difficulty. In our literature review from Table 1, none of
the methods reported both a comparison with IRT and this
analysis of learning. We do not know if our results are typi-
cal, but they suggest that item difficulty is confounded with
learning. Future work should study using FAST with item
difficulties calibrated in a controlled experiment to avoid
confounding with item difficulties.

4.4 Expert Knowledge
In this section we perform feature engineering to improve
student performance prediction. We use features that pre-
vious work has found to be useful to predict student per-
formance [10, 20, 22, 26]. More concretely, we demonstrate
FAST with three types of features: continuous features that
indicate the number of prior practice opportunities where
the student answered (i) correctly, and (ii) incorrectly the
item template, and (iii) item indicator features. The item
indicator features correspond to a binary indicator per item
(95 indicator features in total). We use the same experi-
mental setup of Section 4.2, which is a non-overlapping set

Table 4: Overall and average AUC for item practice feature
experiments

Model all avg.
FAST+item+practice .77± .01 .73
FAST+item .75± .01 .68
FAST+practice .72± .01 .67
PFA .70± .01 .60
KT .71± .01 .58

of students for training and testing, and data from all at-
tempts. Table 4 compares the following models:
• FAST+item+practice uses item indicator features and

the numbers of prior correct and incorrect practices fea-
tures for each item. The coefficients of item practice
performance features can be interpreted as learning rates
from correct and incorrect practices of an item.
• FAST+item uses item indicator features.
• FAST+practice uses only the numbers of prior correct

and incorrect practices as features.
• PFA (Perfomance Factors Analysis) model uses skill in-

dicator, the numbers of prior correct and incorrect prac-
tices feature of the skill as features.
• KT is the original Knowledge Tracing without features.

The most predictive model is FAST using item difficulty and
prior practice features, which outperforms the overall AUC
of KT over 8% (significant at p�.01) and outperforms PFA
by 10% (p�.01). Its mean AUC also beats KT by 26%
and PFA by 22%. The best model outperforms FAST with
only item indicator features with an improvement of 3% of
overall AUC (significant at p<.005) and 7% of mean AUC,
indicating that adding item practice features can provide
significant gain over just using item difficulty parameters.
When FAST uses only practice features we do not find a
significant difference from PFA and Knowledge Tracing in
terms of overall AUC (p>.1), but it shows improvement us-
ing the mean AUC metric – improving PFA by 12% and
Knowledge Tracing by 16%. Future research should inves-
tigate whether this discrepancy between the overall AUC
and mean AUC is because of the distribution of common
and rare skills or because of the quality of the item to skill
mapping. Our results suggest that feature engineering can
improve the forecasting quality in Knowledge Tracing.

5. EXECUTION TIME
We now study the execution time of learning the param-
eters and making predictions. As a comparison, we use a
popular tool that facilitates the creation of ad hoc Knowl-
edge Tracing variants called BNT-SM [6]. We conduct the
experiments on a contemporary laptop (1.8 GHz Intel Core
i5 CPU and 4GB RAM). We compare FAST and BNT-SM
under two settings: (i) tracing single skills as the standard
Knowledge Tracing and (ii) tracing multiple subskills. For
the Knowledge Tracing experiment, Figure 9 shows the exe-
cution time of both algorithms varying the dataset size, and
FAST is about 300 times faster. For the multiple subskill ex-
periment, we compare with LR-DBN, a recent method [28]
implemented on BNT-SM. We use the authors’ implemen-
tation of LR-DBN. LR-DBN takes about 250 minutes while
FAST only takes about 44 seconds on 15,500 datapoints. We
didn’t report results varying dataset since LR-DBN requires
much time. The execution time of LR-DBN is comparable
to the one reported by LR-DBN authors.
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Figure 9: Execution time (in minutes) of FAST and BNT-
SM with different sizes of dataset on single skill experiment

In both experiments, FAST’s parameter fitting time can be
up to 300 times faster — while keeping the same or better
performance in terms of overall AUC (significant at p<.05).
Our implementation of FAST is in Java, while BNT-SM is
implemented in Matlab. It is contentious to measure the ef-
fect of the programming language in the experiment. How-
ever, some informal benchmarks 2 suggest that Matlab is in
fact faster for scientific computations.

6. RELATION TO PRIOR WORK
The likelihood functions of FAST and Knowledge Tracing
are non-convex. Therefore, parameters discovered might
only be local optima, not a global solution. In this paper
we only experiment with the Expectation Maximization al-
gorithm, but future work may compare multiple fitting pro-
cedures to avoid local solutions [8]. Prior work [2] has also
used regression as a post-processing step after Knowledge
Tracing. This is different from FAST’s approach of jointly
training (logistic) regression and Knowledge Tracing. We
leave for future work the analysis and comparison of FAST
and the post-hoc analysis.

Table 5 compares FAST with models from the literature
whether they allow general features, slip and guess proba-
bilities, time, and multiple subskills. For the time dimension
we consider whether the models consider recency (R), order-
ing (O) and learning (L) or none. The Rasch model [24] and
Performance Factor Analysis (PFA) [22] use logistic regres-
sion and may model arbitrary features. However, Rasch can
not account for student learning or multiple subskills. Al-
though PFA is able to fulfill these two cases, it does not
consider recency (a correct response following an incorrect
response is modeled in the same way as an incorrect response
following a correct response), or ordering (a question that
was answered incorrectly recently is modeled in the same
way as if it were answered incorrectly two weeks ago). Fur-
thermore, PFA does not model slip and guess probabilities.

Knowledge Tracing [7] has a robust mechanism to model
time, but lacks the ability to allow arbitrary features and
multiple subskills. LR-DBN is a variant of Knowledge Trac-
ing that uses logistic regression [28], yet it is proposed for
modeling subskills but not general features. Moreover, in
Section 4 we report experiments in which FAST has better
predictive performance than LR-DBN. Unlike prior work,
FAST is a general method that is able to fulfill a wide range
of use cases.

2https://modelingguru.nasa.gov/docs/DOC-1762

Table 5: Model Comparison

Model features
slip /
guess

time
multiple
subskills

FAST X X R,O,L X
LR-DBN X R,O,L X
KT X R,O,L

PFA X L X
Rasch X

7. CONCLUSION
In this paper we identified a family of models, the Knowledge
Tracing Family, that have similar graphical model struc-
tures. The graphical model structures of the Knowledge
Tracing Family have been reinvented multiple times for dif-
ferent applications. We presented FAST as a flexible and
efficient method that allows representing all of the models
in the Knowledge Tracing Family. FAST uses logistic regres-
sion to model general features in Knowledge Tracing. Previ-
ous student modeling frameworks [6] for Knowledge Tracing
are inefficient because their time and space complexity is
exponential in the number of features. FAST is very effi-
cient, and its complexity only grows linearly to the number
of features.

Although theoretically FAST should be very similar to the
conventional Knowledge Tracing Family implementations,
future work may run a more detailed comparison. A lim-
itation of this study is that we did not compare against all
of the previous implementations of the Knowledge Tracing
Family.

A secondary contribution of this paper is that we identified
a problem of prior published work of learning item diffi-
culty from within Knowledge Tracing. The resulting item
difficulty estimates are confounded with learning. FAST is
also susceptible to this problem, and in future work we will
use FAST with item difficulty estimates calibrated with a
controlled study. Additionally, future work may study al-
ternative ways of training FAST [4] and discovering an item
to skill mapping.

We demonstrated FAST’s generality with three use cases
that have been shown to be important in prior work: (i)
modelling subskills, (ii) incorporating IRT features in Knowl-
edge Tracing, and (iii) using features designed by experts. In
our experiments we see improvements of FAST over Knowl-
edge Tracing by up to 13% in mean AUC of skills, and 25% in
the overall AUC. When and how feature engineering can as-
sist in student modeling depends on the characteristics of the
data and the experience of domain experts. FAST provides
high flexibility in utilizing features, and as our studies show,
even with simple general features, FAST presents much im-
provement over Knowledge Tracing. We expect more thor-
ough feature engineering for FAST in the future should pro-
vide greater improvement. Moreover, FAST is efficient for
model fitting and inferencing — FAST can be 300 times
faster than models created in other general purpose student
modeling toolkits while keeping the same or better classifier
performance.
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ABSTRACT
In this work, we compare two representations of student
interactions within the context of a simple programming
game. We refer to these representations as Worldstates and
Codestates. Worldstates, which are representations of the
output of the program, are generalizations of Codestates,
snapshots of the source code taken when the program is run.
Our goal is to incorporate intelligent data-driven feedback
into a system, such as generating hints to guide students
through problems. Using Worldstates simplifies this task by
making it easier to compare student approaches, even for
previously unseen problems, without requiring expert anal-
ysis. In the context of the educational programming game,
BOTS, we find that worldstates require less prior data to
generate hints in a majority of cases, without sacrificing
quality or interpretability.

Keywords
Hint Generation, Programming Tutor, Educational Game

1. INTRODUCTION
One key benefit of Intelligent Tutoring Systems over other
computer-aided instruction is the ability to provide intelli-
gent adaptive feedback. A popular way of providing this
feedback is through the generation of hints. Hints can help
students who are stuggling by suggesting a next step or pro-
viding a clue about what the next step might be. While some
of the earliest work in this area focuses on building models
of the learner [7], recent work shows that quality hints can
be generated in certain domains using data-driven methods,
informed by the type and frequency of actions taken by stu-
dents in the system [1].

Programming has been a domain of interest for tutoring sys-
tems as far back as the Lisp Tutor [3]. There has been recent
interest in trying to apply hint generation techniques such as
Stamper and Barnes’ Hint Factory [9] to programming lan-

guages [6, 8], but this still remains an open problem given
the complexity associated with learning programming lan-
guages. One of the challenges associated with handling pro-
gramming tutors comes from the diversity of possible pro-
grams that a student can write.

2. PROBLEM STATEMENT
Our work is an effort to add techniques from Intelligent Tu-
toring Systems to an educational game called BOTS. BOTS
is an educational programming game designed to teach mid-
dle school students the principles of programming, and also
allows students to create their own puzzles for other stu-
dents to solve. Due to the rapid creation of new puzzles, it
is necessary that hints can be generated with relatively little
data, since expert authoring is infeasible.

Like Rivers, our work is based on Hint Factory, but rather
than attempting to analyze the student source code, our
work looks entirely at the output of the programs. We
hypthesize that using the output of programs for hint gen-
eration allows us to deal with the challenge of source code
diversity and generate more hints with less data than using
source code alone, without diminishing the quality of hints.

Though the hints have not yet been integrated into the
game, this work shows that our technique is promising and
could feasibly be integrated into the game for future studies.

3. PRIOR WORK
One popular technique for automatic hint generation that
has enjoyed success is Stamper and Barnes’ Hint Factory
[9]. Hint Factory can be applied in any context where stu-
dent interactions with a tutor can be defined as a graph of
transitions between states [2]. In the Deep Thought proposi-
tional logic tutor, students are asked to solve logic proofs by
deriving a conclusion from a set of premises [1]. Each time a
student applies a logical rule, a snapshot of the current state
of the proof is recorded in a graph called the interaction net-
work as a node, with an edge following the states along the
path they follow to get to their proof. At any point during
the proof, a student can ask for a hint, and Hint Factory
selects the edge from the state they are currently in that
takes them closest to the solution.

The iList Linked List tutor is another example where a Hint
Factory-based approach to generating feedback has been
successful [4]. In Fossati’s work on the iList Linked List
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tutor, the developers used a graph representation of the pro-
gram’s state as the input to their system. In order to give
hints for semantically equivalent states, rather than for only
precisely identical states, the developers searched for iso-
morphisms between the program state and the previously
observed states. This is a non-trivial comparison, and re-
quires significant knowledge of the domain in order to assess
the best match when multiple such relations exist.

Rivers et al also use Hint Factory to generate hints specif-
ically for programming tutors. Due to the complexity of
programming problems, a simple snapshot of the code will
not suffice [8]. There are many varied approaches that can
be taken to programming problems, and if a direct com-
parison is being used, it is rare that a student will inde-
pendently have a precisely identical solution to another stu-
dent. Therefore, some way of reducing the size of the state
space is needed. During a programming problem, each time
a student saves his or her work, their code is put through
a process of canonicalization to normalize the naming con-
ventions, whitespace, and other surface-level programming
variations that differ widely across students. When two pro-
grams have the same canonical form, they are considered
the same state in the interaction network. In both cases,
the generation of a hint comes from selecting the appropri-
ate edge and then articulating to the student some way of
getting from their current state to the state connecting by
that edge.

In Jin’s work on programming tutors [6] a similar approach
is taken. Rather than using canonical forms generated us-
ing abstract syntax trees, the authors generate ”Linkage
Graphs” which define the relationships between variables
in the program, then condense those graphs by removing
intermediate variables, creating abstract variables that rep-
resent multiple approaches. To take a very simple exam-
ple, if the goal is to multiply A by B and somehow output
the result, a programmer may write A = A * B or C = A *

B. After building the CLG, these approaches would be the
same. If the condensed linkage graphs (CLGs) derived from
two different programs are isomorphic to eachother, then
those programs are said to be similar. Additional analy-
sis is then needed to identify which concepts the abstracted
variables in the CLGs represent; in this case, k-means clus-
tering was used to find the most similar abstracted variable,
then choosing the most common naming convention for that
variable.

We propose that another way of canonicalizing student code
is to use the intermediate output of programs. In a study
of 30,000 student source code submissions to an assignment
in the Stanford Massive Open Online Course on Machine
Learning, it was found that there were only 200 unique out-
puts to the instructor test cases [5]. In the Machine Learning
class, there was only one correct output, but despite there
being an infinite number of ways to get the problem wrong,
Huang et al observed a long tail effect where most students
who got the exercises wrong had the same kinds of errors.

4. CONTEXT
4.1 BOTS
BOTS is an educational programming game that teaches
the basic concepts of programming through block-moving

puzzles. Each problem in BOTS, called a “puzzle”, contains
buttons, boxes, and a robot. The goal for the player is to
write a program for the robot, using it to move boxes so that
all of the buttons are held down. The BOTS programming
language is quite simple, having elementary robot motion
commands (”forward”, ”turn”, ”pickup/ putdown”) and basic
programming constructs (loops, functions, variables). Most
programs are fairly small, and students who solve puzzles
using the fewest number of blocks overall (fewer ”lines of
code”) are shown on the leaderboard.

One important element of BOTS is that there is a built-in
level editor for students to develop their own puzzles. There
is a tutorial sequence that contains puzzles only authored
by the developers of the system, but students are also free
to attempt peer-authored puzzles which may only be played
by a few students. Due to the constant addition of new
puzzles, expert generation of hints is infeasible, and due to
the limited number of times levels will be played, it must be
possible to generate hints with very little data.

  

Start Goal

Robot
Block
Button
Covered

Legend

Figure 1: An example of the interaction network of
a BOTS puzzle solved two ways by two students.
One student (empty arrow) wrote four programs to
arrive at the solution, and the other (filled arrow)
only wrote two.

  

(empty)

Forward
Forward
Forward
Turn Right

Forward
Forward
Turn Right
Pick Up
Turn Left

Forward
Forward
Turn Right
Pick Up
Turn Left
Turn Left
Put Down

For 2:
  Forward

For 2:
  Forward
Turn Right
Pick Up
For 2:
  Turn Left
Put Down

Figure 2: This figure shows the same two students
with the same solutions. Notice how in this example,
these two paths that get to the same goal have no
overlapping states - including the goal state.

We use a data structure called an interaction network to
represent the student interactions with the game [2]. An in-
teraction network is a graph where the nodes represent the
states that a student is in, and the edges represent transi-
tions between states. In this research, we compare the ef-
fects of using two different types of states in the interaction
network, which we refer to as codestates and worldstates.
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Codestates are snapshots of the source code of a student’s
program, ignoring user generated elements like function and
variable names. Worldstates, inspired by Jin and Rivers,
use the configuration of the entities in the puzzle as the def-
inition of the state. In other words, codestates represent
student source code while worldstates represent the output
of student source code. In both cases, student interactions
can be encoded as an interaction network, which enables
the application of techniques like Hint Factory. Figures 1
and 2 demonstrate how the interaction networks differ be-
tween codestates and worldstates.

4.2 Hint Generation
When generating a hint, the goal is to help a student who
is currently in one state transition to another state that is
closer to the goal, without necessarily giving them the an-
swer. In this work, rather than attempting to identify these
states a priori using expert knowledge, we instead use the
solutions from other students to estimate the distance to a
solution. It is a fair assumption that students who solve
the same problem will use similar approaches to solve it [1].
This assumption implies that there will be a small number
of states that many students visit when they solve a prob-
lem. If several students take the same path from one state to
another, it is a candidate for a hint. Hint Factory formalizes
this process with an algorithm.

“Generating” a hint is a two-part problem. First, we must
devise a hint policy to select one of the edges from the user’s
current state in the interaction network. Then, we must
articulate the resultant state into a student-readable hint.
For example, if we applied hint factory to Figure 1 when the
student is in the start state, the edge selected would be the
one going down to the bottom-most worldstate. The ”hint”
might be articulated to the student as “write a program
that moves the robot north by two spaces”. An example is
provided in Figure 3

Figure 3: A mock-up of how a high-level hint might
be presented in BOTS. The green “hologram” of
the robot indicates the next worldstate the player
should attempt to recreate.

In order to give a student a relevant hint, another student

must have reached the solution from the same state that the
one requesting a hint is currently in. If no other student
has ever been in that state before, we can not generate an
exact hint. Using source code to determine the state is chal-
lenging, since students can write the same program in many
different ways, which makes the number of states across all
students highly sparse, reducing the chance that a match
(and by extension, a hint) will be available. Previous work
attempts to find ways to canonicalize student program [8],
but even then the variability is still very high. Using world-
states, however, serves to“canonicalize” student submissions
without having to do complicated source code analysis.

When it comes to the articulation of hints, we can use what-
ever information is available in the interaction network to
provide a hint to the student. Using codestates, a diff be-
tween the source code of the current state and the hint state
can be used. For worldstates, an animation of the path of
the robot can be played to show what the hint state’s con-
figuration would look like. In tutoring systems like Deep
Thought, hints are given at multiple levels, with the first
hint being very high-level, and the last essentially spelling
out the answer to the student (a “bottom-out” hint) [1]. In
BOTS, we can progressively reveal more information as nec-
essary - hints about the worldstate help a student see how
to solve the puzzle without telling them exactly how to code
it. If a student is having trouble with the code itself, then
lower-level hints might suggest which kinds of operations to
use or show them snippets of code that other students used
to solve the puzzle.

It is important to note that while worldstates are a gener-
alization, we do not necessarily lose any information when
using them for hint generation. BOTS programs are deter-
ministic, and there is no situation where the same code in
the same puzzle produces a different output. Therefore, us-
ing worldstates not only allows us to articulate high-level
hints, it also provides a fallback when a student’s source
code snapshot is not yet in the interaction network.

5. METHODS
5.1 Data set
The data for this study comes from the 16-level tutorial
sequence of BOTS. These levels are divided into three cate-
gories: demos, tutorials, and challenges. Demos are puzzles
where the solution is pre-coded for the student. Tutorials
are puzzles where instructions are provided to solve the puz-
zle, but the students build the program themselves. Finally,
challenges require the student to solve a puzzle without any
assistance. Challenge levels are interspersed throughout the
tutorial sequence, and students must complete the tutorial
puzzles in order - they can not skip puzzles.

For the purposes of this evaluation, we exclude demos from
our results, and run our analysis on the remaining 8 tuto-
rials and 5 challenges. The data comes from a total of 125
students, coming from technology-related camps for mid-
dle school students as well as an introductory CS course
for non-majors. Not all students complete the entire tuto-
rial sequence, as only 34 of the students attempted to solve
the final challenge in the sequence. A total of 2917 unique
code submissions are collected over the 13 puzzles, though
it is important to note that the number of submissions spike
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when students are presented with the first challenge puzzle.
This information is summarized for each puzzle in Table 1.

Table 1: A breakdown of the tutorial puzzles in
BOTS, listed in the order that students have to com-
plete them. Hint states are states that are an ances-
tor of a goal state in the interaction network, and
are the states from which hints can be generated.

Codestates Worldstatates
Name #Students Hint All Hint All
Tutorial 1 125 89 162 22 25
Tutorial 2 118 36 50 12 14
Tutorial 3 117 130 210 22 24
Tutorial 4 114 137 225 33 41
Tutorial 5 109 75 106 25 29
Challenge 1 107 348 560 143 191
Challenge 2 98 201 431 86 133
Tutorial 6 90 107 143 33 36
Challenge 3 89 192 278 28 30
Challenge 4 86 137 208 40 45
Tutorial 7 76 206 383 43 57
Tutorial 8 68 112 134 29 30
Challenge 5 34 17 27 13 17

In order to demonstrate the effectiveness of using world-
states to generate hints, we apply a technique similar to the
one used to evaluate the “cold start” problem used in Barnes
and Stamper’s work with Deep Thought [1]. The cold start
problem is an attempt to model the situation when a new
problem is used in a tutor with no historical data from which
to draw hints. The evaluation method described in Barnes
and Stamper’s previous work uses existing data to simulate
the process of students using the tutor, and provides an es-
timate as to how much data is necessary before hints can
be generated reliably. As such, it is an appropriate method
for determining how much earlier - if at all - worldstates
generate hints as opposed to codestates.

We break the student data for each puzzle into a training
and a validation set, and iteratively train the Hint Factory
by adding one student at a time. We chart how the number
of hints available to the students in the validation set grows
as a function of how much data is in the interaction network,
and average the results over 1000 folds to avoid ordering
effects. The specific algorithm is as follows:

Step 1 Let the Validation set = 10 random students, and
the training set = the n-10 remaining students

Step 2 Randomly select a single student attempt from the
training set

Step 3 Add states from the student to the interaction net-
work and recalculate the Hint Factory MDP

Step 4 Determine the number of hints that can be gener-
ated for the validation set

Step 5 While the training set is not empty, repeat from
step 2

Step 6 Repeat from step 1 for 1000 folds and average the
results

This approach simulates the a cohort of students asking for
hints at the same states as a function of how much data is
already in the system, and provides a rough estimate as to
how many students need to solve a puzzle before hints can
be generated reliably. However, this approach is still highly
vulnerable to ordering effects, so to verify a hypothesis that
n students are sufficient to generate hints reliably, we do
cross validation with training sets of n students to further
establish confidence in the hint generation.

6. RESULTS
6.1 State-space reduction
At a glance, Table 1 shows how using worldstates as op-
posed to codestates reduces the state space in the interac-
tion network. Challenge 1, for example, has 560 unique code
submissions across the 107 students who attempted the puz-
zle. These 560 code submissions can be generalized to 191
unique outputs.

We see a significant reduction in the number of states con-
taining only a single student. Intuitively, students who get
correct answers will overlap more in terms of their solutions,
while the infinite numbers of ways to get things wrong will
result in several code submissions that only a single student
will ever encounter. In the Table 2, we look at the number
of frequency-one states that students encounter for challenge
puzzles 1 through 4.

When using worldstates, in all three cases, more than half of
the states in the interaction network are only observed one
time. In particular, Challenge 3 is particularly interesting,
considering that out of 278 unique code submissions from
89 students, only 8 of the 30 worldstates are observed more
than once. The sheer degree of overlap demonstrates that
worldstates in particular meet the assumptions necessary to
apply hint factory.

Table 2: This table highlights the number of code
and worldstates that are only ever visited one time
over the course of a problem solution.

Codestates Worldstatates
Name #Students All Freq1 All Freq1
Challenge 1 107 560 146 191 112
Challenge 2 98 431 127 133 84
Challenge 3 89 278 91 30 22
Challenge 4 86 208 65 45 36

6.2 Cold Start
The graphs in Figure 4 show the result of the cold start eval-
uation for all 13 of the non-demo puzzles. Looking at the two
graphs side-by-side, the worldstates have more area under
the curves, demonstrating the ability to generate hints ear-
lier than codestates. The effect is particularly pronounced
when looking at the challenge puzzles (represented with the
solid blue line). In tutorials, code snippets are given to
the students, so there is more uniformity in the code being
written. When the guidance is taken away, the code be-
comes more variable, and this is where the worldstates show
a demonstrable improvement.

It is important to note that because of the way worldstates
are defined, the ability to generate more hints is trivially
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guaranteed. The contribution is the scale at which the new
hints are generated. For the same amount of student data
in the interaction network, the percentage of hints available
is anywhere from two to four times larger when using world-
states than codestates.

Figure 5 summarizes these results by averaging the hints
available for the first four challenge puzzles. Challenge puz-
zles are chosen as they represent a puzzle being solved with-
out any prompts on how to solve it, and would be the envi-
ronment where these automatically generated hints are de-
ployed in practice. Challenge 5 was only attempted by 34
students, so it was left out of the average.
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Figure 4: These graphs show the overall perfor-
mance of hint generation for codestates and world-
states. The solid blue lines are the challenge puzzles,
and the dotted light-green lines are the tutorial puz-
zles.

6.3 Validation
Table 3: This table shows the percentage of hints
available using worldstates when 30 students worth
of data are in the interaction network.

Name Average Median Min Max
Challenge 1 0.67 0.66 0.48 0.81
Challenge 2 0.67 0.66 0.44 0.84
Challenge 3 0.94 0.93 0.83 0.99
Challenge 4 0.88 0.87 0.69 0.96
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Figure 5: This graph summarizes Figure 4 by aver-
aging the results of the analysis over the first four
challenge puzzles. For these challenge levels (where
students do not have guidance from the system) we
are able to consistently generate hints with less ata
when using world states rather than code states.

Figure 5, suggests that 30 students of data should be able to
generate hints using worldstates about 80% of the time. To
validate this hypothesis, we do cross-validation with training
sets of 30 students and validate on the remaining students
for challenge puzzles one through four, once again, because
they are an appropriate model for how hints would be de-
ployed in practice. We find the average, median, maximum,
and minimum of the results over another 1000 trials, and
summarize them in Table 3. We find that for challenges
1 and 2, hint generation is below the 80% mark, but for
challenges 3 and 4, it is well over.

7. DISCUSSION
Our results indicate that when using worldstates we are
able to generate hints using less data than when using code
states. The reduction in the state space and the number
of hints available after only a few dozen students solve the
puzzle is highly encouraging. We only test our results on
instructor-authored puzzles for this study, but these results
potentially make hint generation for user-generated levels
feasible as well.

While on average, the number of hints available using world-
states is very high, it is interesting to look at numbers on
a per level basis. For example, in the summary in Table 3,
there are less hints available after 30 students have been
through the puzzle than the second two, which are presum-
ably harder. This could be an averaging effect due to the
more advanced students remaining in the more advanced
levels, but there are some structural differences to the lev-
els that may also have an effect. Figures 6 and 7 show the
puzzles for Challenges 1 and 4.

Challenge 1 is a much smaller puzzle, but can be solved
many different ways. Any of the blocks can be put on any
of the buttons, and the robot can also hold down a but-
ton, meaning that there are several goal states, especially
considering that the superflous block can be located any-
where. Challenge 4 is substantially more difficult, but has
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much less variation in how it can be completed. In this puz-
zle, the student has to place blocks so that the robot can
scale the tower, and because of the way the tower is shaped,
there are not nearly as many different ways to approach the

Figure 6: A screenshot of challenge 1. There are
more blocks than necessary to press all the buttons,
since the robot can press a button too.

Figure 7: A screenshot of challenge 4. The puzzle is
more complex, yet has a more linear solution.

problem as there are in Challenge 1.

The results for the earlier stages are more interesting for
interpreting these results, because it shows how well world-
states manage the variability even in the wake of open-ended
problems. While we emphasize the ability for worldstates to
generate hints, it is important to note that codestates still
have utility. A hint can be generated from any of the data in
an interaction network, and using a world-based state repre-
sentation does not restrict us from comparing other collected
data. When enough data is collected for the codestates to
match, more specific, low-level hints can be generated as
well, meaning that more data does not just mean more hints,
but also more detailed hints that can be applied at the source
code level.

8. CONCLUSIONS AND FUTURE WORK
In this work, we describe our how we added intelligent tu-
toring system techniques to an educational game. Rather
than using knowledge engineering, we instead use the ap-
proach used in Deep Thought, a logic tutor built around
Hint Factory, where we provide hints to students by draw-
ing from what worked for other students [1]. In order to deal
with the fact that student code submissions can be highly
diverse, with many different inputs resulting in the same
output, we use the output of the student code to represent a
student’s position in the problem solving process. In doing
so, we generate hints much more quickly than if we had only
analyzed the source code alone.

In future work, we will identify the ability to generate hints
on student-authored puzzles and test the effectiveness of
these hints implemented in actual gameplay. We predict
that by including hints, we can improve the completion
rate of the tutorial and - if our results transfer to student-
authored puzzles - improve performance on puzzles gener-
ated by other students. We will also explore how well these
techniques transfer to contexts beyond our programming
game.
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ABSTRACT
An effective tutor—human or digital—must determine what
a student does and does not know. Inferring a student’s
knowledge state is challenging because behavioral observa-
tions (e.g., correct vs. incorrect problem solution) provide
only weak evidence. Two classes of models have been pro-
posed to address the challenge. Latent-factor models em-
ploy a collaborative filtering approach in which data from
a population of students solving a population of problems
is used to predict the performance of an individual student
on a specific problem. Knowledge-tracing models exploit
a student’s sequence of problem-solving attempts to deter-
mine the point at which a skill is mastered. Although these
two approaches are complementary, only preliminary, infor-
mal steps have been taken to integrate them. We propose
a principled synthesis of the two approaches in a hierarchi-
cal Bayesian model that predicts student performance by
integrating a theory of the temporal dynamics of learning
with a theory of individual differences among students and
problems. We present results from three data sets from the
DataShop repository indicating that the integrated archi-
tecture outperforms either alone. We find significant predic-
tive value in considering the difficulty of specific problems
(within a skill), a source of information that has rarely been
exploited.

Keywords
Bayesian knowledge tracing, cognitive modeling, collabo-
rative filtering, latent factor models, hierarchical Bayesian
models

1. INTRODUCTION
Intelligent tutoring systems (ITS) employ cognitive mod-
els to track and assess student knowledge. Beliefs about
what a student knows and doesn’t know allow an ITS to
dynamically adapt its feedback and instruction to optimize
the depth and efficiency of learning. A student’s knowledge
state can be described by the specific concepts and opera-

tions that have been mastered in the domain of study. These
atomic elements are often referred to as knowledge compo-
nents or skills. (We use the latter term.) For example, in
a geometry curriculum, the parallelogram-area skill involves
being able to compute the area of a parallelogram given the
base and height [6]. Solving any problem typically requires
breaking the problem into a series of steps, each requiring
the application of one or more skills. For example, solving
for x in 3(x+ 2) = 15 might be broken down into two steps:
(1) eliminate-parentheses, which transforms 3(x+2) = 15 to
x+2 = 5, and (2) remove-constant, which simplifies x+2 = 5
to x = 3 [14]. Because the terminology ‘problem step’ is
cumbersome, we shorten it to ‘problem’ in the rest of this
paper.

A key challenge in student modeling is predicting a student’s
success or failure on each problem. Following a common
practice in the literature, we focus on modeling performance
on individual skills. Formally, for a particular skill, the data
consist of a set of binary random variables indicating the
correctness of response on the i’th problem attempted by
a student s, {Xsi}. The data also include the problem la-
bels, {Ysi}, which provide a unique index to each problem
in the ITS. Recent work has considered secondary data, in-
cluding the student’s utilization of hints, response time, and
characteristics of the specific problem and the student’s par-
ticular history with the problem [2, 27]. Although such data
improve predictions, the bulk of research in this area has
focused on the primary success/failure data, and a sensible
research strategy is to determine the best model based on
the primary data, and then to determine how to incorporate
secondary data.

2. EXISTING MODELS OF STUDENT
LEARNING AND PERFORMANCE

The challenge inherent in predicting student performance is
that knowledge state is a hidden variable and must be in-
ferred from patterns of student behavior. Due to the intrin-
sic uncertainty associated with the inference problem, past
approaches have been probabilistic in nature. Two broad
classes of approaches have been explored, which we’ll refer
to as latent-factor models and Bayesian knowledge tracing,
and some preliminary efforts have been made to synthesize
the two. In this paper, we present a principled Bayesian
unification of the two classes of models. We begin, however,
with a summary of past work.
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2.1 Latent-factor model
Traditional psychometric methods such as item-response the-
ory [11] use data from a population of students solving a
common set of problems to infer the latent ability of each
student and the latent difficulty of each problem. These
methods can be used to predict student performance. The
simplest such model supposes that the log odds of a correct
response by student s on trial i is given by logit[P (Xsy =
1|Ysi = y)] = αs − δy, where, as before, Ysi denotes the
problem index, αs denotes the student’s ability and δy de-
notes the problem’s difficulty. We refer to this model class
as latent-factor models or LFMs. The left panel of Fig-
ure 2 summarizes a Bayesian LFM in graphical model form,
with priors on the abilities and difficulties (details to follow
shortly), and with G ≡ P (Xsy = 1|Ysi = y).

Latent-factor models have been used within the ITS com-
munity to characterize student performance and predict the
consequences of instructional interventions. Examples in-
clude performance factors analysis [23], learning factors anal-
ysis [6, 5], and instructional factors analysis [8]. Although
these models incorporate a wide range of factors, only a few
papers have considered what has historically been at the core
of latent-factor models, the difficulty of a specific problem.
Consequently, a remove-constant problem step that simpli-
fies x + 1 = 3 is typically considered to to be equivalent to
problem step that simplifies x+ 8 = 11.

2.2 Bayesian knowledge tracing
Bayesian knowledge tracing (BKT ) [9] is based on a the-
ory of all-or-none human learning [1], which postulates that
the knowledge state of student s following trial i, Ksi, is
binary: 1 if the skill has been mastered, 0 otherwise. BKT,
often conceptualized as a hidden Markov model, infers Ksi

from the sequence of observed responses on trials 1 . . . i,
{Xs1, Xs2, . . . , Xsi}. Table 1 presents the model’s four free
parameters.

Because BKT is typically used in modeling practice over
brief intervals, the model assumes no forgetting, i.e., K can-
not transition from 1 to 0. This assumption greatly con-
strains the time-varying knowledge state: it must make at
most one transition from K = 0 to K = 1 over the sequence
of trials. Denoting the trial following which the transition is
made as τ , the generative model specifies:

P (τ = i) =

{
L0 if i = 0

(1− L0)T (1− T )i−1 if i > 0

P (Xsi = 1|G,S, τ) =

{
G if i ≤ τ
1− S otherwise

The middle panel of Figure 2 shows a graphical model depic-
tion of BKT with the knowledge-state transition sequence
represented by τ . With this representation, marginalization
over τ is linear in the number of trials, permitting the ef-
ficient computation of the posterior predictive distribution,
P (Xs,i+1 | Xs1, . . . , Xsi).

2.3 Prior efforts to unify latent-factor
and knowledge-tracing models

Problem

S
tu

d
e
n
t

Figure 1: Student × problem matrix for the Geom-
etry Area data, obtained from the PSLC DataShop
[17]. Correct and incorrect responses are green and
red, respectively; white indicates missing data. Stu-
dents who attempted few problems have been omit-
ted.

Latent-factor and knowledge-tracing models have comple-
mentary strengths and weaknesses. LFM addresses indi-
vidual differences among students and problems. However,
because it does not consider the order in which problems
are solved, it ignores the likely possibility that performance
improves over practice. BKT characterizes the temporal dy-
namics of learning. However, because it makes no distinction
among students or problems, it ignores confounding factors
on performance. A natural extension of the models is to for-
mulate some type of combination that yields a more robust
representation of knowledge state.

Interesting extensions have been proposed to each model to
move it toward the other. Starting with LFM, the latent
factors have been augmented with non-latent factors that
represent facets of study history such as the amount and
success of past practice and the type of instructional in-
tervention [5, 6, 7, 8, 19, 23]. However, these approaches
reduce the specific sequential ordering of problems to a few
summary statistics, which may not be sufficient to encode
the relevant history of past experience.

Many proposals have been put forth to adapt parameters of
BKT to individual students. The original BKT paper [9] in-
cluded heuristic parameter adjustments based on the initial
trials in the problem sequence. Another heuristic approach
involves the contextualization of guess and slip probabilities
based on a range of features such as help requests, response
time history, and ITS history [2, 10]. The initial mastery pa-
rameter L0 has been individualized to students, based both
on their performance on other skills [20] and on an inferred
latent ability parameter [26]. Rather than adapting param-
eters to individual students, [22] clustered students based
on their ITS usage patterns and fit separate parameters for
each cluster. The latter two methods require previous his-
tory with a particular student, though placing Dirichlet pri-
ors on guess and slip rates [3, 4] has been used not only to
individuate the parameters for a particular student but to
allow for generalization to new students.

Most applications of BKT fit model parameters indepen-
dently for each skill. There are only a few examples of
modulating parameters based on the specific problem being
solved. In [13], problem difficulty is represented by using the
average number of correct responses on a problem as a fea-
ture in the contextualization model of [2]. In the KT-IDEM
model [21]—the work closest to our own—the guess and slip
parameters are fit individually for each problem within a
skill.
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Table 1: Free parameters of BKT
L0 P (Ks0 = 1) probability that student has mastered skill prior to solving

the first problem
T P (Ks,i+1 = 1 | Ksi = 0) transition probability from the not-mastered to mastered

state
G P (Xsi = 1 | Ksi = 0) probability of correctly guessing the answer prior to skill

mastery
S P (Xsi = 0 | Ksi = 1) probability of answering incorrectly due to a slip following

skill mastery

Figure 2: Graphical model depiction of the latent-factor model (left), Bayesian knowledge tracing (middle),
and our hybrid LFKT model (right). Following standard notation, shaded nodes are observations, with X
denoting the response of a student when problem Y is presented. Double circles denote deterministic nodes.
A node’s color represents the model that contributed the node with blue, green and red indicating LFM,
BKT and LFKT nodes, respectively.

Figure 1 provides an intuition for the value of both student-
and problem-specific factors influencing performance. The
Figure shows a student × problem matrix, with a cell col-
ored to indicate whether the student solved the problem.
As variation in the columns indicate, some problems are
more challenging than others. (However, because problem
selection and order are partially confounded, one must be
cautious in attributing the accuracy effects to intrinsic diffi-
culty of the problem. Regardless of the source of the effect,
the presence of the effect is indisputable.)

In the next section, we propose a synthesis of latent-factor
and knowledge-tracing models. The synthesis is a natural
extension and integration of past work. Indeed, the synthe-
sis is so natural that another paper accepted at EDM 2014
also made this same proposal [12]. We address this highly re-
lated work in the discussion section at the end of this paper.
A poster at EDM 2013 [26] also explicitly proposed combin-
ing latent-factor and knowledge-tracing models. However,
their synthesis focused on individuating BKT’s initial mas-
tery probability, whereas our effort focuses on individuating
guess and slip probabilities.

3. LFKT: A SYNTHESIS OF LATENT-
FACTOR AND KNOWLEDGE-TRACING
MODELS

In Figure 2, LFM and BKT are depicted in a manner that al-
lows the two models to be superimposed to obtain a synthe-
sis, which we’ll refer to as LFKT, depicted in the rightmost
panel of the Figure. LFKT personalizes the guess and slip
probabilities based on student ability and problem difficulty:

logit(Gsi|Yis = y) = αs − δy + γG and

logit(Ssi|Yis = y) = δy − αs + γS .

For simplicity, we assume that the effects of ability and
difficulty are symmetric on guessing and slipping, though
scaling parameters could be incorporated to permit asym-
metry. Due to the offsets γG and γS , we can constrain
the expectations E[αs] = 0 and E[δy] = 0 with no loss
of generality. Specifically, we assume αs ∼ N (0, σ2

α) and
δy ∼ N (0, σ2

δ ), where σ2
α and σ2

δ are variances drawn from
an Inverse-Gamma-distributed conjugate prior.

LFKT can be specialized to the LFM simply by fixing T = 0
and L0 = 0. LFKT can be specialized to BKT at the limit
of σ2

α, σ
2
δ → 0.
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Table 2: Dataset columns identifying students,
problems, skills and correct responses

Columns

Student anonymous student ID
Problem problem hierarchy + problem name

+ step name
Skill problem hierarchy + knowledge

component
Correct first attempt

The LFKT model allows for the simultaneous determination
of parameters of BKT and LFM. Alternative approaches
might include training one model first, freezing its parame-
ters, and then training the other model; or training the two
models independently and then using them as an ensem-
ble for prediction. However, simultaneous training allows
each component to be informed by the other. Thus, by
considering the difficulty of problems, the transition in the
knowledge state may become sharper, and by considering
the transition in the knowledge state, a better measure of
problem difficulty and student ability may be obtained.

4. METHODOLOGY
4.1 Data and prediction task
Our simulation experiments were conducted using three cor-
pora from the PSLC DataShop [17]: Geometry Area (1996-
97), from the Geometry Cognitive Tutor [16], USNA Physics
Fall 2006, from the Andes Tutor [25] and OLI Engineering
Statics Fall 2011 [24]. The Geometry corpus contains 5,104
trials from 59 students on 18 skills, the Physics corpus con-
tains 110,041 trials from 66 students on 652 skills and the
Statics corpus contains 189,297 trials from 333 students on
156 skills. Each corpus was divided into skill-specific data
sets consisting of the sequence of trials for each student in-
volving problems that require a particular skill. In this pa-
per, we refer to these sequences as student-skill sequences.
If multiple skills are associated with a problem, we treat the
combination of skills as one unique skill. Trial sequences
had mean length 8.0 for Geometry, 4.5 for Physics and 6.0
for Statics.

For reference, Table 2 shows the dataset columns used to
identify students, skills, problems and correct responses. The
PSLC datashop exports datasets in a common format, which
allows us to refer to the same column names for all datasets.
The plus sign indicates that the contents of the columns are
concatenated together. We attach the problem hierarchy
to the skill column following the same practice in [22, 21].
Effectively, this breaks up trial sequences into shorter se-
quences, which alleviates the problem of students forgetting
learned skills over a long time period.

To validate model implementation and parameter settings,
we also explored a synthetic dataset obtained by running
LFKT in generative mode with the same weak priors used
for inference in real datasets. The synthetic dataset contains
50 students and 50 skills. Each skill contains 50 problems
and a student may practice a skill for a maximum of 50
trials.

In the literature on student modeling, a variety of measures
have been used to evaluate model performance. It seems
common to train a model on the entire data set, and to
use an AIC- or BIC-penalized measure of fit to estimate
performance. We prefer the more conventional approach of
partitioning a data set into training and test trials. One
way to partition is between the early and late trials in each
student’s trial sequence. Using this partition, one can pre-
dict the future performance for a current student. Another
way to partition is by placing some students in the training
set and some in the test set. Using this partition, one can
predict the performance of the model on previously unseen
students. We conduct a separate set of simulation studies
for each partitioning.

Model predictions, P̂ , were evaluated using the log likelihood
of the complete test data, i.e.,

l =
∑
s

∑Ns
i=1 ln P̂ (Xsi|Xs1, . . . , Xs,i−1),

which can be interepreted as a measure of sequential pre-
diction accuracy for each test trial conditioned on preceding
trials in the student-skill sequence.

4.2 Models and implementation
We conducted simulations using the three models in Fig-
ure 2—LFM, BKT, and LFKT—in addition to a baseline
model. The baseline model gave a fixed prediction equal
to the mean response accuracy on each skill in the training
set, and was thus independent of trial, problem, and stu-
dent. To get a better handle on the contribution of student
abilities and problem difficulties to model performance, we
also tested variants of LFKT that included only abilities or
only difficulties. We refer to these variants as BKT+A and
BKT+D, where BKT+AD is equivalent to LFKT.

Models containing student ability parameters (LFM, LFKT
and BKT+A) were fitted across skills. Thus, a model may
use the performance of a student on one skill to infer the
student’s performance on another skill. This contrasts with
most work on modeling with BKT, where models are inde-
pendently trained on each skill.

LFM and BKT were implemented as special cases of LFKT,
in order to use the same code and algorithms for each model.
Each model was evaluated in a two-phase process. In the
first phase, using the training data ({Xsi}, {Ysi}) and MCMC
sampling, a set of posterior samples were obtained on the
variables γG, γS , {δy}, {αs}, L0, and T . The conditional
data likelihood for each student, P (Xs|Gs,Ss, L0, T ) was
computed exactly, and therefore sampling of τ was not re-
quired. For the other variables, slice sampling was used for a
total of 100 iterations after a burn-in of 10 iterations. (These
small numbers were sufficient due to the efficiency of slice
sampling.) In the second phase, the training samples were
used to formulate predictions for the test set. Due to the
conjugate prior on the α’s, the posterior predictive distribu-
tion on test student ability could be determined analytically,
i.e., P (αs′ |{αs}), where s′ indexes a test student, and {αs}
are the sampled abilities of the training students. A similar
predictive distribution could be obtained for δy′ , the diffi-
culty level for a problem y′ found in the test set but not the
training set, via P (δy′ |{δy}).
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Weak priors were specified for six variables in the LFKT
model: γG, γS ∼ Uniform(−3, 3), L0, T ∼ Uniform(0, 1),
σ2
α, σ

2
δ ∼ Inverse-Gamma(1, 2).

5. EXPERIMENTS
We conducted two experiments to evaluate the models. The
first experiment evaluates model performance on the final
trials of current students whilst the second evaluates model
performance on students held out from training in a par-
ticular skill. The two experimental setups are depicted in
Figure 3 and are explained in the next two sections.

5.1 Experiment 1: Predicting Performance of
Current Students

In this experiment, we ask the question: given the initial
responses of a student practicing some skill, how well does
the model predict performance on the remaining trials? To
answer this question, we grouped trials by skill and student
to obtain a list of student-skill sequences. The last 20% of
trials from each sequence were placed in the testing set. This
design ensures that the models do not have to generalize to
new students.

The top row of Figure 4 shows the mean negative log like-
lihood on the test data. Each graph is for a different data
set. Each bar represents the performance score for a given
model, with the models arranged left-to-right from simplest
to most complex, i.e., from fewest to most free parameters.
Smaller scores indicate better performance. The results are
consistent across the four data sets: (1) BKT outperforms
the baseline model. BKT assumes the student can be in one
of two knowledge states, whereas the baseline model assumes
a single knowledge state (and a constant probability of cor-
rect response across trials for a given skill). (2) When BKT
is modulated by latent student ability (BKT+A) or problem
difficulty (BKT+D), it outperforms off-the-shelf BKT, with
the possible exception of BKT+D in the Geometry data
set. (3) LFKT, which incorporates both student abilities
and problem difficulties, outperforms BKT as well as the
variants that incorporate one latent factor or another. (4)
LFKT also outperforms off-the-shelf LFM, indicating that
the temporal dynamics of learning incorporated into BKT
are helpful for prediction. Thus, we observe clear evidence
that the combination of latent factors and knowledge trac-
ing yields a model with greater predictive power than models
that have one component or the other.

5.2 Experiment 2: Predicting Performance of
New Students

In this experiment, we ask the question: Given a model
trained on some students for a given skill, how well does it
predict performance of a new student on that skill?

For this experiment, we chose a random subset of students to
hold out from each skill. Fifty train/test splits were gener-
ated this way using 10 replications of 5-fold cross validation
(with an 80%/20% data split). Results were averaged across
the 50 test sets.

Test performance in Experiment 2 is shown in the second
row of Figure 4, respectively. The pattern of results we ob-
serve is identical to that in Experiment 1, indicating that the

superiority of LFKT over BKT and LFM does not depend
on the specific manner of evaluating the model. (The error
bars are somewhat smaller in Experiment 2 than in Exper-
iment 1 due to the fact that the nature of the experiment
allowed for more data to be included in the test set.)

We note that Experiment 2 is not purely student stratified
because each student had data included in both the training
and test sets, albeit for different skills. We conducted a third
experiment in which the models were trained not on all skills
simultaneously, but on one skill at a time. This training
procedure ensures that the models are truly naive to a given
student in the test set, which impacts the performance of
BKT+A, LFM, and LFKT. Nonetheless, the training data
still constrains the student ability distribution, and as a re-
sult, the pattern of results still shows LFKT outperforming
LFM and BKT.

5.3 Visualization of the Posterior Marginals
One advantage of using a Bayesian modeling approach is
that we obtain posterior distributions over model parame-
ters, rather than just point estimates, which allows us to di-
rectly quantify model uncertainity about those parameters.
In a Bayesian model, we can estimate the joint posterior
distribution over the parameters conditioned on the train-
ing data. From the joint distribution, which is challenging
to visualize, we can compute marginals for each parameter.
The marginals are easier to interpret. Because we are us-
ing an MCMC sampler, we obtain multiple samples of each
parameter setting. The estimated marginal posterior for a
parameter is then just histogram of those samples.

To calculate the marginals, we trained LFKT on the entire
statics dataset and obtained 1000 samples from the poste-
rior. Figure 5 shows visualizations of the resulting marginal
distributions for each parameter. The x-axis in each plot is
an index over either students, problems, or skills and each
vertical slice of a plot provides the probability distribution
over the parameter’s value. Probability density is indicated
by the color. The targets on the x-axis are sorted by the
mean value of the corresponding parameter.

The top two plots in Figure 5 give us a clue about why
problem difficulties have a larger effect on prediction perfor-
mance than student abilities for the Statics data set. The
posterior on student abilities are smaller in magnitude than
the posterior on problem difficulties. Hence, when abilities
are removed (i.e., set to 0) in LFKT to obtain the BKT+D
model, the model does not lose much during testing. The
model appears to be more certain about student and prob-
lem parameters (top row of Figure 5) than skill parameters
(the bottom two rows of Figure 5). This difference is re-
flected in the fact that LFM, which uses the student and
problem parameters, outperforms BKT, which uses the skill-
specific parameters.

5.4 Execution Time
Even though LFKT combines BKT and LFM, its execution
time is longer than the sum of the execution times of the
two component models. Under LFM, a modification to a
problem’s difficulty requires re-evaluating the likelihood of
the trials involving that problem. However, modifying a
problem’s difficulty under LFKT requires re-evaluating the
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Figure 3: Data split for Experiments 1 and 2 (left and right columns, respectively). The squares represent
individual trials and the red triangles represent trials withheld for testing. Squares with different colors
belong to different skills.

Table 3: Execution times (seconds)
Dataset BKT LFM LFKT

Synthetic 68.4 108.1 404.0
Geometry 8.0 2.0 14.5
Physics 211.3 412.4 712.4
Statics 175.3 81.0 865.2

likelihood of all the student-skill sequences that contain the
problem. Table 3 presents the execution time in seconds for
each model when training on the entire dataset. The run-
time of LFKT is superadditive for all but the Physics data
set, which is an anomaly because of (a) the large number of
skills which results in short student-skill sequences and (b)
the large number of problems which results in a sparse col-
lection of student-skill sequences containing any particular
problem. We note that we have made little effort to optimize
run times, and alternative approaches (e.g., maximum like-
lihood parameter estimation) are likely to be significantly
faster. Further, run time should not be nearly as important
a consideration as model accuracy, so long as run times are
tractable, which they clearly are in our simulations.

6. CONCLUSIONS
Within the intelligent tutoring community, there are two
common approaches to modeling the performance of a stu-
dent: Bayesian Knowledge Tracing (BKT) and Latent Fac-
tors Models (LFM). BKT is a two state model that attempts
to characterize the temporal dynamics of student learning.
LFM is a logistic regression model that infers latent fac-
tors associated with students, skills, and problems. Two ap-
proaches are complimentary, allowing us to synthesize the
two into a single model. In this work, we presented LFKT,
which integrates BKT and LFM in a mathematically princi-
pled manner, and we showed that the synthesis outperforms
both BKT and LFM.

We investigated the contribution of individual components
and factors within LFKT. Overall, our results indicate that
the most important contribution to predicting performance

comes from considering problem effects (difficulties), fol-
lowed by student effects (abilities), followed by skill-specific
learning effects (BKT). This ordering holds regardless of
whether we are predicting performance on later trials of cur-
rent students or on complete trial sequences of new students.

One important contribution of the work is the discovery that
problem instances drawing on the same skill can systemati-
cally vary in difficulty, and inferring the latent difficulty of
a problem and incorporating it in a predictive model can
significantly bolster prediction accuracy. Although all prob-
lems that tax a given skill are equivalent in a formal sense,
students are sensitive to the specific instantiation of the skill
in a problem. We are aware of three variants of BKT that
incorporate this useful fact. The KT-IDEM model [21] in-
corporates problem difficulties into BKT by fitting separate
guess and slip probabilities for each a problem in a skill.

The FAST model [12] provides a general framework for char-
acterizing guess and slip probabilities as a sigmoid function
of a weighted linear combination of features. Given stu-
dent and problem features, FAST discovers weights that
are equivalent to the latent ability and difficulty factors in
LFKT. However, in FAST, these factors are assumed to be
independent for guess and slip probabilities. Thus, both
KT-IDEM and FAST have two free parameters associated
with problem difficulty, whereas LFKT has one one, which
is assumed to be symmetric for guess and slip probabilities.
This restriction may benefit LFKT in reducing overfitting.
Another key difference is that both KT-IDEM and FAST are
fit using maxmimum likelihood, whereas LFKT uses MCMC
sampling to estimate Bayesian posteriors. The Bayesian ap-
proach allows LFKT to generalize to new problems and stu-
dents in a principled manner. In a recent collaboration with
the authors of FAST, we have performed a comparison of
LFKT and FAST using the same datasets and evaluation
metrics [15].

Another recent development that is complementary to LFKT
is a variant of BKT in which the probability of initially
knowing a skill (L0) and the transition probability (T ) are
individualized to a student [28]. Individualization occurs by
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Figure 4: The mean testing performance on four data sets (columns) in Experiments 1 and 2 (top and bottom
rows, respectively). Each graph shows the negative log likelihood score, averaged across trials, for each of
six models. A lower value indicates better performance. BKT+A and BKT+D correspond to LFKT with
difficulties set to zero or abilities set to zero, respectively. All trials are weighted equally across skills. Error
bars indicate standard errors.

splitting each BKT parameter into skill-specific and student-
specific components which are summed and passed through
a logistic transform, yielding the BKT parameter value. Al-
though this work mostly parallels ours but focusing on dif-
ferent BKT parameters, our discovery of problem-specific
effects makes the intriguing suggestion that one might wish
to consider problem difficulty on the transition probability;
that is, the probability of learning a skill on a trial may be
problem dependendent as well as success dependent.

By understanding the relationship between LFKT and other
innovative variants of BKT, we are starting to delineate the
space of models of student performance and the critical di-
mensions along which they vary. This understanding should
lead to the emergence of a principled, unified theory that
is sensitive to differences among individuals and differences
due to the specific content. Such a theory should yield not
only improved predictions of student performance but also
more effective tutoring systems [18].
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ABSTRACT 
 

Automated techniques have proven useful for improving models 
of student learning even beyond the best human-generated 
models. There has been concern among the EDM community 
about whether small prediction improvements matter. We argue 
that they can be quite significant when they are interpretable and 
actionable, but the importance of generating meaningful, 
validated, and generalizable interpretations from machine-model 
discoveries has been under-emphasized in educational data 
mining. Here, we interpret a Learning Factors Analysis model 
discovery from a geometry dataset to suggest that students 
experienced difficulty applying the square root operation in circle-
area backward problem steps. We then sought to validate and 
generalize this interpretation in the context of a completely novel 
dataset. Results indicated that our interpretation of the small, 
automated prediction improvement not only held up in the context 
of a novel dataset but also generalized to new types of problems 
that didn’t exist in the original dataset. We argue that identifying 
cognitive interpretations of automated model discoveries and 
assessing the generalizability of such interpretations are critical to 
translating those model discoveries to concrete improvements in 
instructional design.   

Keywords 

Cognitive model discovery, model interpretation, generalization 
across datasets, learning factors analysis. 

1. INTRODUCTION 
 

Much Educational Data Mining (EDM) has focused on new data 
mining methods for improving within-dataset predictions. There 
has been interest in the community concerning whether small 
prediction improvements matter. Although we cannot provide a 
firm answer, we argue that they do when the improvements are 
interpretable and actionable. We have shown, in past experimental 
results, that genuine learning improvements can result from 
automated discoveries of small prediction differences [16]. 
Further, we argue that there should be more emphasis in EDM on 
whether predictions are clearly interpretable from a theoretical or 
cognitive perspective and whether the interpretation has external 
validity (e.g. generalizes beyond the dataset in which it was 
discovered). 

Here, we present one of the first attempts at taking an 
interpretation of an automated cognitive model (or Q matrix [1, 8, 
19]) discovery and generalizing that interpretation to a novel 
dataset, different from the one used to make the discovery. We 
focused on a discovery by the Learning Factors Analysis (LFA) 
algorithm [4] from a geometry dataset that improved predictions 
beyond the best available human-generated cognitive model. Even 
though the prediction improvement was small within this original 

dataset, with the addition of some exploratory data analysis, we 
interpreted the discovery within the context of a cognitive skill 
model [15]. 

Our intention was not to apply the improved model directly to 
new data (e.g., as in [11]) nor to run an exact replication of the 
study but, rather, to test whether the interpretation itself held up 
within the context of a new dataset with direct relevance to the 
interpretation but whose structure and properties may differ from 
those of the original dataset. 

2. BACKGROUND 
 

Cognitive models are an important basis for the instructional 
design of automated tutors and are important for accurate 
assessment of learning. Improvements to cognitive models, when 
combined with an appropriate theoretical interpretation, can yield 
better instruction and improved learning. More accurate skill 
diagnosis leads to better predictions of what a student knows, thus 
resulting in improved assessment and more efficient learning 
overall. Cognitive Task Analysis [5, 6, 17] is currently the best 
strategy for creating cognitive models of learning, but the method 
has its limitations. For example, it involves many subjective 
decisions and requires large amounts of human time and effort, as 
well as a high level of psychological expertise. 

Educational data mining and machine learning techniques can be 
used to improve cognitive models in an automated fashion. These 
methods involve using data and statistical inference to create or 
modify a cognitive model involving continuous parameters over 
latent variables that can be linked to observed student 
performance variables. In addition to saving time and effort, 
machine models have the potential to discover cognitive model 
improvements that may not otherwise be considered via human-
generated methods. 

In order to use techniques of automated cognitive model 
improvement effectively towards the primary goal of bettering 
instructional design and assessment, it is important to properly 
interpret machine discoveries in the context of a cognitive skill 
model. Furthermore, it is critical to demonstrate the external 
validity of the interpretation beyond the dataset from which the 
discoveries were made. There exist good techniques (e.g., various 
methods of cross-validation) for ensuring internal validity of 
automated discoveries, but there have been few demonstrations of 
generalization beyond the samples in which discoveries are made. 
Here, we discuss an example of an automated model discovery 
that improved a Knowledge Component (KC) Model, a specific 
type of cognitive skill model, beyond the best existing human-
generated model. Knowledge Components represent units of 
knowledge, concepts, or skills that students need to solve 
problems. A KC Model is composed of a set of KCs mapped to a 
set of instructional tasks (e.g. problem steps).  The LFA algorithm 
[4] automates the search process across hypothesized knowledge 
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components (KCs) across a number of possible models. A tool 
such as the LFA algorithm not only reduces human effort and 
error by providing an automated method for discovering and 
evaluating cognitive models, but it outputs a most predictive Q 
matrix [19], thus producing a statistical version of a symbolic 
model. As such, LFA eases the burden of interpretation, but it 
does not in itself accomplish interpretation. 

We applied the LFA search process across 11 datasets using 
different domains and technologies (available from DataShop at 
http://pslcdatashop.org; [13]). This automated process improved 
models, by cross-validation measures, across all of the datasets 
beyond the best manual models available [15]. However, the 
improvements in root mean square error (RMSE) were quite 
small. We questioned whether such miniscule changes in 
measurement are interpretable, generalizable, and—most 
importantly—actionable. 

To investigate these questions, we focused on a particular dataset 
called Geometry Area 1996-1997, which is available to the public, 
has been analyzed for several other studies and shown to be 
reliable, and has produced findings we can test for generalization 
[12]. These data included 5,104 student steps completed by 59 
students. Within this dataset, we compared the best LFA-
discovered model (according to item-stratified cross validation) 
against two human generated models—the original model and the 
best hand-generated model (according to item-stratified cross 
validation). The LFA algorithm split circle-area problem steps 
into those that use a forward strategy (find area, given radius) and 
those that use a backward strategy (find radius, given area). It did 
not split any other area formulas for the backward-forward 
distinction. Thus, LFA essentially discovered an unforeseen 
“new” knowledge component (i.e., circle-area backward) for this 
dataset. As mentioned, the cross-validation results provided 
evidence of the internal validity of the discovered cognitive model 
improvement. 

In the current paper, we aim to assess the external validity of this 
result in a novel dataset whose structure and properties are 
different from the original dataset in which the discovery was 

made. Since it was not possible to test the original LFA-
discovered model directly on a new dataset due to its differing 
structure and problem types, it was critical that we generated a 
cognitive interpretation of the finding. The interpretation makes it 
possible to generate predictions and models that are appropriate to 
the novel dataset in which we aim to test the validity and 
generalization of our findings. 

3. INTERPRETING MACHINE-DRIVEN 
MODEL IMPROVEMENTS 
 

The LFA discovery within the Geometry Area 1996-1997 dataset 
yielded a result that we interpreted by combining information 
from the algorithm split and other relevant exploratory measures 
from the dataset itself. Analysis of the automated model revealed 
a forward-backward split only predictive for circle area (i.e., not 
for the other geometric shapes in the dataset nor for other circle 
formulas such as find diameter or radius given circumference). 
Data on student performance corroborated this finding. Circle-
area backward problems were substantially more difficult for 
students than circle-area forward problems (54% vs. 80%), but 
performance on the other shapes exhibited small or negligible 
differences in forward vs. backward steps (Figure 1a). The circle-
area split illustrates an important factor discovered by the LFA 
algorithm that had not been anticipated by human analysts. 

Delving into the problem steps associated with circle-area 
backward computations revealed the necessity of a square root 
operation (r = √ (A/π)) that was not a requirement in any of the 
other backward formulas. Given the unique feature of square root 
operation in the context of this dataset and the absence of a 
forward-backward model split or performance discrepancy on all 
other shapes’ area calculations and all other circle formula 
calculations, we hypothesized that the automated model 
improvement was more about the difficulty knowing when and 
how to apply a square root operation than about the difficulty 
applying a backward strategy more generally. 

Although data mining techniques helped discover the split, it took 
 

	  

Figure 1. Average proportion correct on first attempts at geometry area problem steps, grouped by shape and color-coded based on 
whether the problem step requires a forward strategy, a backward strategy that requires a square root calculation, or a backward strategy 
that does not require a square root calculation. Panel (a) reflects the Geometry Area 1996-1997 dataset, where LFA discovered that 
merging forward and backward for all shapes but circle yielded the best predictions. Our interpretation was that this split reflected a 
difficulty applying (or knowing to apply) the square root, which only affects the circle-area backward computations. Based on this 
interpretation, we predicted a split between forward and backward problem steps for circles and squares but not other shapes. Panel (b) 
shows that performance in the Motivation for Learning HS Geometry 2012 dataset confirms this predicted split.	  
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a rational cognitive analysis to identify an underlying cognitive 
process (e.g., square root operation) from the information 
obtained via the LFA output. To move from data analysis to data 
interpretation requires domain knowledge and cognitive 
psychology expertise beyond just methodological skills in EDM 
techniques. 

4. VALIDATING AND GENERALIZING 
THE INTERPRETATION 
 

Before using interpretations from machine-model discoveries to 
redesign instructional principles, it is often important to assess the 
external validity of the interpretations themselves. For example, 
the tutor unit for the Geometry Area 1996-1997 dataset had only 
three unique problem steps associated with the circle-area 
backward (i.e., find circle radius given area) calculation. 
Furthermore, it had no problem steps associated with a square-
area backward (i.e., find square side length given area) 
calculation. Due to the limited task variety available in the 
Geometry Area 1996-1997 dataset, it remains unclear from that 
dataset alone whether our interpretation of difficulty applying the 
square root operation will generalize to data containing a broader 
set of tasks. 

Thus, we sought to validate this interpretation of a machine-driven 
cognitive model discovery in an independent dataset containing 
substantially more circle-area backward problem steps as well as 
the existence of square-area backward problem steps, which were 
entirely absent from the original dataset.  To this end, we 
investigated the geometry portion of a much more recent dataset, 
Motivation for Learning HS Geometry 2012 (geo-pa) [3]. This 
dataset is an excerpt from regular classroom use of a Geometry 
Cognitive Tutor [18] by 82 HS students (10th graders) with a total 
of 72,404 student steps. It contains similar types of shape-area 
modules and questions as the original dataset but has many more 
(49) unique circle-area backward problem steps. It also contains 
many (57) unique square-area backward problem steps.  This 
makes it possible to validate (i.e. by investigating circle-area and 
other shape-area forward and backward performance) and 
generalize (i.e. by investigating square-area forward and 
backward performance) our interpretation of the original LFA-
based discovery. 

A first-pass exploratory analysis of the 2012 dataset reveals a 
substantially higher proportion of correct first attempts at forward, 
compared to backward, circle- and square-area problem steps 
(Figure 1b).  In order to validate the specificity of the square root 
operation interpretation, we also investigated performance on 
backward vs. forward steps for all other shapes’ area formulas. 
These data confirm that the performance differences between 
forward and backward area KCs are substantially smaller for the 
other shapes that don’t require a square root operation in their 
backward steps (parallelogram backward=81%, forward=85%; 
rectangle backward=77%1, forward=86%; trapezoid 
backward=72%, forward=73%; triangle backward=72%, 
forward=73%). 

Beyond these performance data, we compared the performance of 
a KC model that aligns with our square root interpretation against 
KC models representing alternative hypotheses.  Our hypothesis-

                                                                    
1 Adjusted value reflecting the omission of 7 problem steps for 

which there was an error in the problem text. The pre-
adjustment value is 0.70. 

driven KC model distinguishes backward-area steps from 
forward-area steps for circles and squares (since the backward 
steps require a square root operation) but does not make this 
forward-backward distinction for any other shapes.  We compared 
this to a KC model that makes no forward-backward distinctions 
for any shapes (merges F-B across all shapes) as well as a KC 
model that makes all forward-backward distinctions for all shapes.  

Since this dataset contained both circle-area and square-area 
problems, we also asked whether there might have been transfer 
between circle- and square-area backward problem steps on the 
basis that both require application of the square root operation.  If 
there were full transfer, we would expect that a KC model 
merging square- and circle-area backward steps into a single skill 
should outperform a KC model that distinguishes square- from 
circle-area backward steps. To test this question of transfer, we 
created the former KC model and included it in our model 
comparison. 

We compared performance across these four hypothesis-driven 
single-skilled2 KC models: 

1. SQRT SKILL CIR-SQ DISTINCT (58 KCs):  Forward-
backward steps coded as distinct for circle and square area 
problems; forward-backward steps merged (into a single 
“area” KC) for each of the other shapes. This KC model is 
structured based on our interpretation that backward steps 
requiring a square root operation should be coded as separate 
skills. 

2. ALL SHAPES F-B MERGED (56 KCs):  No forward-
backward distinction for any shapes’ areas (a single “area” 
KC is coded for each shape).  This KC model is analogous to 
the original hand model for the Geometry Area 1996-1997 
dataset from which LFA discovered the circle forward-
backward area split on. 

3. ALL SHAPES F-B DISTINCT (66 KCs):  Forward-
backward steps are coded as distinct3 for all shapes’ area 
problems. The comparison of our interpretation-based model 
(SQRT SKILL CIR-SQ DISTINCT) against this one is 
important for establishing the specificity of a square root 
operation hypothesis and rules out the possibility that the 
best split should, more generally, be forward vs. backward 
area steps across all shapes. 

4. SQRT SKILL CIR-SQ BACKWARD (57 KCs):  Forward 
steps coded as distinct for circle and square area problems; 
backward circle- and square-area steps merged into a single 
skill; forward-backward steps merged (into a single “area” 
KC) for each of the other shapes.  The comparison of our 
interpretation-based model (SQRT SKILL CIR-SQ 
DISTINCT) against this one will inform us as to whether 
there was full transfer between backward circle- and square-
area skills. 

                                                                    
2 The original KC model from which we constructed these four 

single-skilled models was a multi-skilled model. To convert the 
multi-skilled into a single-skilled model, we selected single 
skills corresponding with the LFA results on the Geometry Area 
1996-1997 dataset. 

3 This model codes forward vs. backward steps with the finest-
grain distinction possible: some shapes have multiple backward 
steps that are coded as distinct from each other (e.g., for 
parallelograms, “find height given area” and “find base given 
area” are coded as separate KCs). 
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The models were evaluated using Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), and 10-fold cross 
validation (CV). Due to the random nature of the folding process 
in cross validation, we repeated each type of 10-fold CV (item-
stratified and student-stratified) 20 times and calculated the 
RMSE on each run, as has been done in previous work to handle 
this variabiltiy in CV [16]. 

In Table 1, we report the average root mean-square error (RMSE) 
values across 20 runs each of 10-fold item-stratified and 10-fold 
student-stratified CV. The SQRT SKILL: CIR-SQ DISTINCT 
model performs best, on average, by both item-stratified and 
student-stratified CV measures. 

To ensure that it performed better than the next best model (ALL 
SHAPES: F-B DISTINCT) consistently, as opposed to by chance 
(due to random selection of folds), we compared the RMSEs from 
the 20 runs of item-stratified CV and student-stratified CV 
between the two models using a paired t-test. For item-stratified 
CV, the SQRT SKILL: CIR-SQ DISTINCT model had 
consistently lower RMSEs than the ALL SHAPES: F-B 
DISTINCT model across every one of the 20 runs, and this pattern 
was significant based on a paired t-test (t = -10.249, df = 19, p < 
0.0001). For student-stratified CV, the SQRT SKILL: CIR-SQ 
DISTINCT model had lower RMSEs than the ALL SHAPES: F-B 
DISTINCT model on 14 of 20 runs, which was not statistically 
significant by a paired t-test. 

Consistent with our previous work comparing machine-discovered 
models to baseline models [15], we focus on item-stratified cross 
validation as the primary metric, because we are concerned with 
improving cognitive tutors. Item stratified cross validation 
corresponds most closely with a key tutor decision of selecting the 
next problem type. Furthermore, the BIC measure concurs with 
the item-stratified cross validation results in suggesting that the 
SQRT SKILL CIR-SQ DISTINCT model is the best-performing 
model. 

The superior performance of SQRT SKILL CIR-SQ DISTINCT 
over ALL SHAPES F-B MERGED (on all measures) supports 
and extends the original LFA finding that splitting F-B on circles 

and squares is better than leaving F-B merged.  Notably, SQRT 
SKILL CIR-SQ DISTINCT even performs better, by item-
stratified CV and BIC measures, than the ALL SHAPES F-B 
DISTINCT, the KC model that contains the same F-B distinctions 
for circle and square but even more fine-grained distinctions in the 
form of F-B separation for other shapes. This validates the 
specificity of the square root operation hypothesis and rules out 
the possibility that the major split should be for general forward 
vs. backward strategies among all shapes’ area problems. 

Thus, there is good evidence from KC model comparisons that 
distinguishing forward from backward steps specifically for 
circle- and square-area problems but not other shape-area 
problems predicts student learning best. This validates and 
generalizes our original interpretation that knowing when and how 
to apply the square root operation is the basis for the cognitive 
model improvements. 

We did not observe full skill transfer between backward circle- 
and square-area steps, since the SQRT SKILL CIR-SQ 
BACKWARD model performed consistently worse than the 
SQRT SKILL CIR-SQ DISTINCT model by all measures. To 
investigate whether this may have been due to a lack of variability 
in the order that students complete circle-area backward vs. 
square-area problem steps, we examined the relative ordering of 
the two shapes’ backward area steps. We discovered that each 
individual student completed all square-area backward steps 
before any circle-area backward steps. These data show a lack of 
variability in the relative ordering of the opportunities for the two 
shapes’ backward-area practice, which suggest the combined 
model may only reflect partial transfer. This interpretation is 
supported by the observation that the end of the square-area 
backward learning curve (Figure 2, middle panel) does not align 
well with the beginning of the circle-area backward learning 
curve; rather, there is an increase in error rate (computed by 
taking the inverse logit of model values) from the end of square-
area backward (22.2%) to the start of circle-area backward 
(47.3%). 

We investigated learning curve prediction improvements yielded 
by our hypothesis-driven models (SQRT SKILL CIR-SQ 

 

Model Name	   KCs	   AIC	   BIC	  
RMSE: Item-Stratified 
Cross Validation	  
(Average of 20 runs)	  

RMSE: Student-Stratified 
Cross Validation 
(Average of 20 runs)	  

ALL SHAPES: F-B MERGED	   56	   20,992	   22,652	   0.28208	   0.28702	  

ALL SHAPES: F-B DISTINCT	   66	   20,839	   22,670	   0.28104	   0.28588	  

SQRT SKILL: CIR-SQ DISTINCT	   58	   20,857	   22,551	   0.28087*	   0.28584	  

SQRT SKILL: CIR-SQ 
BACKWARD	   57	   20,883	   22,560	   0.28113	   0.28621	  

Table 1. Comparison between prediction accuracies of the four hypothesis-driven KC models, evaluated using AIC, BIC, and both item-
stratified and student-stratified 10-fold cross validation (CV). Cross validation results are reported as the average root mean-square error 
(RMSE) values across twenty runs of 10-fold CV. The best performing model, by each of the measures, is bolded. *Significant at the 
p<0.001 level in t-tests comparing model performance against all other models, except the one italics entry, over the twenty runs of cross 
validation.	  
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DISTINCT and SQRT SKILL CIR-SQ BACKWARDS) 
compared to the baseline KC model (ALL SHAPES F-B 
MERGED). Figure 2 shows these learning curve predictions as 
well as their AFM model values (logit and slope). Our hypothesis-
driven KC models, both of which consistently performed better 
than the baseline KC model, exhibit higher learning slope values.  
This finding is consistent with our general LFA results [15] that 
showed that models with better prediction results had higher 
learning slope values. 

5. RELATED WORK 
 

Beck & Xiong [2] rightfully raised concerns about the fact that 
many promising modeling approaches have produced only 
“negligible gains in accuracy, with differences in the thousandths 
place on RMSE.”  That paper focused on differences in statistical 
modeling approaches, such as Bayesian Knowledge Tracing and 
Performance Factors Assessment, whereas our focus is on 
cognitive model improvements. Beck & Xiong do make a similar 
comment about how cognitive model (they use the phrase 
“transfer model”) modifications produce only “slight 
improvement in accuracy”. In our case, we argue that even slight 
improvements can yield meaningful and valid interpretations that 
generalize to new contexts within the same domain and can be 
used to produce significant differences in student learning. 

We completely agree with Beck & Xiong’s suggestion that 
“higher predictive accuracy is not sufficient” and with their 
emphasis on interpretability, “is there any interpretable 
component relating to student knowledge?”  We share a desire to 
connect results to student learning and address questions like “can 
we use this model to predict whether an intervention will lead to 
more learning?” However, we emphasize using interpretation of 
models not only to predict the impact of an intervention, but also 
as a guide to design such interventions. As we discuss below, 
cognitive model improvements, even ones with small impact on 
prediction accuracy, can be used to guide new instructional 
designs and high plausibility for impact in improving student 
learning.  We need to “close the loop” and test whether designs 
based on cognitive model insights do improve learning, as has 
been done in past experiments [14, 16]. 

Learning Factors Analysis (LFA) requires human intervention to 
propose factors that may (or may not) account for task difficulty 
or transfer of learning from one task to another (e.g., backward 
application of a formula). This human intervention can be 
considered a downside of LFA relative to other cognitive model 
or q-matrix discovery algorithms [e.g., 1, 7-9, 19] that 
automatically produce new factors (e.g., as clusters of tasks with 
similar factor loadings). The results of these models, however, 
must be interpreted and post-hoc factor labeling is, in our 
experience, extremely difficult.  It is quite hard to make sense of 
discovered factors or the task clusters they imply.  We suspect that 
such interpretation difficulty is the reason that, to our knowledge, 
none of these methods have been used to produce new cognitive 
model explanations of task difficulty or transfer.  More 
importantly, to our knowledge, none of them have been used to 
redesign instruction that can be tested in close-the-loop 
experiments.  Thus, while LFA does require upfront human 
intervention to propose factors, this upfront investment appears to 
pay off in that LFA output affords more effective interpretation of 
model results on the backend. 

At the other extreme, traditional methods of Cognitive Task 
Analysis such as structured interviews of experts [5, 6, 17] or 
think alouds [10] puts great emphasis on logical interpretation.  
They draw on qualitative data and are quite time-consuming or 
expensive to implement.  LFA offers a quantitative alternative that 
may be easier to implement. 

Other work besides ours has tested models produced using one 
dataset on another.  For example, it was demonstrated that the 
structure and parameterization of a model using ASSISTment 
(www.assistments.org) system interaction data to predict state test 
scores in one year also works well in predicting state test scores 
from data in another year [11].  Here, we focused on transferring 
not only the specific structure of the model (e.g., the Q-matrix) 
but the cognitive insights from interpreting the model.  The latter 
allowed us to make predictions on a kind of task (i.e., square-area 
backward) that was not even present in the original data or in the 
original Q-matrix. Making predictions of student performance on 
unseen tasks is something that a purely statistical model cannot 
do. We need to extend such models with logical or structural 
interpretations that have both explanatory power (i.e., they help us 

	  

Figure 2.  Learning curve prediction improvements (from the new 2012 dataset) yielded by comparing the square root KC models 
(middle and right panels) based on our interpretation of the LFA discovery against one that reflects what the KC model would have been 
(ALL-SHAPES: F-B MERGED, left panel) without the LFA discovery/interpretation. The x-axis reflects the opportunity number.  Each 
data point was required to have at least 10 observations. The interpretation-based KC models that yielded better prediction results also 
exhibited higher learning slope values (bottom number to the right of each graph). This finding is consistent with what we observed 
using the LFA-discovered model in the original dataset. 
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make sense of student learning) and generative power (i.e., they 
guide the design of better instruction). 

6. CONCLUSIONS & FUTURE 
DIRECTIONS 
 

Although the reduction in overall error (RMSE) was rather small 
in the original LFA model discovery on dataset Geometry Area 
1996-1997, we demonstrated that the theoretical interpretation of 
this discovery was not only validated in an independent dataset 
but also generalized to new problem types that were not part of 
the original dataset (i.e., square-area backward).  Error reductions 
can be small as a consequence of most of the model being 
essentially the same as the original but can still indicate a few 
isolated changes that are highly practically significant for tutor 
redesign.  In a recent close-the-loop study [16], we demonstrated 
how using a cognitive model discovery to redesign a tutor unit led 
to both much more efficient and more effective learning than the 
original tutor. In that case, the discovered model had a statistically 
significantly lower RMSE on item-stratified cross validation 
(0.403) than the existing human-created model (0.406).  The 
actionable interpretation of this small difference, only 0.003 in 
RMSE, was demonstrated to be practically important. 

Some other automated techniques discover models that are 
difficult or impossible to understand (e.g., matrix factorization [7, 
9]), either toward deriving insights into student learning or 
making practical improvements in instruction. The output of LFA 
is more interpretable and convertible to tutor changes than these 
alternative methods that may produce latent variable 
representations without the consistent application of human-
derived codes or without code labels at all. 

Here, we aimed specifically to assess the generalizability of our 
cognitive interpretation of an LFA model discovery. We showed 
that our interpretation held up within the context of a new dataset 
with domain relevance but whose structure and properties differed 
from those of the original dataset. Validation and generalization 
were confirmed, in the 2012 geometry dataset, based on (1) 
performance measures and (2) superior prediction of learning by a 
KC model constructed based specifically on our interpretation. 

These findings move beyond simply replicating the original LFA 
model discovery.  Since the novel dataset had a different structure 
from the original dataset, including differences relevant to our 
interpretation (i.e., existence of square-area backward problem 
steps), it would not have been viable to directly test the discovered 
automated model on this new dataset. Thus, the interpretation of 
automated model discoveries is actually necessary in order to test 
the generalizability of such discoveries across contexts with non-
identical structures. Furthermore, interpretations help anchor all 
subsequent data exploration and analyses to something 
meaningful that can then be translated into concrete improvements 
to instructional design. 

Testing the generalization of our interpretation not only confirmed 
the robustness of the idea but also yielded further details about the 
scope of the interpretation that have relevant implications for 
modifying instruction.  For example, the original automated 
discovery may have suggested that we should treat circle-area 
backward problems as a separate skill, but the generalization of 
our interpretation suggests we should treat all backward area 
problems involving application of the square root operation—
including square area—as distinct from their forward area 
counterparts. 

Further, the demonstrated validity of our interpretation has 
potential implications for instructional design beyond the 
cognitive tutors used to generate the datasets we worked with 
here. For example, the Khan Academy (www.khanacademy.org) 
geometry area units treat all circle-area problems as one skill and 
all square-area problems as one skill, with no forward-backward 
distinction, in their practice sets. Our findings suggest, at the very 
least, that it may be worth investigating whether our discovered 
interpretation also generalizes to student performance in very 
different instructional contexts such as that in the Khan Academy. 
If so, it would suggest potential instructional improvements there 
as well. 

By isolating improvement in an interpretable component of 
student learning, elements of instructional design can be modified 
to more efficiently address student learning. An improved 
cognitive model can be used in multiple possible ways to redesign 
a tutor [16]. These include resequencing (positioning problems 
requiring fewer KCs before ones needing more), knowledge 
tracing (adding or deleting skill bars), creating new tasks, and 
adding/changing feedback or hint messages.  

From the cognitive model improvement demonstrated here, we 
suggest adding new skills to the tutor that differentiate backward 
circle- and square-area problem steps from their forward 
counterparts. For other shapes, in contrast, we suggest that the 
skills for forward and backward area problem steps be merged. 
These skill bar changes would lead to changes in knowledge 
tracing as well as the creation of new tasks. In particular, students 
would receive increased practice on circle-area and square-area 
backward problems and decreased practice on some forward and 
backward steps for other shapes’ area formulas. Finally, we 
suggest that new tasks or hint messages might be added to the 
backward circle- and square-area practice problems. For example, 
we might include additional questions, or hints, that simply ask 
“What do you need to do to 50 in x^2 = 50 to find the value of x?”  
We expect that the combination of increased practice on newly 
discovered skill difficulties and new tasks/hints that scaffold the 
difficulty would significantly improve overall student learning. In 
future work, we aim to “close the loop” on this finding by 
implementing these suggested instructional design changes and 
testing whether a redesigned tutor yields improvements in student 
learning above those achieved by the current tutor.  

More generally, this work contributes to a broader set of evidence 
that a deep understanding of the cognitive processes of a domain 
through Cognitive Task Analysis (CTA) can lead to instructional 
designs that produce much better learning than typical instruction 
created through the self-reflections of a domain expert [5, 6, 17].  
Prior work on CTA involves time-consuming expert interviews 
and subjective qualitative analysis.  We find great promise in 
using data mining as a form of quantitative CTA that can more 
automatically and efficiently produce actionable discoveries.  
Nevertheless, the analysis process still involves human expertise 
in cognitive science to interpret model output and hypothesize 
cognitive interpretations that can be used to generalize across 
datasets and make effective instructional design decisions. 
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ABSTRACT
In recent years, open-ended interactive educational tools
such as games have been gained popularity due to their abil-
ity to make learning more enjoyable and engaging. Model-
ing and predicting individual behavior in such interactive
environments is crucial to better understand the learning
process and improve the tools in the future. A model-based
approach is a standard way to learn student behavior in
highly-structured systems such as intelligent tutors. How-
ever, defining such a model relies on expert domain knowl-
edge. The same approach is often extremely difficult in edu-
cational games because open-ended nature of these systems
creates an enormous space of actions. To ease this burden,
we propose a data-driven approach to learn individual be-
havior given a user’s interaction history. This model does
not heavily rely on expert domain knowledge. We use our
framework to predict player movements in two educational
puzzle games, demonstrating that our behavior model per-
forms significantly better than a baseline on both games.
This indicates that our framework can generalize without
requiring extensive expert knowledge specific to each do-
main. Finally, we show that the learned model can give new
insights into understanding player behavior.

Keywords
Educational Games, Data-driven Learning, Supervised Learn-
ing, Logistic Regression, Learning from Demonstration

1. INTRODUCTION
Open-ended educational environments, especially educational
games and game-based learning, have been gaining popular-
ity as more and more evidence suggests that they can help
enhance student learning while making the process enjoyable
[21, 19]. The interactive nature of this media enables us to
track user inputs and provide an immediate personalized re-
sponse to make learning more effective and efficient. There-
fore, modeling and predicting user behavior lies at the heart
of improving engagement and mastery for every learner. For

example, we can detect if a student is struggling with a
certain concept by simulating the learned student behav-
ior model on a related task; if the student model performs
poorly, we can then give more tasks related to that con-
cept. The ability to further predict which error the student
is going to make can be used to infer how the learner misun-
derstood related concepts and provide a targeted instruction
focusing on that specific misconception.

There has been active research on learning individual behav-
ior in both the education and game community. Most of this
research focuses on inferring a meaningful latent structure,
such as knowledge or skill, often simplifying the behavior
space into a small number of parameters. Hence the choice
of a model significantly affects the quality of the learned
behavior, forcing researchers to spend time on experiment-
ing with different models and refining various features [6,
20]. Moreover, unlike highly-structured systems such as in-
telligent tutors, it is difficult to define a behavioral model
describing movements in an educational game. This is espe-
cially true when the player is given a large number of avail-
able moves, resulting in a large scale multi-class prediction
problem. For example, predicting the exact moves someone
will make while solving a puzzle is more challenging than
predicting whether a student will solve a problem correctly.

Therefore, a purely data-driven approach is both a suit-
able and preferable alternative for learning user behavior in
highly open-ended environment, such as educational games.
It needs less expert authoring, and it can capture various
low-level user movements—mistakes and errors, exploration
habits, and adapting a strategy while playing—as they are
even without a specific model describing such moves. Also,
we can further analyze learned policies to give more inter-
pretable insights into user behavior. For example, we could
analyze erroneous movements to figure out their misconcep-
tions. This knowledge can be used to construct more so-
phisticated cognitive models that will give us a deeper and
more accurate understanding of user behavior.

In this paper, we propose a data-driven framework that
learns individual movements in a sequential decision-making
process. It uses a supervised classification method to pre-
dict the next movement of a user based on past gameplay
data. For each game state, our framework transforms user
play logs into a high-dimensional feature vector, and learns
a classifier that predicts the next movement based on this
feature vector. To construct this set of features, we start
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from a massive set of default features defined in a domain-
independent way over a state-action graph, and then pick a
small set of relevant ones using a univariate feature selection
technique. We apply this framework to two very different ed-
ucational games DragonBox Adaptive and Refraction, and
evaluate the learned behavior by predicting the actions of
held-out users.

Our contribution is threefold. First, we propose a data-
driven individual behavior learning framework, which does
not rely on heavy domain-dependent expert authoring. Sec-
ond, we apply our framework on two different games and
demonstrate our framework improves the prediction quality
substantially over a previously proposed algorithm. Finally,
combined with a robust feature selection, we show our frame-
work learns an efficient yet powerful set of features, which
further gives new insight into understanding player behavior
in the game.

2. RELATED WORK
Learning user behavior has been actively researched in the
education and game community. One of the most widely
used models is the Bayesian network model. Knowledge
tracing (KT) [9] and its variations [17, 27] are probably the
most widely used student models in the field of educational
data mining. This model estimates the user’s knowledge
as latent variables, or knowledge components (KCs). These
KCs represent student mastery over each concept and pre-
dict whether a student will be able to solve a task. There
are also other approaches using Bayesian networks, such as
predicting whether a student can solve a problem correctly
without requesting help in an interactive learning environ-
ment [16], predicting a user’s next action and goal in a multi-
user dungeon adventure game [5], or predicting a build tree
in a real-time strategy game [22]. Nevertheless, these ap-
proaches usually learn the knowledge of users directly from
carefully designed network structures, which often need ex-
pert authoring to define a task-specific and system-specific
network model.

Another widely used approach to learn individual behavior
is using factor analysis. Item response theory (IRT) mod-
els have been extensively used in psychometrics and edu-
cational testing domains [11, 8]. They represent an individ-
ual’s score as a function of two latent factors: individual skill
and item difficulty. The learned factors can be used to pre-
dict user performance on different items. Adapting matrix
factorization techniques from recommender systems is also
popular. Thai-Nghe et al. predicted personalized student
performance in algebra problems by modeling user-item in-
teractions as inner products of user and item feature vectors
[24]. This model can even incorporate temporal behavior by
including time factors, both in the educational community
[25] and in the game community [28]. Nevertheless, such ap-
proaches do not easily fit our goal, which requires predicting
a fine granularity of action instead of predicting user’s single
valued performance.

Another line of research on learning a low-level user policy is
optimizing a hidden reward or heuristic function from user
trajectories in a state-action graph. Tastan and Sukthankar
built a human-like opponent from experts’ demonstrations
in a first-person shooter game using inverse reinforcement

learning in a Markov decision process context [23]. Jansen
et al. learned a personalized chess strategy from individ-
ual play records by learning the weights of multiple heuris-
tics on finite depth search models [12]. Similarly, Liu et
al. learned player moves in an educational puzzle game by
learning the weights of heuristics in a one-depth probabilistic
search model [15]. However, such methods usually define a
user reward as a combination of pre-defined heuristics. The
quality of the learned policy is strongly dependent on these
heuristics, which are often system-specific and need a lot
of time to refine. Furthermore, these models assume that
players do not change over time. Describing how people
learn, which is frequently observed in interactive environ-
ments, would be another challenge to trying this approach
in our domain.

Unlike the research listed above, our framework focuses on
a data-driven approach with less system-specific authoring.
Our work is a partial extension of that of Liu et al. [15],
which is a mixture of a one-depth heuristic search model
and a data-driven Markov model with no knowledge of in-
dividual history other than the current game state. We fo-
cus on the latter data-driven approach and build upon that
model. Unlike their work, which makes the same prediction
for all players in a state, we build a personalized policy that
considers the full history of the user.

3. PROBLEM DEFINITION
Our framework works on a model that consists of a finite
set of states S; a finite set of actions A, representing the
different ways a user can interact with the game; and rules
of transitioning between states based on an action. This
paper considers domains with determinstic transitions (f :
S ×A→ S), but this approach could also apply to domains
with stochastic transitions (f : S×A→ Pr(S)). The demon-
stration of a user u, or a trajectory τu, is defined as a se-
quence of state-action pairs: τu = {(s0u, a0u), · · · , (stuu , atuu )}.
We will note As ⊆ A as a set of valid actions on the given
state, T as a set of trajectories, V and U as the set of users
in the training set and test set, respectively.

Defining such a model is often intuitive in games, because
actions and transition rules are already defined in game me-
chanics. For example, in blackjack, the configurations of
the visible cards can be states, and available player deci-
sions such as hit or stand will be actions. The transition
function here will be stochastic, because we do not know
which card will appear next. Defining a good state space
remains an open problem. A good, compact state repre-
sentation will capture the information most relevent to user
behavior; this helps greatly reduce the size of the required
training data. For the example above, using the sum of card
scores for each side would be a better state representation
than the individual cards on the table. Note that a state
refers to the observable state of the game, not the state of
the player. In many games, players base their decisions not
just on what they currently see in front of them, but also
on past experience. This non-Markovian property of human
players motivates our framework, which leverages a user’s
past behavior to improve prediction quality.

Our objective is to learn a stochastic policy π : S × T →
Pr(As) describing what action a user will take on a certain

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 115



www.manaraa.com

Training Data TV
(User Trajectories)

User Trajectory
τ

Feature Generation
and Selection

Feature Vector
xs ∈ R|Fs|

Logistic
Regression

Policy
π(s, τ) ∈ Pr(As)

Features Fs

Classifier cs

Training Stage Prediction Stage

Figure 1: An overview of our framework. For each
state, we learn a set of features and a classifier in the
training stage. With these, a trajectory is converted
into a feature vector, and further into a stochastic
policy in the prediction stage.

state based on his trajectory. We use a supervised learning
approach, which attempts to predict the next action given a
dataset of thousands of user trajectories in the training set
TV = {τv|v ∈ V }.

4. EVALUATION
We evaluate the learned policy on every movement of each
user trajectories in the test set TU = {τu|u ∈ U}. We use
two evaluation metrics: log-likelihood and accuracy rate.

The log-likelihood is defined as∑
u∈U

∑
t∈[0,tu]

log(π̃(atu|stu, τ tu)),

while π̃ is the learned policy given a trajectory observed so
far τ tu = {(s0u, a0u), · · · , (st−1

u , at−1
u )}. Since the log function

is undefined for the case π(a|s, τ) = 0, we smooth the policy
by ε: π(a|s, τ) = (1 − ε)π(a|s, τ) + ε/|As|, while ε is set
to 0.001 in our experiments unless otherwise specified. The
log-likelihood is always smaller than or equal to zero, with
0 indicating perfect prediction.

With our stochastic policy, the accuracy rate is defined as∑
u∈U

∑
t∈[0,tu]

π̃(atu|stu, τ tu)∑
u∈U

∑
t∈[0,tu]

1
.

We want to note that even though the accuracy rate is in-
tuitive and widely used for measuring the performance of a
classifier, using it as a single evaluation metric can be mis-
leading, especially when outputs are highly skewed [13]. For
example, a degenerate constant classifier that predicts only
the dominant class may produce a high accuracy rate. Nev-
ertheless, in all of our experiments, the ordering of perfor-
mances in log-likelihoods is preserved with that in accuracy
rates.

5. ALGORITHM
Figure 1 provides an overview of our data-driven framework.
In the training stage, our framework learns a set of features

and a classifier from training data. A simple way to do
this might be to train a global classifier that takes a player
trajectory and predicts an action. However, we suspect that
the current state is the most important feature; in fact, the
set of available actions As differs per state. Thus we train
a separate classifier for each state, reducing the amount of
data in the training set but increasing the relevancy. In the
prediction stage, we take a trajectory and convert it into a
feature vector using the learned features. Then we convert
the feature vector into a policy from that state, using the
learned classifier. Here, a feature is a function that takes a
trajectory and returns a value f : T → R; a set of features
converts a trajectory into a multi-dimensional feature vector
F : T → R|F |.

Algorithm 1 Training Stage

Require: a state s, training data TV
1: Fs ← a default set of features defined on s
2: Ts, ys ← a list of τ t−1

v and atv such that s = stv ∀v, t
3: Xs ← Fs(Ts)
4: Fs ← SelectFeatures(Fs, Xs, ys)
5: if Fs = ∅ then
6: cs ← LearnMarkovClassifier(ys)
7: else
8: Xs ← Fs(Ts)
9: cs ← LearnClassifier(Xs, ys)

10: end if
11: return Fs, cs

Algorithm 1 describes a detailed process in the training
stage. The SelectFeatures function takes a set of fea-
tures, a set of feature vectors, and a set of performed actions
as inputs and filters irrelevant features out. The Learn-
MarkovClassifier function takes a set of performed ac-
tions and returns a static classifier. The LearnClassifier
function takes a set of feature vectors and performed ac-
tions as inputs and returns a classifier. We will explain each
function in detail.

The training stage starts from a default set of features de-
fined on a state-action graph. We use three kinds of binary
features:

• whether the user has visited a certain state s: 1[s ∈ τ ],
• whether the trajectory contains a certain state-action

pair (s, a): 1[(s, a) ∈ τ ], and
• whether the dth recent move is a certain state-action

pair (s, a): 1[(s, a) = (s|τ |−d, a|τ |−d) ∈ τ ].

The maximum number of d is set to 10 in our experiments.
The features with sparsely-visited states and transitions are
not counted. These features summarize which states and
actions have been visited by the user, both in the full and
recent history. We built a feature package defined on an
abstract state-action graph so that it can be used generally
in multiple systems without extra authoring.

The default set of features contains a huge amount of ir-
relevant features for the task, making our learning suffer
from overfitting as well as prolonged training time. To rem-
edy this, we apply a feature selection method using train-
ing data. For the SelectFeatures function, we use a chi-
squared statistic for each feature on Tv and select features
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State s Action a Next State s′ = T (s, a) π(a|s, τ)

lv.3.4.1.x+a=b

Subtract a on both sides with merging lv3.4.1.x+0=b-a 0.4
Subtract a on both sides lv3.4.1.x+a-a=b-a 0.4
Add a on both sides lv3.4.1.x+a+a=b+a 0.2

Table 1: Examples of states, actions, transitions, and policies in DragonBox Adaptive

with p-value lower than 0.001. We used a univariate feature
filtering approach because it is relatively fast compared to
other feature selection techniques, such as L1-regularization.
Also, we used a chi-squared test because it is one of the most
effective methods of feature selection for classification [26].

Finally, we learn a classifier with the selected features. If any
features are selected, we learn a supervised learning classifier
using the LearnClassifier. We used a multi-class logistic
regressor as a classifier, because it gives a natural proba-
bilistic interpretation unlike decision trees or support vector
machines. If no features are selected, we use a predictor
built on a Markov model from Liu et al. [15], which learns
the observed frequency of state-action pairs in training data:

π̃(a|s) =

∑
v∈V

∑
t∈[0,tv ]

1[(s, a) = (stv, a
t
v)]∑

v∈V

∑
t∈[0,tv ]

1[s = stv]
.

When there are zero samples, i.e., when the denominator
is zero, this equation is undefined and it returns a uniform
distribution instead. For convenience, we will call this pre-
dictor the Markov predictor.

We can also interpret the Markov predictor as another lo-
gistic regressor with no features but only with an intercept
for each action. With no regularization or features, logistic
regression optimizes the log-likelihood on training data with
a policy only dependant on the current state, whose optimal
solution is the observed frequency for each class. This is
exactly what the Markov predictor does.

In the prediction stage, we take a trajectory and a state as
an input, and first check the type of the learned classifier on
the given state. If the classifier is the Markov predictor, it
does not need a feature vector and returns a policy only de-
pendent on the current state. Otherwise, we use the learned
features Fs and classifier cs to convert a user’s trajectory τ
into a feature vector x, and then into a state-wise stochastic
policy π(s, τ).

6. EXPERIMENT AND RESULT
6.1 DragonBox Adaptive
6.1.1 Game Description

DragonBox Adaptive is an educational math puzzle game
designed to teach how to solve algebra equations to children
ranging from kindergarteners to K-12 students [2], which is
evolved from the original game DragonBox [1]. Figure 2
shows the screenshots of the game. Each game level repre-
sents an algebra equation to solve. The panel is divided into
two sides filled with cards representing numbers and vari-
ables. A player can perform algebraic operations by merging
cards in the equation (e.g., ‘-a+a’ → ‘0’), eliminating iden-
tities (e.g. ‘0’→ ‘ ’), or using a card in the deck to perform
addition, multiplication, or division on the both sides of the

Figure 2: Screenshots of DragonBox Adaptive.
(Top) The early stage of the game. It is equiv-
alent to an equation a-b=-6+a+x. The card with a
starred box on the bottom right is the DragonBox.
(Bottom) The game teaches more and more con-
cepts, and eventually kids learn to solve complex
equations.

equation. To clear a level, one should eliminate all the cards
on one side of the panel except the DragonBox card, which
stands for the unknown variable.

Table 1 shows the examples of states, actions, transitions,
and policies in the game. Since DragonBox Adaptive is a
card puzzle game, the game state and available actions are
well discretized. A state is a pair of level ID and the current
equation (e.g. lv3.x-1=0). Available actions for a specific
state are the available movements, or algebraic operations,
that the game mechanics allow the players to perform (e.g.
add a on both sides or subtract a on both sides). Performing
an action moves a user from one state to another state (e.g.
an action adding a on both sides moves a user from lv3.x-

a=0 to lv3.x-a+a=0+a), which naturally defines a transition
function. Since the transition is deterministic and injective,
we use a notation s → s′ for a transition from s to s′ =
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Figure 3: Performances of our predictor and that of
the Markov predictor with different sizes of training
data.

f(s, a) (e.g. lv3.x-a=0 → lv3.x-a+a=0+a).

We collected the game logs from the Norway Algebra Chal-
lenge [3], a competition solving as many algebra equations
as possible in DragonBox Adaptive. About 36,000 K-12 stu-
dents across the country participated in the competition,
which was held on January 2014 for a week. One character-
istic of this dataset is a low quit rate, which is achieved be-
cause students intensively played the game with classmates
to rank up their class. About 65% of the participants played
the game more than an hour, and more than 200 equations
were solved per student on average. This is important in
our task because we can collect a lot of training data even
in higher levels. After cleaning, we collected 24,000 students’
logs with about 280,000 states, 540,000 transitions, and 21
million moves. 4,000 student’s logs were assigned to test
data and the rest as training data. As the parameters of
our framework were determined with another Algebra Chal-
lenge dataset separate from Norway Challenge, there was no
learning from the test data.

6.1.2 Overall Performance
Figure 3 shows the performances of our framework and those
of the Markov predictor with different sizes of training data.
We use the Markov predictor as a baseline, because it is an-
other data-driven policy predictor working on a state-action
graph structure, and because our model is using the Markov
predictor when it could not find relevant features to the
given state.

In both metrics, the performance of our predictor increases
with the size of training data. As it has not converged
yet, we can even expect better performance with additional
training data. For the Markov predictor, its performance
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Figure 4: (Top) Scatter plot of accuracy rates of our
predictor versus that of the Markov predictor for
each state with learned features. We see the perfor-
mance of our predictor is strictly better than that
of the Markov predictor in most cases. (Bottom)
Histogram of accuracy rate improvement, while one
count is a state with learned features.

notably improves with the size of training data only in log-
likelihood metric. We believe this is because the accuracy
rate mostly comes from frequently visited states, which the
predictor already reached to the point with no improvement,
while a significant portion of the log-likelihood value comes
from sparsely visited states, which improves as it gathers
more data.

The difference between the two methods is increasing as the
size of training data increases. With 20,000 user trajectories
as training data, the log-likelihood of our predictor is almost
12% lower than that of the Markov predictor and the accu-
racy rate improves from 64% from 68%. Since the Markov
predictor gives a static policy, we can say this gain comes
from considering individual behavior differences. Also, even
with a relatively small size of training data, the performance
of our method is still higher than that of the Markov predic-
tor. We believe our predictor performs strictly better than
the Markov predictor even with insufficient data, because
our method switches to the latter when it does not have
enough confidence on selecting features.

6.1.3 Statewise Performance
In this subsection, we further analyze the performances of
two methods in the smaller scope. Our predictor learned
1,838 logistic regression classifiers with 20,000 player trajec-
tories as training data. Considering there are about 280,000
game states in total, our method selected no features for
more than 99% of the states and decided to use the Markov
predictor instead. However, more than 60% of the move-
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Next State Feature Weight

lv.3.4.1.x+0=b-a

1[(lv.3.5.1.x+a=b→ lv.3.5.1.x+0=b-a) ∈ τu] 0.583
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+0=b-a) ∈ τu] 0.568
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+0=b-a) = (st−3, at−3)] 0.387
1[(lv.2.19.x*b+a=c→ lv.2.19.x*b+0=c-a) ∈ τu] 0.181

lv.3.4.1.x+a-a=b-a

1[(lv.3.4.1.x+a+a=b-a→ lv.3.4.1.x+0=b-a) = (st−3, at−3)] 0.466
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+a-a=b-a) = (st−4, at−4)] 0.457
1[(lv.3.3.2.x+a+b=c→ lv.3.3.2.x+a+b-b=c-b) = (st−7, at−7)] 0.389
1[(lv.2.3.x+1=a→ lv.2.3.x+0=a-1) ∈ τu] 0.119

lv.3.4.1.x+a+a=b+a

1[(lv.3.4.1.x+a+a+a=b+a+a→ lv.3.4.1.x+a+a=b+a) = (st−2, at−2)] 0.247
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+a+a=b+a) = (st−6, at−6)] 0.192
1[(lv.1.18.x+a+a=a+b→ lv.1.18.x+a+0=b+0) ∈ τ ] 0.128
1[(lv.2.3.x+(-x)/(-x)+x/x=1+a→ lv.2.3.x+(-x)/(-x)+x/x-1=a+0) ∈ τ ] 0.115

Table 2: Selected features with high weights for predicting a transition from state ‘lv.3.4.1.x+a=b’ to each
available action. The selected features closely related to the task it is going to predict. Interesting features
mentioned in the text are highlighted.

Transition Accuracy Recall
from x+a=b LogReg Markov LogReg Markov
x+0=-a+b 88.0 76.7 88.1 76.7
x+a-a=-a+b 60.6 19.2 60.3 19.2
x+a+a=a+b 11.5 3.7 11.6 3.8

Table 3: Accuracy and recall rate for each action
on state lv.3.4.1.x+a=b. The performance of high-
lighted transitions are almost tripled.

ments in training data starts from the states with corre-
sponding logistic regression classifiers. It means our frame-
work invested its resources on a small set of states, which are
so influential that they govern the majority of the prediction
tasks.

Figure 4 shows the accuracy rates in both predictors for each
state that learned a logistic regression classifier. We can see
the performance of our predictor is better than that of the
Markov predictor in the most cases. The other case is ig-
norable: the Markov performs better than ours in less than
2% of the states with logistic regressors, while the average
performance drop for those states is 0.03%. This observa-
tion further supports our argument that our model performs
strictly better than the Markov model because of our robust
feature selection process.

Table 3 gives the evaluations on a state that showed an ac-
curacy rate improvement from 63% to 80%. Since we are
evaluating stochastic policies, we use the following defini-
tion for accuracy and recall for a pair (s, a):∑

u∈U

∑
t∈[0,tu]

1[(s, a) = (stv, a
t
v)] · π̃(a|s, τ tu)∑

u∈U

∑
t∈[0,tu]

1[(s, a) = (stv, atv)]
,

∑
u∈U

∑
t∈[0,tu]

1[(s, a) = (stv, a
t
v)] · π̃(a|s, τ tu)∑

u∈U

∑
t∈[0,tu]

1[s = stv] · π̃tu(a|s, τ tu)
.

In the table, the starting equation is x+a=b, and a player
can perform addition or subtraction with a card ‘a’ on the

deck. There are three possible transitions because the game
mechanics allow two ways to subtract: one putting ‘-a’ card
next to ‘a’ card, and another one putting ‘-a’ card over ‘a’ to
merge them to ‘0’. From now on, we will call them ‘normal
subtraction’ and ‘subtraction with merging’. Which move to
use among them does not affect to clear the game, but the
game can be cleared more efficiently with the latter move.
The third transition is addition making the current equation
to the equation x+a+a=b+a. This is not the right way to solve
the level, because the DragonBox is not going to be isolated.
We will call it ‘unnecessary addition’.

For the normal subtraction, the predictive power is more
than tripled. We believe our predictor successfully captured
this habitual movement, which we also believe is not likely
to change once fixed. Indeed, DragonBox Adaptive does not
provide a strong reward on decreasing the number of move-
ments, nor suggest a guide to promote the students using
the subtraction with merging. For the unnecessary addi-
tion, the predictive power is also more than tripled. Because
one must have seen similar problems several times, students
rarely makes this mistake (3.8% in training data). In spite
of such sparsity, our predictor improved its predictive power
over that of the Markov predictor.

6.1.4 Learned Features and Feature Weights
In this subsection, we take a look at the learned features and
classifiers. Most of the learned features with high weights
are closely related to the task we are trying to predict when
inspected by experts. Table 2 shows some of the learned fea-
tures with high weights in the classifier for each transition in
the previous subsection: subtraction with merging, normal
subtraction, and unnecessary addition. Most of the selected
features with high weights are actually related to the action
that it is going to predict. For example, the movement in
the first feature in the table x+a=b → x+0=b-a is exactly
same as the movement we are trying to predict. The only
difference is the level IDs. Note that having a feature set
of the future level (lv3.5.1) is possible because our game
progression forces students to visit previous levels when a
student fails to clear a level.

For another example, the movement in the eleventh feature
in the table x+a+a=a+b→ x+a+0=b+0 implies an unnecessary
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Figure 5: Performances of two methods on Refrac-
tion.

addition was performed, because the game level 1.18 starts
from x+a=b: to reach the equation x+a+a=a+b, one has to
perform the unnecessary action ahead. It is also interest-
ing that the game level 1.18 is almost 25 levels away from
the current level 3.4.1. It would be a natural assumption
that only recent playdata affect a user’s behavior, but this
provides an evidence that this is not the case. Considering
that a player can only proceed a level after correcting pre-
viously made mistakes, it also implies the learning curve of
this concept is relatively shallow.

One more thing to mention is that when a feature is de-
cribing more recent part of the playdata, it tends to have
a higher weight. In the table, features from level 3 usu-
ally receives higher weights compared to the features from
level 1 or 2. This is intuitive because a user is more likely
to change his or her behavior as time passes. This implies
that our model is also capturing the temporal behavior of
individuals.

6.2 Refraction
To demonstrate that our framework can be used on other
systems without additional authoring, we also run an ex-
periment with another educational game, Refraction [4]. As
we use the same experimental setting and game data as in
Liu et al. [15], we omit the details of the game and the
state-action model. The dataset contains 8,000 users’ game-
play data, with about 70,000 states, 460,000 transitions, and
360,000 moves. 1,000 users’ gameplay data is assigned to a
test set, and the rest as a training set. We use the gameplay
data from level 1 to level 8 to predict the movements in level
8. There are no changes in our framework, except that the
smoothing parameter ε in the log-likelihood metric is set to
0.3 to match the performance of the Markov predictor used
in previous work [15].

Figure 5 shows the performance of our predictor and the
Markov predictor. We see our predictor performs better
than the Markov predictor, although the improvement is
much smaller compared to DragonBox Adaptive. We be-
lieve this is because level 8 is an early level, and we do not
have enough data. Level 8 is the first level without the
tutorial, it would be difficult to detect a confident signal de-
scribing individual behavior. In other words, students did
not have enough opportunity to show their personality. We
could not run another experiment on a later level due to
lack of players from the high drop-out rate. Moreover, the
Refraction dataset (360,000 moves) is much smaller than the
DragonBox Adaptive dataset (21 million moves), while the
total number of transitions is similar in both.

Nevertheless, we successfully showed that our framework can
be used in a different system with no additional expert au-
thoring, and showed our predictor still performs better than
the Markov predictor.

7. CONCLUSION AND FUTURE WORK
Modeling user behavior in open-ended environments has the
potential to greatly increase undestanding of human learn-
ing processes, as well as helping us better adapt to stu-
dents. In this paper, we present a data-driven individual
policy-learning framework that reduces the burden of hand-
designing a cognitive model and system-specific features.
Our framework automatically selects relevant features from
a default feature set defined on a general state-action graph
structure, and learns an individual policy from the trajec-
tory of a player. We apply our method to predict player
movements in two educational puzzle games and showed
our predictor outperforms a baseline predictor. We also
show that the performance improvement comes not only
from frequently observed movements, but also from sparsely
observed erroneous movements. Finally, we see our robust
feature selection makes the predictor more efficient, power-
ful, and interpretable by investing its resources on a small
set of influential states and relevant features.

We see numerous opportunities for further improvement of
our framework. First, we can experiment with different clas-
sifiers instead of a logistic regressor. Since a logistic regres-
sion model is a single layer artificial neural network (ANN),
we believe using a multi-layered ANN is a natural exten-
sion to improve its predictive power. Using an ensemble of
classifiers would be another way to boost the performance.
Second, we can add more graph navigation features into the
default feature set. A feature specifying whether a transi-
tion is not visited only when it was available to the user is
the first thing to try, because it specifies whether a certain
behavior has been avoided intentionally or if the user sim-
ply did not have an opportunity to make such a choice. A
visit indicator of a specific chain of transitions or the time
spent on a certain state can also be possible features. Fi-
nally, we can try other feature selection techniques. Recur-
sive feature elimination or L1-based feature selection might
produce a better result because univariate approaches, such
as our chi-squared test, do not consider the effect of multiple
features working together [10].

Overall, we are also very interested in building applications
based on our framework. Integrating the individual behav-
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ior predictor into user-specific content generation such as a
personalized hinting system or an adaptive level progression
would be the first step. Moreover, we believe our frame-
work will be also useful in other fields for learning individ-
ual behavior, such as spoken dialogue systems [14], robotic
learning from demonstration [7], and recommender systems
[18].
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player moves in an educational game: A hybrid
approach. In EDM, pages 106–113, 2013.

[16] M. Mavrikis. Data-driven modelling of students’
interactions in an ILE. In EDM, pages 87–96, 2008.

[17] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In User
Modeling, Adaptation, and Personalization, pages
255–266. Springer, 2010.

[18] M. J. Pazzani and D. Billsus. Content-based
recommendation systems. In The adaptive web, pages
325–341. Springer, 2007.

[19] M. Prensky. Computer games and learning: Digital
game-based learning. Handbook of computer game
studies, 18:97–122, 2005.

[20] S. Ritter, T. K. Harris, T. Nixon, D. Dickison, R. C.
Murray, and B. Towle. Reducing the Knowledge
Tracing Space. In EDM, pages 151–160, 2009.

[21] D. W. Shaffer. How computer games help children
learn. Macmillan, 2006.

[22] G. Synnaeve and P. Bessière. A bayesian model for
plan recognition in rts games applied to starcraft. In
Proceedings of the Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE
2011), pages 79–84, 2011.

[23] B. Tastan and G. R. Sukthankar. Learning policies for
first person shooter games using inverse reinforcement
learning. 2011.

[24] N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe,
and L. Schmidt-Thieme. Recommender system for
predicting student performance. Procedia Computer
Science, 1(2):2811–2819, 2010.

[25] N. Thai-Nghe, T. Horváth, and L. Schmidt-Thieme.
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ABSTRACT 

Learners experience a wide array of cognitive and affective 

states during tutoring. Detecting and responding to these states is 

a core problem of adaptive learning environments that aim to 

foster motivation and increase learning. Recognizing learner 

affect through nonverbal behavior is particularly challenging, as 

students display affect across numerous modalities. This study 

utilizes an automatically extracted set of multimodal nonverbal 

behaviors and task actions to predict learning and affect in a data 

set of sixty-three computer-mediated human tutoring sessions. 

Predictive models of post-session self-reported engagement, 

frustration, and learning were evaluated with leave-one-out 

cross-validation. Nonverbal behaviors conditioned on task 

events and typing were found to be more predictive than 

incoming student self-efficacy and pretest score. Face and 

gesture were predictive of engagement and frustration, while 

face and posture was predictive of learning. The nonverbal 

model features captured moments when students were most 

active on the task, such as writing and testing the Java program. 

These results provide initial evidence linking affect, moment-by-

moment multimodal nonverbal behavior, and task performance 

during tutoring. They improve understanding of learner affect 

and enable automated tutorial interventions that adapt to student 

states as a highly effective human tutor would. 

Keywords 

Affect, engagement, frustration, facial expression recognition, 

gesture, posture, multimodal nonverbal behavior, computer-

mediated tutoring 

1. INTRODUCTION 
Mastery-oriented one-to-one human tutoring may provide two 

sigma learning gains [3]. In order to match this high bar of 

expert human tutoring effectiveness, automated tutorial 

interventions may need to be designed with both learner 

knowledge and motivation in mind [5, 9, 12, 31]. Highly 

effective human tutors simultaneously address cognitive and 

affective states of learners, adapting to the appropriate level of 

content difficulty and improving learner motivation through 

personalized instruction [25]. Just as human tutors consider 

more than task performance of the student, it may be necessary 

to bolster automated tutorial interventions with additional 

information regarding learner affect from nonverbal behavior 

[32]. 

Early studies of nonverbal behavior in tutoring relied on manual 

observations of affect and nonverbal behavior [2, 8, 14, 38]. 

More recently, automated techniques have been leveraged to 

track nonverbal behaviors [1, 11, 15, 17, 22]. Most studies have 

examined individual modalities in detail, such as facial 

expression [17, 35], posture [10, 18], or gesture [18, 28]. 

However, a much smaller set of studies has examined multiple 

modalities of nonverbal behavior [1, 11, 22]. It is likely that a 

multimodal combination of automatically tracked affective data 

streams would need to be considered to best adapt to learner 

affect during tutoring [9]. 

Facial expression is a particularly informative modality for 

analysis of affect, as indicated by decades of prior research. 

Many studies have utilized the Facial Action Coding System 

(FACS), a coding manual that describes the fine-grained 

movements of the human face as facial action units (AUs) [13]. 

Recent automated techniques have enabled FACS-based facial 

expression recognition. In particular, the Computer Expression 

Recognition Toolbox (CERT), used in this study, provides a 

state-of-the-art facial expression recognition tool that identifies 

facial action units [27]. CERT was trained using databases of 

spontaneous and posed expressions and has been validated on 

naturalistic video datasets [16, 26, 27]. Thus, frame-by-frame 

facial action unit tracking provides detailed affective 

information that is readily synchronized with additional 

modalities. 

Gestures have been tangentially reported on in the intelligent 

tutoring systems community, but other phenomena were the 

primary focus of those studies [14, 38]. Recent work has begun 

to describe and track cognitive-affective gestures [15, 18, 21, 

28]. This study uses an algorithm that processes three-

dimensional Kinect™ depth images to identify when one or two 

hands contact the lower face [15].  

Posture has been used as an affective feature in multiple 

systems, but interpretation of postural movements is very 

complex [10, 22, 23]. One result replicated across multiple 

studies is that increases in postural movement are linked with 

negative affect or disengagement [10, 15, 33, 38]. Early work 

used expensive pressure-sensitive chairs [22, 38]. Newer 

techniques rely on computer vision to interpret posture from 

video [10, 15, 33]. This study uses an algorithm that processes 

Kinect depth images to identify how far away the student is 

seated [15]. 
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The analysis reported in this paper combines an automatically 

extracted set of multimodal nonverbal behaviors and task actions 

to predict learning and affect in a data set of sixty-three 

computer-mediated human tutoring sessions. Relative 

frequencies of nonverbal behaviors contingent on task events 

and typing statuses were used as predictive features. Model 

averaging identified the top twenty predictive features per 

model. Three models were built using stepwise forward linear 

regression with the Bayesian Information Criterion (BIC) to 

predict retrospective self-reports of engagement and frustration, 

as well as normalized learning gains. The models were evaluated 

with leave-one-out cross-validation. Nonverbal features were 

found to be more predictive than incoming student self-efficacy 

and pretest scores. Face and gesture were predictive of 

engagement and frustration, while face and posture were 

predictive of learning. Additionally, the majority of nonverbal 

predictive features occurred when the student was writing and 

testing the Java program, which shows that these moments may 

be most salient to affect. Further studies in this vein can inform 

the design of automated tutorial interventions in order to adapt 

to student affect as a highly effective human tutor would. 

2. RELATED WORK 
Few studies have examined multimodal nonverbal behavior 

features in a tutoring context. An initial study by Kapoor and 

Picard considered prediction of experienced teacher judgments 

of affect in young student (8-11 years of age) interactions with a 

game, Fripple Place [22]. Face, posture, and task features were 

used in a mixture of Gaussian processes. These models 

performed well at predicting teacher judgments of affect, which 

was an important initial step toward detecting cognitive-

affective states involved in cognitively demanding tasks. 

In research on the AutoTutor intelligent tutoring system, 

multimodal features were used to predict affect labels by expert 

judges [11]. Emotion labels were manually selected using six 

affective states (boredom, confusion, engagement/flow, 

frustration, delight, surprise) and a non-emotional/neutral 

choice at fixed time intervals and spontaneously across thirty-

eight approximately half-hour tutoring sessions. These labels 

were then predicted using a multimodal feature set including 

manually annotated Facial Action Coding System facial 

movements, automatically extracted dialogue features from 

fifteen seconds prior to an emotion label, and automatically 

extracted posture features using a pressure-sensitive chair. The 

fully-featured models of face, dialogue, and posture produced 

the best levels of agreement, with Cohen’s K of 0.33 for fixed 

emotion judgments and 0.39 for spontaneous ones.  

Another line of research has investigated the use of multiple 

sensor technologies with the Wayang Outpost intelligent 

tutoring system [1]. A real-time facial expression analysis tool 

trained on posed cognitive-affective displays, MindReader, was 

used to estimate levels of agreeing, concentration, interest, 

thinking, and unsureness. Additionally, a pressure-sensitive 

mouse, skin conductance bracelet, and pressure-sensitive chair 

were also used. Student cognitive-affective self-reports were 

given during the tutoring session for states of confidence, 

excitement, frustration, and interest. Stepwise regression models 

were constructed across combinations of modalities (including 

tutorial context). The results found that best fit models were 

achieved through combinations of facial expression and tutoring 

context (for confidence, excitement, and interest) and posture 

and tutoring context (for frustration). The corresponding model 

effect sizes for the best fit models ranged from r = 0.54 to 0.83. 

A follow-up validation study was also conducted with a new set 

of students from a different school and a lower age group [7]. 

The results found that the previously used features were only 

partially generalizable to the validation population, with reduced 

accuracies for most features. This underscores the necessity of 

identifying generalizable affective features. 

In contrast with prior studies, this paper presents models 

predicting affective and learning outcomes from moment-to-

moment nonverbal behavior and task performance. This line of 

investigation seeks to identify nonverbal behavioral correlates of 

both affect and learning. The present results indicate that facial 

expression, gesture, and posture may have differing affective 

interpretations based on the tutoring context in which they 

occur. The nonverbal features were found to be more predictive 

than incoming student self-efficacy and pretest score. 

Additionally, the nonverbal features were largely contingent 

upon student work on the programming task, illustrating that 

these moments of student task activity may be most salient to 

affect. Further studies in this vein may produce affect 

recognition that enables detecting and responding to learner 

affect as a highly effective human tutor would. 

3. TUTORING STUDY 
The corpus consists of computer-mediated tutorial dialogue for 

introductory computer science collected during the 2011-2012 

academic year. Students (N=67) and tutors interacted through a 

web-based interface that provided learning tasks, an interface for 

computer programming, and textual dialogue. The participants 

were university students in the United States, with average age 

of 18.5 years (stdev=1.5). The students voluntarily participated 

for course credit in an introductory engineering course, but no 

prior computer science knowledge was assumed or required. 

Each student was paired with a tutor for a total of six sessions on 

different days, limited to forty minutes each session. Recordings 

of the sessions included database logs, webcam video, skin 

conductance, and Kinect depth video. This study analyzes the 

database logs, webcam video, and Kinect depth video from the 

first lesson as a multimodal tutoring corpus, described further in 

Section 4. The JAVATUTOR interface is shown in Figure 1. 

 

Figure 1. The JAVATUTOR interface  
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Figure 2. Facial action units recognized by CERT (left to right): AU1 (Inner Brow Raiser) & AU2 (Outer Brow Raiser),  

AU4 (Brow Lowerer), AU7 (Lid Tightener), AU14 (Mouth Dimpler)

On a day prior to the first tutoring session, students completed a 

set of surveys to measure incoming student characteristics. Two 

of these pre-session survey instruments are analyzed in this 

paper: computer science domain-specific self-efficacy and 

general self-efficacy. The computer science self-efficacy 

measure is comprised of the confidence items from the 

Computer Science Attitude Survey [37]. General self-efficacy 

was measured using the New General Self-Efficacy instrument 

[6]. Before each session, students completed a content-based 

pretest. After each session, students answered a post-session 

survey and posttest (identical to the pretest). The post-session 

survey items included the User Engagement Survey (UES) [30] 

and the NASA-TLX workload survey [20], which included an 

item for Frustration Level. There is a recent validation of the 

UES measure with further information [36]. 

4. MULTIMODAL TUTORING CORPUS 
The tutoring session database logs were combined with 

automated facial action unit tracking on webcam videos and 

gesture and posture tracking across Kinect depth image frames. 

The automated tracking techniques are described in the 

following subsections. The resulting multimodal features are 

described in Section 4.3. 

4.1 Facial Expression Recognition 
A state-of-the-art facial expression recognition tool, the 

Computer Expression Recognition Toolbox (CERT) [19], was 

used for frame-by-frame tracking of a wide variety of facial 

action units. CERT finds faces in a video frame, locates facial 

features for the nearest face, and outputs weights for each 

tracked facial action unit using support vector machines. For a 

detailed description of the technology used in CERT, see [25]. 

The tutoring video corpus is comprised of approximately four 

million video frames totaling thirty-seven hours across the first 

tutoring session. Two session recordings were missing due to 

human error (N=65).  

We previously validated an adjustment to CERT output that 

produced excellent aggregate agreement with manual FACS 

annotations across a subset of five action units [16]. The 

adjustment involves subtraction of the average value for each 

facial action unit as a baseline in order to reduce systematic 

tracking error. While any positive output value indicates that 

CERT recognizes an action unit, we empirically found that a 

higher threshold may reduce false positives. Thus, we consider 

an action unit to be present when the baseline-adjusted CERT 

output is at least 0.25. Examples of the five selected facial action 

units and their FACS codes (e.g., AU1) are shown in Figure 2.  

4.2 Gesture and Posture Detection 
Previously developed posture and gesture tracking techniques 

were applied to the recorded Kinect depth images. The posture 

tracking algorithm was previously evaluated to be 92.4% 

accurate, while gesture tracking was found to be 92.6% accurate 

[15]. The tracking algorithms were run on all sessions, but four 

sessions had no Kinect recordings due to human error (N=63). 

Examples of one-hand-to-face and two-hands-to-face gestures 

are shown in Figure 3. 

  

Figure 3. Examples of hand-to-face gestures 

The median head distance of students at each workstation was 

selected as the “mid” postural position. Distances at one 

standard deviation (or more) closer or farther than “center” were 

labeled as “near” or “far,” respectively. Additionally, postural 

movements were identified based on acceleration of the head 

tracking point. The absolute sum of frame-to-frame acceleration 

was accumulated in a rolling one-second window at each frame. 

The average amount of acceleration in a one-second interval was 

computed across all students. If acceleration in the present 

interval was above average, it was marked as a postural 

movement (POSMOVE). Average frequencies of gesture and 

posture features are shown in Table 1. Students tended to spend 

more time in a MID postural position and most frequently did 

not display a hand-to-face gesture. Additionally, students moved 

less than average during each interval, indicating that there were 

short moments of high movement that raised the average.  
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Table 1. Average frequency of gesture and posture features 

Feature Avg. Freq. Feature Avg. Freq. 

NEAR 15% ONEHAND 16% 

MID 68% TWOHANDS 5% 

FAR 17% NOGESTURE 79% 

POSMOVE 29%   

NOMOVE 71%   

4.3 Multimodal Features 
The automatically recognized nonverbal behaviors were 

combined with task-related features in order to form the 

multimodal tutoring corpus. As students worked on 

programming tasks, the database logged dialogue messages, 

typing, and task progress. Tutorial dialogue occurred at any time 

during the sessions, with student and tutor messages sent 

asynchronously (STUDENTMSG and TUTORMSG, respectively). 

As a student completed the programming task, he or she would 

also press a compile button to convert the Java program code 

into a format that is ready to run. These compile attempts may 

be successful (COMPILESUCCESS) or fail due to an error in the 

program code (COMPILEERROR). The student would also run his 

or her program (RUNPROGRAM) in order to test the output and 

interact with it. In parallel with the task events described above, 

the database logged whether the student was typing at any given 

moment. The student may not be typing anything (NOTTYPING), 

working on the program code (CODING), or typing a message to 

the tutor (TYPINGMSG) at each moment. Additionally, the 

student was considered to have paused on the task if he or she 

had made changes to the program and then stopped. This sort of 

break may be due to the student having resolved the current task, 

taking a moment to think, or going off-task; therefore, it was 

introduced as a task event (TASKPAUSE). The average frequency 

of each task event and typing status is shown in Table 2. The 

majority of time intervals occurred after tutor messages and 

when students were not typing. These majority events represent 

moments when the student may have been reading the task 

description or reflecting on tutor messages. Tutors were also 

more active in the dialogue than students, resulting in more time 

following tutor messages. 

Table 2. Average frequency of task events and typing status 

Task Event 
Avg. 

Freq. 

Typing 

Status 

Avg. 

Freq. 

COMPILEERROR 1.7% CODING 15% 

COMPILESUCCESS 2.1% TYPINGMSG 12% 

RUNPROGRAM 7.9% NOTTYPING 73% 

STUDENTMSG 26.4%   

TUTORMSG 53.1%   

TASKPAUSE 8.8%   

Task events and typing statuses were combined with nonverbal 

behaviors at one-second intervals across each tutoring session. 

The most recent event of a given type (nonverbal, task, typing) 

was counted as the current value at each interval. For instance, if 

a student had been typing but stopped after half a second into the 

current interval, the typing status would be assigned to 

NOTTYPING.  

A tutoring session excerpt is shown in Figure 4. The excerpt 

shows a rich set of nonverbal behaviors occurring around 

student work on the programming task. This student produced a 

variety of facial expressions, particularly when examining and 

testing the Java program. Additionally, the student performed a 

one-hand-to-face gesture prior to compiling the program. The 

corresponding multimodal features for a segment of the excerpt 

are shown in Figure 5 (top of next page). The multimodal 

feature vectors cover a twelve-second segment from the excerpt. 

26:54 Tutor: ready? 

26:59 Student: yes!  [Student starts coding] 

28:02 Student: TASKPAUSE  [Student stops coding] 

28:03 Student: GESTURE: ONEHANDTOFACE;  

FACE: AU2 & AU14 

28:12 Student: TASK: COMPILESUCCESS; FACE: AU2 

28:14 Student: FACE: AU14 

28:17 Student: TASK: RUNPROGRAM; FACE: AU1 

28:19 Student: FACE: AU7 

28:21 Tutor: excellent 

Figure 4. Tutoring session excerpt 

Relative frequencies of nonverbal behavior were calculated 

separately for task events and typing status. For instance, at each 

one-second time interval, AU1 was marked as present or absent. 

Each interval was associated with a task event, with frequency 

counts tabulated across all task events. The relative frequency of 

AU1 presence and absence was computed across these task-

contingent counts. Thus, the percentages of time intervals 

occurring with specific task events and particular values of AU1 

presence or absence sum to one hundred percent. For instance, 

one student may have AU1 after RUNPROGRAM 2.12% of the 

time and NOAU1 after RUNPROGRAM 3.24% of the time. These 

relative frequencies sum to one hundred percent when combined 

with the remainder of task-contingent relative frequencies of 

AU1. Relative frequencies were similarly computed across 

typing statuses for each nonverbal behavior. Thus, the relative 

frequencies account for the percent of time in which a student 

displayed a nonverbal behavior after a specific task event or 

during a particular typing status (i.e., a student with a 5% 

relative frequency of ONEHAND after TUTORMSG in a thirty 

minute session would have displayed a one-hand-to-face gesture 

for a total of ninety seconds after tutor messages). This resulted 

in a set of one hundred and sixty-two nonverbal features 

contingent upon task events and typing statuses. The distribution 

of these multimodal features across nonverbal behaviors, task 

events, and typing statuses is shown in Table 3. 

Table 3. Counts of multimodal features across nonverbal 

behaviors, task events, and typing statuses 

 Task Event Typing Status 

AU1 12 6 

AU2 12 6 

AU4 12 6 

AU7 12 6 

AU14 12 6 

GESTURE 18 9 

POSTURE 18 9 

POSMOVE 12 6 
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 28:08 28:09 28:10 28:11 28:12 28:13 28:14 28:15 28:16 28:17 28:18 28:19 

AU1          AU1 

AU2 AU2   AU2 

AU4             

AU7            AU7 

AU14 AU14  AU14   

ONEHAND ONEHAND  

TWOHAND             

POSTURE FARPOSTURE 

POSMOVE             

TASK TASKPAUSE COMPILESUCCESS RUNPROGRAM 

TYPING             

Figure 5. Multimodal feature vectors for a twelve-second segment of tutoring: gray shading indicates presence of a nonverbal 

behavior, task event, or typing. Time is shown in minutes and seconds from the beginning of the tutoring session. 

 

5. PREDICTIVE MODELS 
Fine-grained analyses of multimodal affective expressions are 

enabled by automated tracking of nonverbal behavior. Such 

analyses have the potential to reveal previously undiscovered 

ways in which affective displays relate to task performance, 

learning, and affective outcomes within a tutoring context. For 

instance, the same affective expression may have different 

causes depending on the tutoring context. As a first step toward 

examining the fine-grained tutoring context of learner affective 

displays, predictive models of affective and learning outcomes 

were constructed using the multimodal tutoring corpus, in which 

facial expression, gesture, and posture are combined with task 

actions. 

Initial feature selection was performed using model averaging in 

JMP statistical software, which created regression models for all 

possible combinations of predictive variables [34]. Model 

averaging is used to identify and remove weakly predictive 

variables across all models. Specifically, the twenty most 

predictive variables were selected using the average coefficient 

estimate from models with one, two, or three predictive 

variables. The predictive models were then constructed using 

minimum Bayesian Information Criterion (BIC) in forward 

stepwise linear regression. These models are conservative in 

how they select predictive features because the explanatory 

value of added parameters must offset the BIC penalty for model 

complexity. Thus, model averaging was used to identify the 

most generally predictive variables, while minimum BIC was 

used to constrain model complexity. Tutoring outcomes 

(engagement, frustration and learning) were the dependent 

variables. All variables were standardized (i.e., centered on the 

mean and scaled to unit standard deviation) to enable 

comparison. The predictive models shown in the following sub-

sections have been constructed using the entire corpus, with 

associated regression coefficients and R2 values. Additionally, 

leave-one-out cross-validated R2 values were computed using 

the same predictive variables (but different coefficients in each 

fold) to examine generalizability of the predictive models. 

5.1 Predicting Engagement 
Each student’s Engagement score was the sum of the Focused 

Attention, Felt Involvement, and Endurability sub-scales in the 

User Engagement Survey [30] administered following the 

tutoring session. This model only uses self-reports of 

engagement from students who fully completed the User 

Engagement Survey (N=61). The predictive model of 

engagement was composed of three features, including students’ 

incoming computer science self-efficacy, one-hand-to-face 

gestures after successful compile, and brow lowering (AU4) 

after sending a student dialogue message. Each of the nonverbal 

features explains more variance than the trait-based feature of 

computer science self-efficacy. This seems to indicate that state-

based nonverbal features are more indicative of engagement. 

The cross-validated model effect size was r = 0.39. The model is 

shown in Table 4. 

Table 4. Stepwise linear regression model for Engagement 

Engagement = Partial R2 Model R2 p 

0.31 * ONEHAND after 

COMPILESUCCESS 
0.10 0.10 0.009 

-0.31 * AU4 after 

STUDENTMSG 
0.09 0.19 0.008 

0.27 * Computer 

Science Self-Efficacy 
0.07 0.26 0.020 

~0 (intercept) 0.959 

RMSE = 0.88 standard deviations in Engagement 

Leave-One-Out Cross-Validated R2 = 0.15 

5.2 Predicting Frustration 
The Frustration Level scale from NASA-TLX [20] was the 

student’s retrospective self-report of how insecure, agitated or 

upset he or she was during the tutoring session. The predictive 

model of frustration included students’ incoming general self-

efficacy and two features that accounted for the absence of 

nonverbal behavior. The sole feature predictive of higher 

frustration corresponded with compile errors, which intuitively 

may be frustrating. The absence of brow lowering (AU4) after 

running the Java program reinforces a prior result that indicated 

AU4 as a marker of frustration [17]. Also, students with higher 

general self-efficacy tended to have less frustration, as 

represented in the model. The cross-validated model effect size 

was r = 0.41. The model is shown in Table 5. 
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Table 5. Stepwise linear regression model  

for Frustration 

Frustration = Partial R2 Model R2 p 

-0.42 * General Self-

Efficacy 
0.14 0.14 0.004 

-0.56 * NOAU4 after 

RUNPROGRAM 
0.08 0.22 0.004 

0.42 * NOGESTURE after 

COMPILEERROR 
0.08 0.30 0.011 

~0 (intercept) 1.000 

RMSE = 0.85 standard deviation in Frustration Level 

Leave-One-Out Cross-Validated R2 = 0.17 

5.3 Predicting Learning Gain 
Normalized learning gain measures how much a student learned 

relative to what he or she could have learned [29]. This accounts 

for relative differences in learning between students who scored 

high or low on the pretest. Normalized learning gain was 

computed using the following formula if posttest score was 

greater than pretest score: 

NLG = Posttest - Pretest  

         1 – Pretest 

Otherwise, normalized learning gain was computed as follows: 

NLG = Posttest – Pretest 

      Pretest 

The predictive model of normalized learning gain is the only one 

of the three to include postural features. These features indicate 

that MID and FAR postural positions are predictive of learning, 

though whether they are positive or negative predictors is 

dependent upon the tutoring context. Mouth dimpling (AU14) 

after running the Java program was predictive of learning. This 

supports a prior result that AU14 is positively associated with 

learning [17]. Finally, general self-efficacy predicted higher 

learning gains. The cross-validated model effect size was r = 

0.62. The model is shown in Table 6. 

Table 6. Stepwise linear regression model for Normalized 

Learning Gain 

Norm. Learning Gain = Partial R2 Model R2 p 

0.10 * AU14 after 

RUNPROGRAM 
0.11 0.11 0.004 

0.10 * General Self-

Efficacy 
0.08 0.19 0.002 

-0.12 * MIDPOSTURE 

after COMPILEERROR 
0.08 0.27 <0.001 

-0.21 * FARPOSTURE 

during CODING 
0.04 0.31 <0.001 

0.20 * FARPOSTURE after 

COMPILESUCCESS 
0.18 0.49 <0.001 

0.43 (intercept) <0.001 

RMSE = 0.24 std. dev. in Normalized Learning Gain 

Leave-One-Out Cross-Validated R2 = 0.38 

6. DISCUSSION 
The results demonstrate that nonverbal behaviors at specific 

moments in the tutoring session are predictive of engagement, 

frustration, and learning. The combination of task events, 

typing, and nonverbal behaviors in multimodal features is 

predictive beyond incoming student characteristics, such as 

pretest score and self-efficacy. Additionally, the affective 

valence (positive or negative) of the nonverbal behaviors 

depended upon the tutoring context in which they occurred. 

The predictive model of engagement was composed of three 

features, including students’ incoming computer science self-

efficacy, one-hand-to-face gestures after successful compile, and 

brow lowering (AU4) after sending a student dialogue message. 

One-hand-to-face gestures may have different affective valence 

depending on the physical position of the hand. A student may 

rest his/her head on the hand as a sign of boredom [2], or touch 

his/her chin in a moment of contemplation [28]. Here, one-hand-

to-face gestures after compile success were predictive of higher 

post-session self-report of engagement. This may coincide with 

student focus on the programming task. In the moments after 

updating the program code and compiling it, the student is no 

longer typing and may then reflect on current progress. Brow 

lowering (AU4) after the student sends a dialogue message, on 

the other hand, was a predictor of lower engagement. This may 

indicate that a student is having difficulty with the subject 

matter, most likely responding to a tutor message (in this corpus, 

tutor messages were predominant and students rarely took 

initiative in the dialogue). Both of the nonverbal features were 

more predictive than computer science domain-specific self-

efficacy, which was associated with greater engagement. 

Frustration was significantly predicted by general self-efficacy. 

Higher levels of general self-efficacy coincided with lower post-

session reports of frustration. Students with higher general self-

efficacy are more confident in their ability to complete difficult 

tasks and therefore may be less intimidated by a novel learning 

task. However, inclusion of two nonverbal features doubled the 

explanatory power of the model. Each of the nonverbal features 

captured absence of nonverbal behaviors after specific task 

events. Absence of brow lowering (AU4) after running the Java 

program was predictive of lower frustration. At this point, the 

student is testing the program to see whether it matches his/her 

expectation. A prior result on this tutoring corpus found that 

AU4 was an indicator of frustration. Therefore, the present 

result supports that finding, but also provides a specific tutoring 

context (running the program) that is particularly meaningful for 

frustration. The sole feature predictive of higher frustration 

corresponded with compile errors (which occur when the 

program is incorrect). This correspondence between compiling 

the program and frustration is similar to results of prior analyses 

of student emotions during computer programming [4, 24]. Not 

all students had compile errors, so this feature represents those 

students who may have found the task to be more difficult. The 

absence of gestures after compile errors may be due to swift 

tutor interventions to remediate problems with the program. In 

this case, a student may feel frustrated due to overly active 

tutoring strategies. 

Normalized learning gain was predicted by a combination of 

students’ incoming general self-efficacy, mouth dimpling 

(AU14) after running the program, and three posture-related 

features. The model shows that students with more general 

confidence in their ability to complete novel and difficult tasks 
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tended to learn more than their peers. Displays of AU14 after 

running the program also were predictive of higher learning 

gain. Two aspects of AU14 discovered in prior results may shed 

light on this. First, occurrence of AU14 in general was 

associated with greater learning gain [16]. Second, AU14 in the 

first five minutes of tutoring was correlated with higher 

frustration, while AU14 in the last five minutes of tutoring was 

correlated with greater learning gain [17]. Running the program 

occurs most frequently during the later portion of the session. 

So, AU14 displays after running the program may also occur 

toward the end. With this timing-related interpretation, it may be 

that continued mental effort throughout the tutoring session is 

reflected in displays of AU14. Further study of AU14 may 

confirm whether it is generally an indicator of mental effort. 

The posture-related features included both MID and FAR 

distances. These postural positions may encode information 

beyond whether a student is sitting at a certain distance from the 

computer. For instance, when a student is sitting at MID 

distance, the shoulders may be hunched or the student may have 

a straight back. FAR postural position was both predictive of 

higher learning gain (when occurring after compile success) and 

lower learning gain (when present during coding). It may be that 

bored students slouched in a FAR position during coding, while 

relaxed (but active) students were similarly farther back. New 

tracking methods may be developed to disambiguate these 

subtleties of posture. Interestingly, postural position was 

predictive of learning, but moment-to-moment postural 

movement was not. Discretization across one-second intervals 

may not have adequately captured brief postural movements. 

The predictive models largely include nonverbal features that 

occur around moments of student work on the programming 

task. These may be pivotal moments on a student’s path to 

learning, as students are actively working on the task and 

confirming whether the program works as intended. Prior results 

in analysis of skin conductance on this tutoring corpus showed 

that students’ physiological responses to compile attempts and 

failures were associated with learning and frustration [19]. The 

predictive models presented in this paper further underscore the 

importance of tutoring context in interpretation of nonverbal 

behavior. 

7. CONCLUSION 
This paper presented a multimodal analysis of automatically 

recognized nonverbal behaviors and task events. State-of-the-art 

facial expression recognition was leveraged, along with depth 

video-based gesture detection and posture tracking algorithms, 

in order to automatically annotate nonverbal behaviors across a 

corpus of sixty-three tutoring sessions. Multimodal feature 

vectors were constructed at one-second intervals, including 

facial expression, gesture, posture, the most recent task event, 

and whether the student was typing. These features were then 

used to predict post-session engagement, frustration, and 

learning outcomes. The results show that multimodal nonverbal 

behavior features are predictive of affect and learning beyond 

student incoming characteristics, such as self-efficacy and 

pretest scores. 

These results are a first step toward understanding the 

relationship between affect, moment-by-moment nonverbal 

behavior, and task performance during tutoring. The multimodal 

data streams included nonverbal behavior (facial expression, 

gesture, posture) and task logs (discrete task events, typing 

status) across time intervals. This approach provides a basis for 

triangulating learner affect from multimodal time sequence data. 

The fine-grained data collected on task performance and 

nonverbal behavior provides an estimation of learners’ 

underlying real-time cognitive and affective processes.  

Further research may identify how facial expressions co-occur 

and provide further validation of fine-grained tracking of facial 

movements. Additionally, spatiotemporal features of gesture and 

posture have only just begun to be explored. Future work may 

disambiguate between different types of one-hand-to-face and 

two-hands-to-face gesture, as well as tracking more detailed 

postural information, such as slouching and leaning. Human 

tutors innately employ knowledge of nonverbal behavior, thus 

research in this vein brings the capabilities of automated tutorial 

intervention closer to those of human tutors. This line of 

investigation informs our understanding of learner affect and 

enables affective interventions that intelligently model 

nonverbal behavior and task actions, as a highly effective human 

tutor would. 
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ABSTRACT
Sentiment analysis is one of the great accomplishments of
the last decade in the field of Language Technologies. In this
paper, we explore mining collective sentiment from forum
posts in a Massive Open Online Course (MOOC) in order
to monitor students’ trending opinions towards the course
and major course tools, such as lecture and peer-assessment.
We observe a correlation between sentiment ratio measured
based on daily forum posts and number of students who
drop out each day. On a user-level, we evaluate the impact
of sentiment on attrition over time. A qualitative analysis
clarifies the subtle differences in how these language behav-
iors are used in practice across three MOOCs. Implications
for research and practice are discussed.

Keywords
Sentiment analysis, Opinion mining, Massive Open Online
Course, MOOC, Forum posts

1. INTRODUCTION
Working towards improving MOOCs, it is important to know
students’ opinions about the course and also the major course
tools. Based on opinions extracted from students’ reviews,
previous work illustrates that the most important factor to
students is who is teaching the course [1]. However, for a
given MOOC that will be offered again by the same instruc-
tor team, it is more critical to know what can be improved in
the course. Recent research on social media use has demon-
strated that sentiment analysis can reveal a variety of behav-
ioral and affective trends. For example, collective sentiment
analysis has been adopted to find the relationship between
Twitter mood and consumer confidence, political opinion
[20], and stock market fluctuations [5]. Course forums pro-
vide students with the chance to engage in social learning
in MOOCs [6]. Analyzing the data from this part of the
course, we can infer important information about attitudes
prior to and even in the absence of post-course surveys [31].
The contribution of this paper is an investigation into what

sentiment analysis can tell us about the students’ opinions
towards the course. We also analyze the impact of sentiment
on attrition over time in MOOCs using a survival modeling
technique.

Despite the great potential, the current generation of MOOCs
has so far failed to produce evidence that the potential is be-
ing realized. Of particular concern is the extremely high rate
of attrition that has been reported. Much of this research fo-
cuses specifically on summative measures of attrition. They
seek to identify factors that predict completion of the course,
for example, by conducting correlational analysis between
course completion and click stream evidence of engagement
with course activities [12]. However, what we see is that
attrition happens over time. While a large proportion of
students who drop out either fail to engage meaningfully in
the course materials at all or drop out after the first week
of participation, a significant proportion of students remain
in the course longer than that but then drop out along the
way. This suggests that there are students who are strug-
gling to stay involved. Supporting the participation of these
struggling students may be the first low hanging fruit for in-
creasing the success rate of these courses. Before we can do
so, we need to understand better their experience of partic-
ipation along the way as they struggle and then ultimately
drop out. Thus, in this paper we employ a survival modeling
technique to study various factors’ impact on attrition over
course weeks.

As a reflection of student experience communicated through
their posts, we investigate sentiment expressed in course fo-
rum posts. While the association between sentiment with
summative course completion has been evaluated in prior
work [24], and while the impact of other linguistic measures
and social factors on attrition over time has been published
as well[31, 26], this is the first work we know of that has
brought this lens to explore what sentiment can tell us about
drop out along the way in this type of environment. In par-
ticular, we explore this connection across three MOOCs in
order to obtain a nuanced view into the ways in which sen-
timent is functioning similarly and differently or signaling
similar and different things across these three courses. Our
goal is for this analysis to reflect some of the flexibility in
how these linguistic constructs are used in practice in order
to inform application of such techniques in future analysis
in this community.

In the remainder of the paper, we begin by describing our
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dataset and discussing related work. Next, we explain how
a collective sentiment analysis can reflect students’ attitudes
towards the course and course tools. In light of the collective
sentiment analysis, we continue with a survival analysis that
shows what sentiment can tell us about drop out along the
way in MOOC environments. Finally, we conclude with a
summary and possible future work.

2. COURSERA DATASET
The data used for the analysis presented here was extracted
from three courses by permission from Coursera.org using
a screen scraping protocol. The three courses cover a wide
range of topics. Our dataset consists of three courses: one
social science course, Accountable Talk: Conversation that
works1, offered in October 2013. We refer to this course as
the Teaching course; one literature course, Fantasy and Sci-
ence Fiction: the human mind, our modern world2, offered
in June 2013. We refer to this course as the Fantasy course;
one programming course, Learn to Program: The Funda-
mentals3, offered in August 2013. We refer to this course
as the Python course. Statistics about the three courses are
listed in Table 1.

3. RELATED WORK
3.1 Sentiment Analysis for Social Media
Affect mined from Facebook and Twitter posts is known to
be reflective of public behavior and opinion trends [20, 5].
The results generated via the analysis of collective mood
aggregators are compelling and indicate that accurate pub-
lic mood indicators can be extracted from online materials.
Sentiment analysis has been used as an invaluable tool for
identification of markers of affective responses to crisis [10],
as well as depression [9], anxiety, and other psychological dis-
orders [8] from social media sites. Using publicly available
online data to perform sentiment analyses requires far less
cost in terms of effort and time than would be needed to ad-
minister large-scale public surveys and questionnaires. Most
MOOCs offer course forums as a communication and learn-
ing tool. While only a small percentage of students actively
participate in the threaded discussions, if course instructors
can use automated analysis of those posts as a probe that
indicates whether things are going well in the course, and
the analysis reveals something about what the issues are,
they will be better prepared to intervene as necessary.

3.2 Sentiment Analysis for Educational Data
Mining

Mackness et al. [15] posed the question of how to design a
MOOC that can provide participants with positive experi-
ences. Most of the prior work that addresses this question
involved conducting surveys and interviews [25, 2]. In con-
trast, in some prior E-learning research, automatic text anal-
ysis, content analysis and text mining techniques have been
used to mine opinions from user-generated content, such as
reviews, forums or blogs [27, 4, 11]. Attitude is important
to monitor since learners with a positive attitude have been
demonstrated to be more motivated in E-learning settings
[18]. Correspondingly, previous work reveals that boredom

1https://www.coursera.org/course/accountabletalk
2https://www.coursera.org/course/fantasysf
3https://www.coursera.org/course/programming1

MOOC Active Total Total Avg. Posts
Users Days Posts Per Day

Teaching 1,146 53 5,107 96
Fantasy 771 43 6520 152
Python 3,590 49 24963 510

Table 1: Statistics of the three Coursera MOOCs.
Active users refer to those who post at least one
post in a course forum.

was associated with poorer learning and problematic behav-
ior. In contrast, frustration was less associated with poorer
learning [3]. Based on user-generated online textual reviews
submitted after taking the courses, Adamopoulos [1] has ap-
plied sentiment analysis to collect students’ opinions towards
MOOC features such as the course characteristics and uni-
versity characteristics. In that work, the goal was to de-
termine which factors affect course completion, it is also
important to address the related but different question of
what can be improved when the course is offered again.

Given the recent work on MOOC user dropout analysis, very
little has attempted finer-grained content analysis of the
course discussion forums. Brinton et al. [6] identified high
decline rate and high-volume, noisy discussions as the two
most salient features of MOOC forum activities. Ramesh
et al. [24] use sentiment and subjectivity of user posts to
predict engagement/disengagement. However, neither senti-
ment nor subjectivity was strongly predictive of engagement
in that work. One explanation is that engaged learners also
post content with negative sentiment on the course, such as
complaints about peer-grading. Thus, the problem is more
complex than the operationalization used in that work. Tak-
ing the analysis a step further to explore such nuances is the
goal of this paper.

4. METHOD
This work reflects on how sentiment analysis can be useful
in a MOOC context. On the course-level, we use collec-
tive sentiment analysis, which has been successfully applied
in many social media investigations, to explore the relation
between opinions expressed by students and the students’
dropout rate. To help MOOC instructors collect students’
opinions towards various course tool designs, we extract the
positive and negative sentiment words that are associated
most with the course tool topic keywords. In order to un-
derstand the impact of sentiment on the user-level, we adopt
survival analysis to to examine how sentiment that members
have expressed and are exposed to in a particular week pre-
dicted their continued participation in the forum discussion.

4.1 Course-level Sentiment Analysis: Collec-
tive Sentiment Analysis

In this section we first describe how we use collective sen-
timent analysis to study students’ attitudes towards the
course and course tools based on forum posts. To improve
MOOC design, it is important to obtain feedback from stu-
dents. Most MOOCs conduct post-course surveys where
students’ opinions towards the course are elicited. However,
only a very limited portion of students who registered for the
course will actually fill out the survey. A discussion forum is
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MOOC Course Lecture Assig- Peer-
nment assessment

Teaching 820 725 904 97
Fantasy 731 327 2515 375
Python 1430 2492 3700 -

Table 2: Number of course tool-related posts in the
three courses’ forums. The Python course did not
implement peer-assessment.

a natural place where students convey their satisfaction or
dissatisfaction with the course. Can we analyze forum posts
to infer students’ opinions towards the course in the same
manner that post-course surveys elicit such feedback from
the students? If so, then tracking students’ opinion based on
daily forum post content could be a far more timely alter-
native to post-course surveys, and may provide a less biased
view of the course because it would have the opportunity
to capture the attitude of students who drop out before the
post-course survey is administered.

Sentiment polarity analysis techniques applied to individual
messages may make many errors, partly due to the extent
to which the text is taken out of context. However, with
a large number of such measurements aggregated together,
the errors might cancel, and the resulting composite indi-
cator may be a more faithful indicator of public opinion.
In previous work on text-based social media sites, summary
statistics derived from similarly simple sentiment analysis
are demonstrated to correlate with many objective measures
of population level behaviors and opinions [20, 21]. In this
section, we use sentiment analysis to understand students’
opinion towards the course and course tools.

4.1.1 Setting
To extract students’ aggregate opinions on a topic, we need
to first identify posts relating to a topic (post retrieval step).
Then we need to estimate the opinion of these posts (opin-
ion estimation step). Following the same methodology used
in previous work [20], in the post retrieval step, we only use
messages containing a topic keyword. To decide which topic
keywords to use for each course tool of interest, we run a
distributional similarity technique called Brown clustering
[7, 13] on all three courses’ posts in order to identify clus-
ters of words that occur in similar contexts. It is concep-
tually similar to Latent Semantic Analysis, but is capable
of identifying finer grained clusters of words. From the re-
sults, we construct keyword lists for topics by starting with
hand-selected keywords, and then finding the clusters that
contain those words and manually choosing the words that
are human-identified as being related to the same topic. The
numbers of posts retrieved for each topic are shown in Table
2.

• For Course topic, we use “the course”, “this course”,
“our course” and the name of each MOOC.

• For Lecture topic, we use “lecture” and “video”.

• For Assignment topic, we use “assignment”, “essay”,
“reading” and “task”.

• For Peer-assessment topic, we use “peer assessment”,
“peer grading”, “assess your peer”, “peer score”, “peer
feedback”, “peer review” and “peer evaluation”.

In the opinion estimation step, for each set of posts that are
related to a topic, we define the topic sentiment ratio xt

on day t as the ratio of positive versus negative words used
in that day’s post set. Positive and negative terms used in
this paper are defined by the sentiment lexicon from [14], a
word list containing about 2,000 and 4,800 words marked as
positive and negative, respectively.

xt =
Total poistive terms

Total negative terms

Day-to-day, the topic sentiment ratio rapidly rises and falls
each day. In order to derive a more consistent signal, and
following the same methodology used in previous work [20],
we smooth the sentiment ratio with one of the simplest pos-
sible temporal smoothing techniques, a moving average over
a window of the past k days:

MAt =
1

k
(xt−k+1 + xt−k+2 + ... + xt)

The moving average of sentiment ratio MAt is our estima-
tion of collective opinion expressed by the students in the
course forum during day t.

4.1.2 Results
Part 1. Opinion towards the course
In this section, we explore the correlation between collective
opinions mined from the forum posts and objective measures
related to students’ actual opinions.

To objectively measure students’ opinions towards the course,
we count how many students drop out of the course each day
based on the students’ login information. Here we consider
that a student drops the course on day t if the student’s last
login date of the course is on day t. There are many stu-
dents who just register for a course to see what it is about,
without serious intention of actually taking the course. The
number of students who drop out in the first week is much
larger than the other weeks. We calculate the correlation
between the number of users who drop the course and the
Course sentiment ratio (MAt) starting from course week 2
until the last course day in order to avoid the analysis being
muddied by the very different factors that affect dropout in
the first week.

In the Teaching course we can operationalize drop out in
two different ways because we have both forum data and
login data. In the other two courses, we have only forum
data. Thus, we are able to measure the correlation between
sentiment and dropout two different ways in the Teaching
course, which enables us to understand how these two op-
erationalizations may reveal different patterns, and then we
can use that understanding to interpret what we find in the
other two courses.

First we explore how sentiment shifts over the seven weeks
of each course. In Figure 1, we show how the number of
students who drop out and the Course topic sentiment ra-
tio vary from day-to-day. In all three courses, Course sen-
timent ratio is much higher during the last course week.
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Course Lecture Assignment Peer-assessment
Teaching Pos incredibly,benefits incredibly,benefits,richer substantive,benefits smart,kudos,praise

enjoyment,richer,greatest guarantee,gaining rich,soft,gaining prominent,mastery
Neg missed,negative,low-rated breaking,worry,missed struggles,taxing,poor riled,worry,missed

taxing,superficial challenging,thoughtless struggled,unacceptable challenging,conflict

Fantasy Pos avidly,incredibly,substantive incredibly,kudos,smart masterfully,avidly,substantive consistent,benefits,richer
benefits,guarantee beauteous,consistent guarantee,admiration competitive,richer,balanced

Neg damnation,lie,missed lie,breaking,wrong shortcomings,confuse negative,frustrating,wrong
belated,negative anxious,worry creeping,menace,flaky invasive,hate

Python Pos self-satisfaction,impresses remedy,convenient,merit incredibly,guarantee,richer -
providence,kudos,smart gaining,smartest benefits,proud -

Neg forbidden,unforeseen,worry embarrassing,worry, unforeseen,confuse,bug -
breaking,challenging challenging,missed swamped,shock -

Table 3: Sentiment words associated most with each course tool.
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Figure 1: Moving average MAt of Course topic sen-
timent ratio and number of students who drop out
over course weeks. Window size k equals 3.
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Figure 2: Trends of total number of course tool re-
lated posts.
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Because many students post “thank you” and positive feed-
back towards the course during the last course week. First
we consider a student to drop out from the course forum
if the student posts his/her last post on day t. Across
all three courses, we observe a trend in the expected di-
rection, namely that higher sentiment ratios are associated
with fewer dropouts, which is significant in two out of the
three courses(r = -0.25, p < 0.05 for the Teaching course;
r = -0.12 for the Fantasy course(Figure 1(b)); r = -0.43, p
< 0.01 for the Python course(Figure 1(c))). In the Teach-
ing course, where we can determine dropout more precisely
from login information, we see a stronger correlation(r = -
0.39, p < 0.01). This analysis serves as a validation that the
collective sentiment extracted from these posts can partly
reflect the opinion of the entire student population towards
the course.

Part 2. Opinion towards the course tools
As important components of the course, the course tools
have a big impact on a student’s experience in a MOOC.
For example, peer-assessment serves as a critical tool for
scaling the grading of complex, open-ended assignments to
MOOCs with thousands of students. But it does not al-
ways deliver accurate results compared to human experts
[22]. In the Fantasy course, we see heated discussions about
peer-assessment during course week 3 and week 4 when peer-
assessment was conducted. One discussion thread with the
title “Why I’m dropping out (the fundamental issue is the
peer grading)” got more than 50 comments and many stu-
dents expressed their opinions after receiving their peer grades
in that thread.

Though one could be generally happy about the course,
he/she might not be satisfied with a certain course tool. In
many MOOCs’ post-course surveys, students are required
to separately rate the course tools such as lecture, assign-
ment and peer-assessment. Then the instructors are able to
obtain summative feedbacks on various course components.
In the course discussion forums, students naturally express
their opinions towards these course tools. We show the to-
tal number of related posts for each course in Table 2. It is
impossible for course instructors to read hundreds or even
thousands of potentially related-posts. In this session, we
try to extract the most prominent opinions associated with
each course tool from these posts.

In Figure 2, we show the number of topic-related posts on
each course day. Across the three courses, all topics have
a weekly cyclical structure, occurring more frequently on
weekdays, especially in the middle of the week, compared
to weekends. Talk about assignments is the most frequent
topic since TAs post weekly discussion threads for students
to discuss assignments.

For each course tool, we extract the positive and negative
sentiment words that associate most frequently with the
course tool topic keywords. We rank the sentiment words by
the Pointwise Mutual Information (PMI) [16] between the
word and the topic keyword:

PMIw,TopicKeyword =
P (w, TopicKeyword)

P (w)P (TopicKeyword)

Where P (w, keyword) is the probability of the sentiment

word w and a topic keyword appears in the same post; P (w)
is the probability of a sentiment word w appears in a post;
P (TopicKeyword) is the probability that at least one topic
keyword appears in a post. We show the top five sentiment
words that are most frequently associated with the course
tool topic keywords in Table 3. We can see that some of
the words are wrongly identified as sentiment words, such
as “lie”, “missed” and “soft”. From the table we can identify
some of the merits and problems of a course tool. These
representative sentiment words can complement the rating
obtained from the post-course survey.

4.2 User-level Sentiment Analysis: Survival Anal-
ysis

In the previous section, we measured sentiment and dropout
on a course-level. Our goal in this section is to understand
how expression of sentiment relates to attrition over time
in the MOOCs on a user-level. We apply survival analysis
to test if students’ attitudes as expressed in their posts or
the ones they are exposed to correlate with dropout from
the forum discussion. Recent work has questioned the im-
pact of course forum flaming on students in MOOC courses
[29]. We explore sentiment as it relates to an individual’s
own posts during a week as well as to the other posts that
appear on the same thread as that individual’s posts during
the same period of time. While we cannot be sure that the
student read all and only the other posts appearing on the
same threads where that student posted during a week, this
provides a reasonable proxy for what conversational behav-
ior a student was exposed to within a period of time in the
absence of data about what students have viewed. A similar
approach was used in a previous analysis of social support
in an online medical support community [30].

4.2.1 Survival Analysis Setting
In our survival model, the dependent measure is Dropout,
which is 1 on a student’s last week of active participation
unless it is the last course week (i.e. the seventh course
week), and 0 on other weeks. In our sentiment analysis,
we separate the measure of positivity and negativity rather
than operationalizing them together as a single scale. For
each week, we measure a student’s expressed sentiment to
see if the sentiment a student expressed in his/her posts is
correlated with drop out. To study if a student would be
influenced by the sentiment expressed in their peers’ posts,
we measure the amount of sentiment a student is exposed
to during that week.

In our data, we find across the three courses correlations
with R value less than .13 between a measure of positivity
and of negativity. Thus, we separate these measures and
evaluate them separately in our survival models.
Individual Positivity (Indiv. Positivity): average posi-
tivity in the user’s posts that week

Indiv. Positivity =
Total positive terms

Total number of words

Individual Negativity (Indiv. Negativity): average neg-
ativity in the user’s posts that week

Indiv. Negativity =
Total negative terms

Total number of words
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Thread Positivity: this variable measures the average pos-
itivity a user was exposed to in a week. It was calculated by
dividing the total number of positive words in the threads
in a week where the user had posted by the total number of
words in those threads.
Thread Negativity: this variable measures the average
negativity a user was exposed to in a week. It was calcu-
lated by dividing the total number of negative words in the
threads in a week where the user had posted by the total
number of words in those threads.

4.2.2 Modeling
Survival analysis is a statistical modeling technique used to
model the effect of one or more indicator variables at a time
point on the probability of an event occurring on the next
time point. In our case, we are modeling the effect of certain
language behaviors (i.e., expression or exposure to expres-
sion of sentiment) on probability that a student drops out
of the forum participation on the next time point. Survival
models are a form of proportional odds logistic regression,
and they are known to provide less biased estimates than
simpler techniques (e.g., standard least squares linear re-
gression) that do not take into account the potentially trun-
cated nature of time-to-event data (e.g., users who had not
yet ceased their participation at the time of the analysis but
might at some point subsequently). In a survival model,
a prediction about the probability of an event occurring is
made at each time point based on the presence of some set
of predictors. The estimated weights on the predictors are
referred to as hazard ratios. The hazard ratio of a predictor
indicates how the relative likelihood of the failure (in our
case, student dropout) occurring increases or decreases with
an increase or decrease in the associated predictor. A hazard
ratio of 1 means the factor has no effect. If the hazard ratio
is a fraction, then the factor decreases the probability of the
event. For example, if the hazard ratio was a number n of
value .4, it would mean that for every standard deviation
greater than average the predictor variable is, the event is
60% less likely to occur (i.e., 1 - n). If the hazard ratio is in-
stead greater than 1, that would mean that the factor has a
positive effect on the probability of the event. In particular,
if the hazard ratio is 1.25, then for every standard deviation
greater than average the predictor variable is, the event is
25% more likely to occur (i.e., n - 1).

4.2.3 Quantitative Analysis
Intuitively, we might expect that positive sentiment indi-
cates that students are enjoying or benefitting from a course
whereas negative sentiment might indicate that a student is
frustrated with a course. The results from our quantitative
analysis are not consistent with our intuition. A qualita-
tive analysis of how these features play out across the three
courses, which is provided in Section 5, will offer a more
nuanced view.

A summary of the results of the survival analysis are pre-
sented in Table 4. Typically, we observe lexical accommo-
dation in discussions, including threaded discussion forums
[19]. Consistent with this, we find low but significant corre-
lations between individual level sentiment scores and thread
level sentiment scores. The correlations are low enough that
they are not problematic with respect to including these
variables together within the survival models. Including

Indep. Variable Teaching Fantasy Python

Indiv. Positivity 1.03 0.97 1.04*
Indiv. Negativity 0.99 0.84** 1.05**
Thread Positivity 0.95 0.99 1.02
Thread Negativity 1.06* 0.82** 0.98

Table 4: Hazard ratios of sentiment variables in the
survival analysis(*: p<0.05, **: p<0.01).

them together allows us to compare the effect of a student’s
behavior with the effect of exposure to other students’ be-
havior. As we see in Table 4, not only do we see differential
effects across courses, we also see differential effects between
behavior and exposure.

Specifically, in the Python course, we see a significant asso-
ciation between both positive and negative expression and
student dropout. In particular, students who express a stan-
dard deviation more positive emotion than average are 4%
more likely to drop out of the course by the next time point
than students who express an average level of positive emo-
tion. Similarly, students who express a standard deviation
more negativity than average are 5% more likely to drop out
by the next time point than students who express an average
amount of negative emotion. Exposure to emotion makes no
significant prediction about dropout in this course.

In the Fantasy course, the pattern is different. Negative
emotion, whether expressed by an individual or present on
the threads that student participated in, is associated with
less attrition. In particular, students who either express a
standard deviation more negativity or are exposed to a stan-
dard deviation more negativity on a time point are nearly
20% less likely to drop out on the next time point than stu-
dents who express or are exposed to an average amount of
negativity. However, positivity has no significant effect.

In the Teaching course, again the pattern is different. There
is no effect of expressing negativity or positivity. But stu-
dents who are exposed to a standard deviation more neg-
ativity are 6% more likely to drop out on the next time
point than students who are exposed to an average amount
of positivity.

We might expect that differences in effect might be related
to differences in norms of behavior between courses. For
example, positivity and negativity might have more of an
effect where they are unusual. However, while one important
difference across courses is the average level of positivity and
negativity that is present in the discussions, this pattern is
not consistent with what we would expect if differences in
behavioral norms was the explanation for the differences in
effect. The qualitative analysis in the discussion section will
again elucidate some potential explanations for differences
in behavioral norms.

We also tried to measure individual and thread sentiment
based on topic post set retrieved in Section 4.1.1. How-
ever, as users typically have too few posts that contain a
topic keyword in each course week, the positivity/negativity
scores are not available for most of the users. So the sur-
vival analysis results on each topic post set might not be
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meaningful.

5. DISCUSSION: QUALITATIVE ANALYSIS
The results of the survival analysis were not completely con-
sistent either across courses or with an initial naive expecta-
tion. In this section, we elucidate those quantitative results
with qualitative analysis.

In the Fantasy course, negative comments were ones where
people are describing some characters in the fiction. They
use some strong negative words which should be very rare in
usual conversation, such as“destroy, “devil”, “evil”, “wicked”,
“death”, “zombie”, “horror”, etc. One example post is shown
below, the negative words are underlined. These messages
got high negativity scores because of words taken out of con-
text, which seemed to happen more for negative words than
positive ones. The negative word use in this course is ac-
tually a sign of engagement because messages with negative
words are more likely to be describing science fantasy related
literature or even posting their own essay for suggestions.

• Indiv. Negativity = 0.23, the Fantasy course
“The Death Gate Cycle was such a haunting story!”

In the Python course, forum posts are mostly problem-solving.
Both very positive and very negative messages are predictive
of more dropout. The most positive messages were thank-
ing for a response. E.g. “Cool!” or “Thank you!”. Messages
rated as very negative were mainly reporting problems in
order to get help or commiserate on an issue already posted.
E.g. “It’s my error.” or “Same problem here.” Users who
post messages like this are more in the role of forum con-
tent consumer. They may only be browsing the forum to
look for answers for their particular problems without the
intention of contributing content, such as solving the other’s
problems.

The Teaching course was a social science course about good
communication skills. In that course, most forum posts are
discussing course-related concepts and techniques. Never-
theless, negativity was low on average, perhaps because the
community had a higher politeness norm. A lot of messages
contain negative words because of discussion about problem
solving. One example post is shown below. It is important
to note that in this course, discussion of problems takes on
a different significance than in the Python course because
changing your interpersonal practices takes time. Whereas
in Python you can get your question answered and move
on, when it comes to behavior change, discussion of such
personal questions signals more intimacy.

• Indiv. Negativity = 0.22, the Teaching course
A lot of people got crushed by their overloaded work
pressure, so why bother yourself talking so complex,
complicated, irrelevant and non-rewarding topics while
you can spare yourself in those funny little talks and
relax a little.

The important take home message here is that the expla-
nation for the pattern goes beyond simple ideas about sen-
timent and what it represents. We see that expressions of

sentiment are being used in different kinds of contexts to
serve different functions, and thus this operationalization of
attitude is not picking up on the same things across the
three courses. With respect to sentiment, we cannot afford
to make intuitive assumptions about what it means when
variables related to sentiment achieve high predictive value
in models that predict choices that people make.

6. LIMITATIONS
We use a relatively simple sentiment detector to explore the
uses of sentiment analysis in MOOC context. The senti-
ment lexicon we utilize is designed for predicting sentiment
polarity of product reviews. Creating a more comprehensive
lexicon specifically for a MOOC context could improve the
system [23]. We associate the opinion to a topic term co-
existing in the same context. If we have enough posts with
annotated sentiment and topic, many machine learning ap-
proaches could capture the mixture of document topics and
sentiments simultaneously and substantially improve the ac-
curacy of opinion tracking [17, 28].

7. CONCLUSIONS AND IMPLICATIONS FOR
PRACTICE

In this paper, we utilize sentiment analysis to study drop
out behavior in three MOOCs. Using a simple collective
sentiment analysis, we observe a significant correlation be-
tween sentiment expressed in the course forum posts and
the number of students who drop the course. Through a
more detailed survival analysis, we did not observe consis-
tent influence of expressed sentiment or sentiment a student
is exposed to on user dropout. This analysis suggests that
sentiment analysis should be used with caution in practice,
especially when the texts are very noisy and limited in quan-
tity. However, we see that within a specific course, the rela-
tionship between sentiment and dropout makes sense once
one examines practices for expressing sentiment within that
specific course context. Thus, reports of sentiment could be
valuable if they also provide users with examples of how the
sentiment words are typically used in that course.
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ABSTRACT 
In a previous study, we found that real-time mutual gaze 
perception (i.e., being able to see the gaze of your partner in real 
time on a computer screen while solving a learning task) had a 
positive effect on students’ collaboration and learning [8]. The 
goals of this paper are to: 1) explore a variety of computational 
techniques for analyzing the transcripts of students’ discussions; 
2) examine whether any of those measures sheds new light on our 
previous results; and 3) test whether those metrics have any 
predictive power regarding learning outcomes. Using various 
natural language processing algorithms, we found that linguistic 
coordination (i.e., the extent to which students mimic each other in 
terms of their grammatical structure) did not predict the quality of 
student collaboration or learning gains. However, we found that 
the coherence of students’ discourse was significantly different 
across our experimental conditions; this measure was positively 
correlated with their learning gains. Finally, using various 
language metrics, we were able to roughly (i.e., using a median-
split) predict learning gains with a 94.4% accuracy using Support 
Vector Machine. The accuracy dropped to 75% when we used our 
model on a validation set. We conclude by discussing the benefits 
of using computational techniques on educational datasets. 

Keywords 
Natural Language Processing; Eye-tracking; Learning Analytics; 
Computer-Supported Collaborative Learning. 

1. INTRODUCTION 
Despite recent efforts in developing automated ways to analyze 
students’ discourse, most educational researchers still rely on 
traditional tools to analyze transcripts from students. Traditional 
methods include time-consuming qualitative analyses and the 
development of manual coding schemes. The field of Natural 
Language Processing (NLP) has significantly grown and gained in 
maturity over the past decades, and computational techniques can 
now be advantageously applied to educational datasets. Recent 
efforts in topic modeling, for instance, seem to be especially 
promising in terms of gaining insights into students’ discourse and 
cognitive processes [9]. Unfortunately, social scientists willing to 
learn those tools are a rare breed, and multi-disciplinary work is 
slow to appear between educational researchers and computer 
scientists. In this paper, we describe our attempt at applying NLP 
techniques to educational transcripts. 

2. THE CURRENT DATASET 
In a previous work [8], we conducted a study on the effect of 
mutual visual gaze perception on students’ collaborative problem-
solving processes. In this experiment, student dyads were asked to 
remotely collaborate on a set of diagrams to discover how the 
human brain processes visual information. Each student was 
located in a different room, and could communicate with his/her 
partner via an audio channel. The information on the screen was 
similar for both participants (i.e., the brain diagrams shown in Fig. 
1). The structure of the activity was as follows: in the first step, 
students analyzed brain diagrams (12 minutes); in a second step, 
they were asked to read a textbook chapter about human vision 
and discuss their understanding of this topic (12 minutes). Finally, 
before the analysis activity and after the reading task, students 
were asked to complete a learning test (pre/post-questionnaires).  

Half of our participants were assigned to an experimental group 
(“visible-gaze”) where they could see the gaze of their partner 
displayed in real time on a screen. To achieve this, we used two 
Tobii X1 eye-trackers running at 30Hz which recorded students’ 
gaze. In a control group (“no-gaze”), the other half of our 
participants did not have access to this visualization. This 
intervention helped students in the first group achieve higher 
learning gains (Fig. 2) and a higher quality of collaboration (as 
measured by [4]).  

We also recorded students’ gaze movements and their 
collaborative discourse. Interestingly, by analyzing the eye-
tracking data we found that participants in the experimental 
condition had more moments of joint attention (i.e., they were 
more likely to be looking at the same diagram at the same time on 
the screen), and this measure was significantly correlated with 
positive learning gains. This result reinforced the assumption that 
joint visual attention is a crucial mechanism for coordinating 
social interactions [10].  

 
Figure 1: Diagrams students had to analyze. Five contrasting 
cases show the visual pathways of the human brain; students 
had to identify the effect of each lesion on the visual field. 
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Figure 2: Learning gains for the two experimental groups of 

the study (p < .01). 
In a subsequent analysis, we also suggested that our intervention 
helped students because: 1) they were able to anticipate what their 
partner was about to say, because they could already see the 
location of their partner’s gaze on the screen; 2) they could use 
gaze as a pointer to complement their discourse, and thus remove 
the need to explicitly mention locations on the diagrams; and 
finally, 3) they could monitor the visual activity of their partner at 
all times, providing an aid to establishing a common ground.  

We propose to use computational techniques to further illuminate 
this dataset. More specifically, we are interested in exploring three 
aspects of students’ dialogues: 

1. Are there ways to characterize the effect of our 
intervention on students’ discourse? 

2. Is it possible to find markers of productive learning 
trajectories?  

3. Is it possible to find markers of constructive 
collaborations? 

Technically, we can answer the first question by designing 
linguistic metrics and running statistical tests (i.e., ANOVA) 
between our two experimental conditions. The second and third 
questions can be answered by running correlations between our 
measures of interest, learning gains and collaboration scores. 

3. NATURAL LANGUAGE PROCESSING 
AND MUTUAL GAZE PERCEPTION 
In the next sections, we describe the measures used to provide a 
preliminary answer to those questions. First, we looked at 
unigrams, bigrams and trigrams counts to build categories of 
interest using a bag of words model. Next, we looked at the 
coordination of linguistic styles among students: are students more 
likely to mimic the grammatical structure of their peers in a good 
collaboration (as suggested by [2])? We then assessed the 
coherence of students’ discourse, by comparing the similarity of 
consecutive sub-sections of the transcripts; our goal was to 
evaluate the extent to which students were building on each 
other’s ideas during the task. Finally, we gathered all the previous 
measures and ran a machine-learning algorithm (Support Vector 
Machine) to roughly predict students’ learning gains.  

3.1 N-GRAMS  
To get a sense of our dataset, we first computed unigram, bigram 
and trigram probabilities. This helped us understand which words 

were frequently used in our two experimental groups, and allowed 
us to build relevant categories for grouping our n-grams. For 
instance, we observed that the word “look” was positively 
correlated with learning gains (r(37) = 0.42, p = 0.008), which can 
be associated with either the content to be learned (i.e., the brain 
diagrams showed how visual information is processed by the 
human brain) or a verbal indication to share visual information 
(e.g., “look at my gaze!”). However, we did not conduct in-depth 
analyses of the unigrams alone, because they were difficult to 
interpret: unigrams are often ambiguous (see the example above), 
and bigrams or trigrams are usually so rare that they don’t provide 
strong evidence for any type of hypothesis. This is why we 
decided to group them by categories instead of analyzing them in 
isolation. As a first pass, we decided to create those categories 
based on common sense: a researcher looked at the 200 most 
common words and manually created groups of words that seemed 
to relate to a common topic.  

For instance, the category ‘anaphora’ contained the words “it”, 
“some”, “that”, “which”, “each”, “few” and so on; the category 
‘conceptual discussion’ contained “think”, “cause”, “because”, 
“suppose”, “impact”, and so on. Table 1 shows the final 8 
categories constructed from our dataset. We agree that those 
groups were built in an arbitrary manner, and that some words 
could belong to several categories. Nonetheless, our approach was 
data-driven—in the sense that we used the most common words 
from our dataset—and theory-driven, in that we designed potential 
indicators for collaborative learning. For instance, the category 
‘conceptual discussion’ is likely to be associated with higher 
learning gains, and the category ‘anaphoras’ is likely to be 
associated with a higher quality of collaboration. Why? Because 
this measure can serve as a proxy for measuring the quality of a 
common ground between two participants: since anaphoras are 
ambiguous by nature, they have to be correctly interpreted by the 
interlocutor and thus indicate a stronger coordination between 
students. Herbert Clark has developed a considerable body of 
work investigating this topic [1].  
Table 1: Categories built on common unigrams. 

Category Unigrams 

Jargon hemi, field, hemifield, brain, eye, lesion, optic, 
vision, meyers, track, gaze, nerve, hemisphere, 
loop, information, blind, radiation, meyer, LGN 

Diagram blue, orange, case, circle,  box, yellow, line, arrow, 
white, black, circle, number, half 

Location right, middle, left, top, bottom, diagram, opposite, 
corner, side, down, underneath, back, inner, outer, 
between, toward, lower, here, there, first, second, 
third, fourth, fifth, one, two, three, four, five 

Conceptual 
discussion 

think, cause, because, since, change, figure, would, 
wouldn’t, impact, affect, explain, suppose, interpret 

Uncertainty  maybe, possible, though, but, know, could, guess 

Anaphora 
(person) 

anybody, anyone, both, each, each, other, 
everybody, everyone, he, her, hers, herself, him, 
himself, his, I, it, its, itself, me, mine, myself, 
neither, nobody, others, ours, ourselves, several, 
she, somebody, someone, their, theirs, them, 
themselves, they, us, we, who, whoever, whom, 
whomever, whose, you, your, yours, yourself, 
yourselves 

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 139



www.manaraa.com

Anaphora 
(thing) 

all, another, anything, both, each, each, other, 
everything, few, it, its, itself, most, much, neither, 
one, none, nothing, one, one, another, other, others, 
several, some, something, that, these, this, those, 
what, which 

 

Participants in the experimental group used more anaphoras 
compared to participants in the control group: F(1,41) = 4.88, p = 
0.03. Our results suggest that real-time mutual gaze perception 
may be a way to support dyads in establishing common ground. 
The findings indicate that participants in the real-time mutual gaze 
perception condition were able to exploit this information to the 
extent that they could employ ambiguous anaphora, realizing that 
the pointing manifested by their partner’s gaze would 
disambiguate the referent of their speech act. Additionally, there 
appears to be a trend showing that more conceptual discussion 
occurred in the “visible-gaze” group (Fig. 3, right side): F(1,41) = 
5.52, p = 0.02. One limitation of this measure is that the number of 
words representing this construct is relatively small (between 0 
and three words used every minute). The other categories did not 
yield any significant effect. 

Even with these limitations, it is interesting to see that categories 
built on n-grams frequencies can offer a new window into 
students’ collaborative learning processes.  In the next section, we 
employ algorithms from the field of information retrieval to 
further explore the differences between our experimental groups. 

  
Figure 3: Evolution of words related to conceptual discussion  
and anaphoras over time. Blue line corresponds to the 
“visible-gaze” group; purple line to the “no-gaze” group. 

3.2 COORDINATION OF LINGUISTIC 
STYLES (CONVERGENCE) 
Computing n-grams counts and probabilities is an interesting way 
to look at students’ discussions. However it doesn’t contribute to 
our understanding of the linguistic patterns used in collaborative 
learning discussions. To address this issue, we propose studying 
the ways in which students build a discourse around the 
instructional material. More specifically, we looked at a specific 
phenomenon in social interactions called the chameleon effect. In 
a previous study, Danescu [2] showed how in a social setting 
people tend to mimic their interlocutor’s grammatical structure. 
Here is an example: 

Doc: At least you were outside. 

Carol: It doesn’t make much difference where you are [...] 

From Danescu: “Note that “Carol” used a quantifier, one that is 
different than the one “Doc” employed. Also, notice that “Carol” 
could just as well have replied in a way that doesn’t include a 
quantifier, for example, “It doesn’t really matter where you are...”.   

In two large datasets (movie dialogues and twitter), Danescu 
importantly shows that this effect (called convergence) is 

relatively robust and pervasive. That is, people tend to consistently 
mimic the grammatical structure used by their interlocutor. 
Previous research suggests that this convergence is associated with 
enhanced communication in organizational contexts and in 
psychotherapy (cited in [2]). Our goals are to 1) replicate 
Danescu’s results on our dataset, and 2) test whether mutual visual 
gaze perception supports convergence. 

Concretely, Danescu used 9 categories from the LIWC corpus 
(Linguistic Inquiry and Word Counts [7]) to compute converge 
measures. Those categories are: articles, auxiliary verbs, 
conjunctions, high-frequency adverbs, impersonal pronouns, 
negations, personal pronouns, prepositions, and quantifiers. The 
way convergence is computed is relatively trivial: 

IMDB information. We then extracted 220,579
conversational exchanges between pairs of charac-
ters engaging in at least 5 exchanges, and auto-
matically matched these characters to IMDB to re-
trieve gender (as indicated by the designations “ac-
tor” or “actress”) and/or billing-position information
when possible (⇡9000 characters, ⇡3000 gender-
identified and ⇡3000 billing-positioned). The latter
feature serves as a proxy for narrative importance:
the higher up in the credits, the more important the
character tends to be in the film.

To the best of our knowledge, this is the largest
dataset of (metadata-rich) imaginary conversations
to date.

4 Measuring linguistic style

For consistency with prior work, we employed the
nine LIWC-derived categories (Pennebaker et al.,
2007) deemed by Ireland et al. (2011) to be pro-
cessed by humans in a generally non-conscious fash-
ion. The nine categories are: articles, auxiliary
verbs, conjunctions, high-frequency adverbs, im-
personal pronouns, negations, personal pronouns,
prepositions, and quantifiers (451 lexemes total).

It is important to note that language coordination
is multimodal: it does not necessarily occur simulta-
neously for all features (Ferrara, 1991), and speakers
may converge on some features but diverge on others
(Thakerar et al., 1982); for example, females have
been found to converge on pause frequency with
male conversational partners but diverge on laugh-
ter (Bilous and Krauss, 1988).

5 Measuring convergence

Niederhoffer and Pennebaker (2002) use the correla-
tion coefficient to measure accommodation with re-
spect to linguistic style features. While correlation
at first seems reasonable, it has some problematic as-
pects in our setting (we discuss these problems later)
that motivate us to employ an alternative measure.

We instead use a convergence measure introduced
in Danescu-Niculescu-Mizil et al. (2011) that quan-
tifies how much a given feature family t serves as an
immediate trigger or stimulus, meaning that one per-
son’s utterance exhibiting such a feature triggers the
appearance of that feature in the respondent’s imme-
diate reply.

For example, we might be studying whether one
person A’s inclusion of articles in an utterance trig-
gers the usage of articles in respondent B’s reply.
Note that this differs from asking whether B uses ar-
ticles more often when talking to A than when talk-
ing to other people (it is not so surprising that peo-
ple speak differently to different audiences). This
also differs from asking whether B eventually starts
matching A’s behavior in later utterances within the
same conversation. We specifically want to know
whether each utterance by A triggers an immediate
change in B’s behavior, as such instantaneous adap-
tation is what we consider the most striking aspect
of convergence, although immediate and long-term
coordination are clearly related.

We now describe the statistic we employ to mea-
sure the extent to which person B accommodates to
A. Consider an arbitrary conversational exchange
started by A, and let a denote A’s initiating utterance
and b,!a denote B’s reply to a.9 Note that we use
lowercase to emphasize when we are talking about
individual utterances rather than all the utterances of
the particular person, and that thus, the arrow in b,!a

indicates that we mean the reply to the specific sin-
gle utterance a. Let a

t be the indicator variable for a

exhibiting t, and similarly for b

t
,!a. Then, we define

the convergence ConvA,B(t) of B to A as:
P (bt

,!a = 1|at = 1)� P (bt
,!a = 1). (1)

Note that this quantity can be negative (indicating
divergence). The overall degree Conv(t) to which t

serves as a trigger is then defined as the expectation
of ConvA,B(t) over all initiator-respondent pairs:

Conv(t) def= Epairs(A,B)(ConvA,B(t)). (2)

Comparison with correlation: the importance

of asymmetry

10 Why do we employ ConvA,B ,
Equation (1), instead of the well-known correlation
coefficient? One reason is that correlation fails to

9We use “initiating” and “reply” loosely: in our terminology,
the conversation hA: “Hi.” B: “Eaten?” A: “Nope.”i has two
exchanges, one initiated by A’s “Hi”, the other by B’s “Eaten?”.

10Other asymmetric measures based on conditional prob-
ability of occurrence have been proposed for adaptation
within monologues (Church, 2000) and between conversations
(Stenchikova and Stent, 2007). Since our focus is different, we
control for different factors.

 
The first expression is the conditional probability of seeing word 
type t expressed by person b in answer to person a, given that a 
used this word type in the previous utterance. The second 
expression is just the probability of seeing a particular word type 
in the entire corpus. Subtracting the second expression from the 
first one gives us a measure of convergence.  
Figure 4 shows Danescu’s results for his dataset. Error bars are 
flat and barely visible (shown in red) because his dataset is 
relatively large; dark blue bars show the probability of using a 
particular word type (e.g., articles, pronouns) and light blue bars 
show the conditional probability of using a particular word type, 
given that an interlocutor used the same word type in the previous 
utterance. Figure 5 shows our replication of Danescu’s results. We 
can see the same pattern emerging: light blue bars (conditional 
probability that a certain category of words is mirrored by the 
same word type in the interlocutor’s response) are always higher 
than the probabilities of this type of word in the corpus. Due to our 
smaller corpus, not all differences are statistically significant, but 
most of them are (i.e., where the standard errors do not overlap).  

capture an important asymmetry. The case where
a

t = 1 but b

t
,!a = 0 represents a true failure to ac-

commodate; but the case where a

t = 0 but b

t
,!a = 1

should not, at least not to the same degree. For ex-
ample, a may be very short (e.g., “What?”) and thus
not contain an article, but we don’t assume that this
completely disallows B from using articles in their
reply. In other words, we are interested in whether
the presence of t acts as a trigger, not in whether
b,!a exhibits t if and only if a does, the latter being
what correlation detects.11

It bears mentioning that since a

t and b

t
,!a are

binary, a simple calculation shows that the covari-
ance12

cov(at
, b

t
,!a) = ConvA,B(t) · P (at = 1).

But, the two terms on the right hand side are
not independent: raising P (at = 1) could cause
ConvA,B(t) to decrease by affecting the first term
in its definition, P (bt

,!a = 1|at = 1) (see eq. 1).

6 Experimental results

6.1 Convergence exists in fictional dialogs

For each ordered pair of characters (A, B) and for
each feature family t, we estimate equation (1) in a
straightforward manner: the fraction of B’s replies
to t-manifesting A utterances that themselves ex-
hibit t, minus the fraction of all replies of B to A

that exhibit t.13 Fig. 1 compares the average values
of these two fractions (as a way of putting conver-
gence values into context), showing positive differ-
ences for all of the considered families of features
(statistically significant, paired t-test p < 0.001); this
demonstrates that movie characters do indeed con-
verge to each other’s linguistic style on all consid-
ered trigger families.14

11One could also speculate that it is easier for B to (uncon-
sciously) pick up on the presence of t than on its absence.

12The covariance of two random variables is their correlation
times the product of their standard deviations.

13For each t, we discarded pairs of characters where some
relevant count is < 10, e.g., where B had fewer than 10 replies
manifesting the trigger.

14We obtained the same qualitative results when measuring
convergence via the correlation coefficient, doing so for the sake
of comparability with prior work (Niederhoffer and Pennebaker,
2002; Taylor and Thomas, 2008).

Figure 1: Implicit depiction of convergence for each trig-
ger family t, illustrated as the difference between the
means of P (bt

,!a = 1|at = 1) (right/light-blue bars) and
P (bt

,!a = 1) (left/dark-blue bars). (This implicit repre-
sentation allows one to see the magnitude of the two com-
ponents making up our definition of convergence.) The
trigger families are ordered by decreasing convergence.
All differences are statistically significant (paired t-test).
In all figures in this paper, error bars represent standard
error, estimated via bootstrap resampling (Koehn, 2004).
(Here, the error bars, in red, are very tight.)

Movies vs. Twitter One can ask how our results
on movie dialogs correspond to those for real-life
conversations. To study this, we utilize the results
of Danescu-Niculescu-Mizil et al. (2011) on a large-
scale collection of Twitter exchanges as data on
real conversational exchanges. Figure 2 depicts the
comparison, revealing two interesting effects. First,
Twitter users coordinate more than movie characters
on all the trigger families we considered, which does
show that the convergence effect is stronger in actual
interchanges. On the other hand, from the perspec-
tive of potentially using imagined dialogs as prox-
ies for real ones, it is intriguing to see that there is
generally a correspondence between how much con-
vergence occurs in real dialogs for a given feature
family and how much convergence occurs for that
feature in imagined dialogs, although conjunctions
and articles show a bit less convergence in fictional

 
Figure 4: From Danescu [2], this graph shows how people tend 
to mimic the grammatical structure of their interlocutor. Light 
blue bars show the conditional probability of using a 
particular word type, given that an interlocutor used it in the 
previous utterance. Dark blue bars show the probability of 
using a particular word type in the entire corpus. 
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Figure 5: A replication of Danescu's results on the current 
dataset. Errors bars show standard errors. Non-overlapping 
error bars show statistically significant differences. 
Most importantly, there was special potential in using this measure 
to discriminate between the two experimental groups (e.g. 
“visible-gaze” vs “no-gaze”; productive vs poor collaborators; 
good vs poor learners). Unfortunately, there wasn’t any significant 
difference between those groups on our convergence measure (F < 
1). This means that, at least in our corpus, coordination of 
linguistic styles is not predictive of positive learning gains. It also 
shows that mutual gaze perception doesn’t influence this effect: 
students are not more likely to imitate each others’ grammatical 
patterns if they can see the gaze of their partner in real time.  
This convergence measure, however, only looks at superficial 
features of collaborative dialogues (i.e., word types). It would be 
much more interesting to look at the words themselves. If one 
could show that productive students are more likely to mimic the 
content mentioned by their partner, this would be a more 
interesting result.  

3.3 BUILDING ON YOUR PARTNER’S 
IDEAS (COHERENCE) 
In this section, we describe how we summarized our data in a very 
high dimensional space, separated the transcripts in several 
consecutive segments, and applied cosine similarity metrics to 
measure students’ coherence. A cosine similarity score indicates 
how similar two text documents (or subsections of a transcript) 
are. Our approach was to segment students’ transcripts into 
smaller texts and compute similarity measures between those 
segments. By iteratively repeating this procedure, we can evaluate 
the coherence of a discussion [6]. The idea behind coherence is 
that interlocutors tend to adapt to the patterns in each other’s 
utterances; this alignment, in turn, is believed to be indicative of 
shared understanding (or common ground). Ward and Litman, for 
instance, showed that coherence was predictive of learning in 
tutoring dialogues [11]. There has been a significant amount of 
additional work on this topic, in various domains. We won’t 
summarize the literature on coherence, but the interested reader 
can look at the work done around Coh-Metrix [3] for more 
information.  

 
Figure 6: cosine similarity between each participant of the 
experiment. The diagonal is red because it represents each 
students' perfect similarity with herself / himself. 
The first step of the process was to apply tf-idf transformations 
(term frequency–inverse document frequency) to our dataset. Tf-
idf is commonly used to summarize a text corpus. The value of 
highly frequent words is decreased, and is offset by their 
frequency in the corpus; this way, rare words gain a bigger weight 
and common words (e.g., “the”, “it”) gain a smaller weight. This 
technique is used in information retrieval to score documents’ 
relevance to a query. We then compared each student’s discourse 
similarity with other participants by using a cosine similarity 
measure over the entire transcripts. A cosine similarity measure 
takes two vectors and computes the magnitude of the angle 
between them to represent their similarity. We show every 
pairwise comparison in Figure 6: dark blue lines show students 
who are very dissimilar to everyone else; hot colors represent 
similarity. As a sanity check, we can observe that students are 
identical to themselves (red diagonal); Students in the same group 
are next to each other on each axis, and we can see that students 
belonging to the same group tend to resemble each other (2x2 
squares along the diagonal). Finally, we can isolate students who 
are very different from everyone else (e.g. P62 and P63) and try to 
explain why they are very distinct from other participants: in our 
case, P63 achieved the lowest learning gain after the activity. P62 
was within one standard deviation of the mean.  

Additionally, we tried to reorganize students on each axis based on 
their learning scores (Fig.7, left side) and their quality of 
collaboration (Fig.7, right side). The first approach did not cluster 
students in any meaningful way; however, the second one showed 
that students with a poor quality of collaboration (left and bottom 
rows) tend to look very dissimilar to everyone else (shown in dark 
blue).  This result suggests that poor collaborative groups can 
potentially be detected using cosine similarity measures.  

  
Figure 7: cosine similarity matrix, reorganized with students' 
learning scores (left) and quality of collaboration (right). 
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Figure 8: Students’ coherence when discussing the task. 
Students in the “visible-gaze” group were significantly more 
coherent (p < .05); higher coherence was also significantly 
correlated with higher learning gains (p < .05). 
We then computed a first measure of students’ coherence: while 
our approach was simplistic (more complicated measures of 
coherence do exist [3]), it provided an approach relatively easy to 
understand and to apply. We built on our previous results using tf-
idf and cosine similarity to assess whether students were re-using 
ideas mentioned earlier in their discussion. More specifically, we 
considered n exchanges and compared them to the m previous 
exchanges. For instance, where n=5 and m=5, we computed the 
similarity between utterances 15 to 20 (current discussion) with 
utterances 10 to 15 (ideas exchanged at the beginning of the 
experiment).  

We then iteratively moved this 5-exchanges window through the 
transcript and averaged the similarity across all exchanges to 
compute our measure of coherence. Using this measure, we found 
that students in the “visible-gaze” condition were more coherent 
than students in the “no-gaze” condition (Fig. 8): F(1,20) = 7.45, p 
= 0.01, Cohen's d = 0.34 (for the visible-gaze group, mean=0.23, 
SD=0.07; for the no-gaze  group, mean=0.15, SD=0.06). This 
measure was positively correlated with students’ learning gain: 
r(19) = 0.540, p = 0.011 (Fig. 9). Those results suggest that 
students who could see the gaze of their partner in real time on the 
screen were more likely to have a coherent discourse; 
additionally, a coherent discourse was more likely to lead to 
higher learning gains.  

  
Figure 9: Correlation between dyads’ dialogue coherence and 
learning gain: r(19) = 0.540, p = 0.011. 

On a side note, we tried various values for n and m. Some of those 
results were not significant, but we always found that students in 
the “visible-gaze” group were more coherent than students in the 
“no-gaze” group. At the end, we observed that comparing 5 
exchanges with the 5 previous utterances produced the results that 
were the clearest and easier to interpret. 
Here we provide an example of a highly coherent exchange 
(cosine similarity of 0.5). We highlighted similar words between 
the two sets of utterances in bold: 
--- Exchange 1 --- 
A: I think that we did say the fifth one down.  
B: OK. So then it’s lesion five. OK.  

A: And you said for your answer, you said the third one down 
whereas I said the sixth one down. The rest are kind of similar 
besides for that kind of like semi-circle in the middle being kind 
of white.  

B: Right, right. Hold on. Number six, < mumbling to self >, the 
number for that side is gonna be, um, this is tricky business. 
A: Yeah it is. < Laughs >.  
--- Exchange 2 (same discussion, continued) --- 
B: Kind of? < Laughs >. 
A: Yeah. So what do you want to do for lesion five? 

B: For lesion five? Um, number… the fifth one down, is that 
what we said originally? I think that that's still the correct way to 
go 
A: OK.  
B: That's what we said initially, right? 
--- End of Exchange 2 --- 
We can observe at least three common repetitions across those two 
segments. First, the reference to lesion 5 introduced by A in the 
first exchange and repeated by B in the second exchange. 
Secondly, both participants express uncertainty by saying “kind 
of” in the two segments. Finally, there is an abundance of 
acknowledgement in the form of keywords like “OK” and “right”. 
All those elements point to a relatively solid common ground 
between the two participants, which is captured by our measure of 
coherence. Our results, illustrated by the exchange above, is in line 
with the results of [5], who showed that convergence is not only 
associated with conceptual understanding but also with affective 
components such as frustration, engagement and confusion. 

3.4 ADDITIONAL RESULTS 
In a subsequent step, we sought baselines to use for comparing 
students’ utterance corpora. For instance, we can imagine that 
comparing the transcripts of students with a baseline of an expert 
discussion on this topic would be predictive of their learning 
gains. To this end, we used two corpora as references: first, we 
used the best student (in terms of her learning score) of our dataset 
(P55). She was in the visible-gaze condition and got an impressive 
80% gain on the post-test, where the average was around 50%. 
Second, we inserted the text that students had to read in the 2nd 
step of the experiment into our dataset. This text is highly 
technical and is likely to pick up students’ use of the particular 
terminology associated with this domain.  
We found that students in the “visible-gaze” group looked more 
like P55: F(1,39), p = 0.04, Cohen's d = 0.35 (visible-gaze 
mean=0.97, SD=0.27; no-gaze mean=0.80, SD=0.20). 
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Interestingly, this measure was positively correlated with students’ 
quality of collaboration: r(38) = 0.545, p < 0.001. There wasn’t 
any difference between the two groups when looking at their 
similarity with the textbook chapter: F(1,39), p = 0.17, Cohen's d 
= 0.10 (visible-gaze mean=0.11, SD=0.04; no-gaze mean=0.09, 
SD=0.04). However, this measure was significantly correlated 
with students’ conceptual understanding of the topic taught: r(38) 
= 0.335, p = 0.035.  

In summary, it appears that taking different baselines is helpful for 
finding relevant predictors of good learning groups. Taking a 
student’s cosine similarity with a standard reference of domain 
knowledge (i.e., a textbook chapter) seems to be associated with 
higher learning on a test. Taking a student’s cosine similarity with 
the “best” student of the dataset seems to be associated with 
productive patterns of collaboration. This makes sense, since 
students’ utterances reflect the way novices discuss and learn 
about a new topic; a scientific text, on the other hand, is produced 
by experts who have mastered the concepts and terminology of a 
domain. In sum, those two features could be advantageously used 
to further explore students’ discussion, as well as to feed machine 
learning algorithms trying to predict students’ learning. 

3.5 PUTTING OUR MEASURES 
TOGETHER: PREDICTING STUDENTS’ 
QUALITY OF COLLABORATION AND 
LEARNING GAINS USING LINGUISTIC 
FEATURES 
Our final contribution is to test whether the measures described 
above have any predictive value. More specifically, can we 
roughly classify students in terms of their learning gains using 
machine learning algorithms? To answer this question, we 
separated our participants into two groups based on the median 
value of students’ learning gains. We then tried to predict in which 
group each student belonged, i.e., below or above the median split. 

We then used our hand-labeled categories from section one (n-
grams), the cosine similarity scores, the convergence measures 
and the coherence metrics as features. The complete dataframe 
contained 60 features and 40 rows. We used the built-in version of 
Support Vector Machine (SVM) provided by Matlab with a 
forward search feature selection and tried various kernels (linear, 
quadratic, polynomial, Gaussian, multilayer perceptron). For the 
learning scores, we found that SVM with a multilayer perceptron 
kernel and 8 features could correctly classify 94.44% of our 
participants. We also used a validation set (4 participants, which 
constitutes 10% of our sample). Those 4 participants were 
randomly selected from our dataset and we predicted whether they 
were above or below the median split on the learning gains after 
we found our best model. On the validation set, our model 
correctly classified 75% of the participants (3/4).  

Those results are impressive, but they need to be hedged with 
healthy skepticism. First, many features were used to make this 
prediction. It is probable that the algorithm is cherry-picking the 
relevant features to improve its accuracy (which is also over-
fitting the data). Secondly, the training set is rather small. There 
are only ~40 students to classify, which is another serious 
limitation. Finally, even though we are using a validation set, it 
should be kept in mind that this set is small (only four datapoints). 
Finally, those results should be contrasted with other baselines, 
such as decision trees or naïve bayes. 

Table 2: Rough classification of students (using a median-split) 
in terms of their learning gains. 

 Accuracy 
on the 
test set 

Accuracy 
on the 

validation 
set 

 
Features 

SVM 
94.44% 
(34/36) 

75% 
(3/4) 

Uncertainty,  
Negations, 
Aux. Verbs,  
Length Sentence,  
Prepositions, 
Number of words used, 
Number of Anaphoras, 
Impersonal Pronouns 
  

In sum, these analyses indicate noteworthy promise in using 
linguistic features to predict students’ learning and ability to 
collaborate with their peers, but those results need to be replicated 
on larger datasets to be truly convincing.  

Interestingly, SVM selected some of the correlations we found 
above between students’ learning gains and particular features of 
our transcripts: number of anaphoras used and keyword showing 
students’ uncertainty. However, other measures such as coherence, 
cosine similarity with a textbook chapter were not included in our 
final model. Instead, it favored low-level measures, such as the 
number of words used by students, the length of their sentence and 
particular grammatical forms (negations, auxiliary verbs, 
prepositions). This shows that some variables may be good 
predictors in isolation, but lose their predictive power when 
associated with other measures. 

4. DISCUSSION 
The goal of this project was to explore various NLP techniques to 
make sense of educational datasets; we favored a “breadth” 
approach where we tried promising techniques rather than 
exploring one specific measure in depth. In future work, we will 
go back to our most promising results (e.g., coherence and cosine 
similarity) and explore them in more detail, as well as to examine 
not only the cosine similarity to the best student of the other 
students’ transcripts but to more aggregate exemplars of ‘better or 
worse students’, such as the upper and lower quartile of the 
students in terms of learning score. 
To recap our results, we have found that: 1) n-grams probabilities 
can help characterize groups of students in terms of building a 
common ground with their partners (anaphoras); 2) cosine 
similarity measures are most useful when used with a “reference” 
corpus (e.g., textbook chapter; transcript of a very good student as 
measured by learning gains); 3) coordination of linguistic style has 
little predictive power in terms of explaining dyads’ collaborative 
learning processes; 4) coherence measures, on the other hand, are 
positively associated with students’ learning 5) using SVM and 
the features mentioned above, we can roughly predict students’ 
learning outcomes with an accuracy higher than 90% (which 
dropped to 75% for our validation set).  

We argue that our approach is especially useful when analyzing 
the results of a controlled experiment. We were able to 
characterize the effects of mutual gaze perception on students’ 
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discourse, and we found interesting predictors for learning gains 
and students’ collaboration quality. However, we also argue that 
those techniques could be used in other domains. For instance, 
comparing the similarity between a reference text and students’ 
utterances has already been used for assessing essays. Coherence 
can be used in similar contexts. More interestingly, those metrics 
could be advantageously used on multi-modal datasets. Eye-
tracking data, for instance, could be converted in a series of word 
tokens representing the location of students’ gaze over time. 
Similarity measures could then be used as described above to 
characterize visual exploration of a problem space. We believe 
that NLP measures have been too rarely used on non-linguistic 
datasets (e.g., gestures, as measured by a kinect sensor; gaze, as 
measured by eye-trackers; arousal, as measured by galvanic skin 
response devices) and could provide new insights into the ways 
that students construct their understanding of a particular concept, 
and to establish a productive collaboration with one another. 

Limitations of this work have been mentioned in previous sections 
(e.g., small dataset, limited amount of error analysis). Replicating 
those results on larger datasets would make a more convincing 
argument for using NLP measures in education. 

5. CONCLUSION 
This paper showed NLP approaches offer substantial promise for 
understanding educational datasets and automating currently 
unwieldy and time-consuming hand analyses. The measures 
described above could easily be applied to other settings, such as 
forums or online discussions. Future work includes refining those 
measures and deepening our sense of their predictive value; 
replicating those results on other datasets; and exploring additional 
topics in NLP (e.g., topic modeling with Latent Semantic Analsyis 
or Latent Dirichlet Allocation).  
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ABSTRACT 
We develop and analyze affect detectors for four affective states: 
confidence, excitement, frustration and interest. We utilize easy to 
implement self-report based “ground truth” measurements of 
affect within a tutor, and model them as continuous variables that 
are later discretized into positive, neutral, and negative valence 
classifications; this  distinguishes our work from detectors which 
model affective states as binary. We explore the opportunities and 
limitations of cross validation with regard to potentially distinct 
sample groups.  

Keywords 

Affective computing, human factors, intelligent tutors, prediction, 
models, feature engineering, sensor-free affect detection 

1. INTRODUCTION 
One key factor that influences students’ academic success is their 
emotions and general affective experience while learning. For 
instance, positive affect has a facilitative effect on cognitive 
functioning in general [1], and improved performance on creative 
problem solving in particular [2, 3]. Moreover, students who are 
interested in an activity persevere in the face of failure, invest 
time when needed, and engage in mindful processing [4]. Even 
some emotions traditionally viewed as negative can be beneficial 
– for example, confusion is associated with learning under certain 
conditions [5]. In contrast, the affective state of boredom reduces 
task performance [6], increases ineffective behaviors such as 
gaming the system [7], and tends to be persistent once 
experienced [7]. 

 

Given the pivotal role that affect plays in education, both in short-
term performance outcomes and in long-term career choices, there 
is growing interest in developing educational technologies that 
can recognize and respond to student affect. Here, we focus on the 
first thrust, namely affect recognition.  
The process of modeling motivation and emotion is summarized 
in Figure 1, which shows how emotions are highly dependent on 
context, and are expressed in behaviors. Thus, when designing 
models to assess student emotion, it is essential to empirically 
understand which factors impact a student’s emotional state, and 
how the affective state is revealed by the student in terms of 
subsequent actions and behaviors.  

 

 

 
Figure 1:  Model of Student Emotion while Learning 
(arrows indicate dependence, causality, precedence). A 
student’s emotion while learning (grey frame) is originally 
unknown and hidden. It is influenced by the “student’s 
baggage” (initial achievement, affective predisposition) and 
recent history of the student in the software (tutor moves or 
student actions). This article focuses on the top boxes: how 
student baggage and recent history help to predict current 
emotional states. 
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One approach to modeling affect, summarized in a recent review 
[8], pertains to using sensing devices. For instance, in our past 
work, we have created models of affect using data from a camera, 
pressure mouse, skin conductance bracelet, and pressure  chair 
cushions, in conjunction with data coming from a student’s 
interaction with an intelligent tutoring system [9-11]. The 
subsequent models achieved 85% accuracy when compared to the 
students’ self-reported emotion. Muldner et al. [12] used data 
from a subset of these sensing devices plus an eye tracker to 
detect moments of delight during instructional activities. D’Mello 
et al. [13] used dialog and posture features to model affective 
states. In Conati’s model [14], affect is modeled using one sensor 
modality, namely an EEG, in addition to interaction features [15]. 
While this research highlights the utility of sensors for affect 
recognition, they can not be widely disseminated in schools where 
the tutoring systems are used, though this may not be true in the 
future. Data collection is thus more challenging beyond lab 
studies. Thus, researchers have begun exploring sensor free 
affective detection. For instance, Baker et al. [16] used only data 
from students’ interaction with a tutor to model affective states 
such as frustration.  
The work reported in this paper adds to research on sensor-free 
affective models. Specifically, our goal is to better understand 
contextual predictors of student emotion, and to generate models 
that use the context in which student emotion occurs to predict 
this emotion, based on student behaviors within the software. To 
replace the rich physiological information that sensors provided, 
we focus on feature engineering, such as summaries of “recent 
history” of student actions. Additionally, our second goal was 
understand the utility of students’ affective predispositions –
attitudes, general values, preferences, and self-efficacy for the 
domain – for affect detection (see Figure 1). Last but not least, we 
analyze the generalizability of our affect detectors to different 
populations of students to other students in new schools. 

2. METHODS 

2.1 Participants 
We used three data sets to train and test ten separate models. 

2009 Data Set. An affect detector was built and tested using 295 
students, 7th, 8th, 9th and 10th graders from two rural area 
schools in Massachusetts in the Spring of 2009, using six fold 
student level batch cross validation [17]. On average, 1138 
instances (problem-student interactions) were split across six 
batches used to train and test each affect model. 

2011 Data Set. An affect detector was built and tested using 123 
students, 7th and 8th graders from a third rural area school in 
Massachusetts in 2011, using three fold student level batch cross 
validation [17]. On average, 120 instances (problem-student 
interactions) were split across three batches and used to train and 
test each affect model. 

2013 Data Set. An affect detector was built and tested using 43 
students, 7th, and 8th graders from two schools in California and 
Arizona in the Summer of 2013, using two fold student level 
batch cross validation [17]. On average, 76 instances (problem-
student interactions) were split across two batches and used to 
train and test each affect model. 

 

2.2 Wayang Outpost 
The test-bed for this research was Wayang Outpost  (see Figure 
2). Developed at UMass-Amherst, this tutor shows evidence of 
promoting effective math learning, has been used by tens of 
thousands of students in the United States and has consistently 
shown significant learning gains, e.g., on mathematics tests (an 
increase of 12% from pre- to post-test after only 4 class periods), 
and on state standard exams (92%) as compared to students not 
using Wayang (76%) [11, 18, 19]. Students using Wayang have 
also improved more on MAP scores compared to control groups 
(MAP is a national test of Northwest Evaluation Association on 
specific topics). 

2.2.1 Pedagogical Approach 
The pedagogical approach of the Wayang Tutor is based on 
cognitive apprenticeship [20] and mastery learning. Cognitive 
apprenticeships are designed to bring tacit processes into the 
open, so that students can observe, enact, and practice them with 
help from the teacher. This process involves several phases: 
modeling (introduction to the topic via worked-out examples, 
making steps explicit, and working through a problem aloud); 
practice with coaching (offering feedback and hints to sculpt 
performance to that of an expert's); scaffolding (putting into place 
strategies and methods to support student learning, offering hints 
as well as worked-out examples and tutorial videos); and 
reflection (self-referenced progress charts that allow students to 
look back and analyze their performance). 

 

Figure 2:  Learning companions use gestures to offer advice 
and encouragement. Students can ask for hints or click the 
“solve it” button. Animations, videos and worked-out 
examples add to the spoken hints about the steps in a 
problem. 
An important part of cognitive apprenticeship is the provision of 
materials just beyond what the learners can accomplish by 
themselves. Vygotsky referred to this as the Zone of Proximal 
Development (ZPD) and believed that fostering development 
within this zone leads to the most rapid learning [21]. We have 
operationalized and parameterized ZPD within the context of 
intelligent tutoring systems [19] and formalized a mechanism for 
adaptive problem selection that tailors the difficulty of subsequent 
math problems to past student performance and effort [19]. 
Wayang also identifies the most critical cognitive skills and 
predicts the likelihood of success on future problems related to 
these skills [9]. Wayang supports students by offering hints, 
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examples, short video tutorials, and animations [22-24]. Rich 
multimedia help is provided when students make mistakes or ask 
for help, following principles of multimedia learning theory [25].    

Teachers can access real-time assessments about individual 
student progress via the “Teacher Tools”, which allow them to 
spot and focus on students who need help, problems that are hard 
for everybody, and math skills with which the class as a whole is 
struggling.  

2.2.2 Affective Learning Companions.  
In our past work, we integrated into Wayang gendered and ethnic 
learning companions (male and female, White, Hispanic and 
African American), whom offered advice and encouragement by 
talking to students (see Figure 2 for a sample character). These 
companions can gesture and train attributions for 
“success/failure”, e.g., that intelligence is malleable, perseverance 
and practice are needed to learn, making mistakes is an essential 
part of learning, and failure is not due to a lack of innate ability. 
In controlled randomized studies with hundreds of students, 
certain groups of students (females and students with disabilities) 
reported decreased frustration and increased confidence levels 
when working with learning companions and increased frustration 
when companions were not present [26]. In addition, student 
enjoyment and interest were higher compared to students not 
given learning companions, suggesting that such affective 
pedagogical agents can impact students’ emotions [27, 28]. 
Moreover, students receiving companions described higher self-
efficacy in mathematics, and exhibited more productive behaviors 
within the tutor. 

3. PROCEDURE 
In the present study, while working within Wayang Outpost, 
students were periodically prompted to report their current 
affective state, using a simple dialogue box. The design of these 
prompts was based on prior work used to gather information on 
“the range of various emotional states during learning” [29], 
where affective states are placed on spectra ranging in valence 
from negative to positive. The following affective states were 
measured with a Likert scale (1-5): confidence, excitement, 
frustration and interest. Each of these scales is bipolar (e.g. 
confidence/anxiety). For simplicity we will refer to each of these 
bipolar scales as confidence, excitement, frustration and interest. 
In this article, a higher Likert score indicates a positive level of 
the affect in question (i.e., for confidence, 5 is Highly Confident, 
while 1 is Anxious). In the 2009 and 2011 data sets all four 
affects were examined, however for the 2013 data set only 
excitement and interest were measured via self-report. 

Recognizing emotion from log data involved a seven step process. 
First, mathematics problems that students were not expected to 
solve were removed (e.g., topic introductions and example 
problems). Second, the student data was batched to ensure each 
batch had a representative sample of all “ground truth” Likert 
scale self-reports for all four emotions. Third, missing values 
were imputed at the batch level using a multiple regression 
algorithm in SPSS [30], thus filling all cells of missing data with 
estimate values. Fourth, outliers were identified at the full data set 
level also using SPSS. Fifth, engineered features were computed 
from the initial raw log data; some rows of data (e.g. topic 
introduction problems & example problems where students were 
meant to observe rather than interact with the system) were 
removed at this level as well. Sixth, the data was split into ten 
data sets: one for each combination of year and the four affects to 

be detected (e.g. confidence 2009, excitement 2013, etc). Seventh, 
forward feature selection and a linear regression algorithm was 
run in Rapidminer [31] under batch cross validation [17] in order 
to build the ten regression models, one for detecting each of the 
four affects in each of the two sample groups, 2009 and 2011, and 
two for detecting excitement and interest in the 2013 data set (as 
only two emotions were self-reported in 2013). Step two (Data 
Cleaning & Batching), step five (Feature Engineering), and step 
seven (Model Creation--running the linear regression algorithm) 
will be addressed in greater detail.  

3.1 Data Cleaning & Batching 
Data was batched at the student level, meaning that the data from 
one student could span across more than one batch. The process 
of batching was not completely random as consideration was 
given to preserving roughly equal representations of the target 
self-reported affect in each batch. Thus, students were assigned to 
batches randomly several times, and each batch was examined to 
show how many times students had responded with each value of 
the Likert scale for a given affect. For example, if one batch 
included 80 instances of students responding with 1 (one) in terms 
of frustration (low frustration) and another batch included only 10 
instances of students with responses of 1 for frustration then that 
set of batches was rejected and batching was performed again. In 
some cases it was necessary to manually swap individual students 
between batches in order to maintain a balanced ratio of 
responses. The size and quantity of the batches were also limited 
by concerns of over representation. For example, in the 2011 data 
set there were only 10 reported cases of interest > 3 out of a total 
of 105 cases. The fact that less than 10% of our data reported a 
positive valence in interest for this data set partially explains the 
relatively poor results of the detector trained on 2011 data, and 
attempts to “balance” batches by making proportions of each 
Likert response across batches as equal as possible. It also 
addresses why the large 2009 data set is split into six batches 
while the much smaller 2011 data set could only be split into 
three batches. 

3.2 Feature Engineering 
The majority of the features were derived from eight low level 
descriptions of students’ behavior with each problem a student 
saw (Table 1). Each state first acts as an if-statement predicated 
that the statement preceding it is not true (e.g. if a student did not 
SKIP, then the problem is evaluated to see if they met the criteria 
of NOTR and so on). 

These eight simple student states were mutually exclusive and 
assigned per problem, i.e., for a given problem a student’s actions 
might be classified as ATT vs. SOF. From these seven features, 
21 new features were generated by looking at the prior 3 actions 
(i.e., NOTRLast3), each of which weighs a more recent instance 
more heavily than the one that preceded it; for instance, in 
NOTRLast3 the immediate preceding action is worth 3, the action 
before that is worth 2, and so on. The remaining features were 
patters of behaviors, derived from transitions from one student-
problem interaction state to another (e.g. NOTR→ATT means 
that the current student-problem interaction has a state of ATT, 
and the previous one had a state of NOTR). Due to the fact that 
several features were based on the prior three actions or prior 
three transitions between problems, the first four problems of any 
student’s work within Wayang were excluded from our analyses. 
This also means that, going forward, these detectors will only be 
usable after the student has already completed four problems.  
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Features also included running tallies of incorrect attempts, hints 
seen, problems solved on first attempt, and other assorted student 
actions aggregated over the current problem and prior three 
problems. Several hundred features were generated and only a 
small number were selected for use in models in this work; we 
limit our discussion to the features that were selected.  

Table 1.  Eight Low Level Student States 

Student State Description of student Behavior 

SKIP The student did nothing and skipped the 
problem. 

NOTR  

(Not Reading) 

The student made a first attempt to solve a 
problem in a time under 4 seconds –not 
enough time to even read the problem. 

GIVEUP The student took some action, but then 
skipped the problem without solving it. 

SOF (Solved on 
First Attempt) 

The student solved the problem on their first 
attempt, without seeing any help. 

BOTT (Bottom 
Out Hint) 

The student saw all hints available, including 
the last available hint that gave the answer. 

SHINT (Student 
Hint Request) 

Student answered the math problem 
eventually right, with at least 1 hint. 

ATT (Attempt) The student didn’t see any hints and solved it 
correctly after 1 wrong attempt. 

GUESS The student solved it correctly with no hints 
and more than 1 incorrect attempt. 

 

For the features shown in Table 2, “Avg” denotes an average 
taken across the prior four problems, “Last4” denotes the sum of 
the prior four problems, “Max” denotes the maximum number of 
actions in a given problem over the prior four problems, “Min” 
denotes the minimum number of actions in a given problem over 
the prior four problems, and % denotes the ratio of a particular 
action in the past four problems over the total actions in the past 
four problems. 

3.3 Model Creation 
 Once the batching of the data was finalized, each data set was 
split into the four subsets, each addressing the emotion in 
question: confidence, excitement, frustration, and interest. 
Initially, forward feature selection (with a limit of ten features) 
was carried out for each of the four types of affect for each data 
set, with student-level batch cross validation [17].  

Linear regression was performed in Rapidminer [31] on each of 
these new subsets under batch cross validation [17].  The models 
were assessed by Pearson’s R to determine their correlation with 
the target affect. Further, in order to create a discrete 
classification measure of affect, the Likert scale responses and 
linear regression model output were rounded to the nearest integer 
and then discretized as follows: All responses below 3 on the 
Likert scale were labeled as “negative”, all responses equal to 3 
were labelled “neutral”, and all responses above 3 were labeled as 
positive. These classification results were assessed using weighted 
kappa [32], which is a measure of agreement for polynomial 
classified targets. Similarly to typical Cohen’s kappa [33], a zero 
denotes agreement due to random chance, while a one denotes 
perfect agreement between the model and student self-reports of 
affect. 

While detector results obtained under batch cross validation 
should guard against overfitting, there is still the potential risk 
that the results may be overfit to the sample group used in the 
study. In particular, even with batch cross validation, all the 
batches are drawn from the same sample group, who may share 
various specific traits. Therefore, the batch cross validated models 
trained using the 2009 data set was applied to the 2011 & 2013 
data sets and vice-versa. This was done to provide a more 
conservative estimate of the models’ generalizablity to new data 
sets, given that the samples were collected from distinct groups of 
students at distinct points in time.  

Table 2.  Features from Students’ Interaction in Wayang 

AvgTimeToSolve – The average of time to solve a problem. 

LogTimePerAction – The logarithm log10 of the time per action 

AvgTimePerAction – The average time per action 

Hints – Total hints given on current problem 

Wrong – Total wrong attempts on the prior problem 

WrongLast4 – Total wrong attempts aggregated over the current 
and last 3 problems. 

MaxWrong – The maximum number of incorrect attempts 

MaxActions – The maximum number of actions 

MinWrong – The minimum number of incorrect attempts 

TimetoSolve – Time to solve a problem 

LogTimeInTutor – Logarithm log10 of student’s time in tutor. 

TimeInTutor – Total student’s time in tutor. 

MinTimePerAction – The minimum time per action of the past 4 
problems. 

MinLogTimePerAction – The minimum of the logarithm log10 
of seconds per action. 

TotalActions – The total actions of the prior problem. 

%Wrong – The percent of incorrect attempts. 

 

4. RESULTS 
4.1 Feature Selection 
Forward feature selection yielded a total of forty eight features. 
These features were split across ten different detectors/models, 
four for the 2009 data set, four  for the 2011 data set, and two for 
the 2013 data set where only self-reports on excitement and 
interest were collected. While there were ten models and ten 
features used per model, only 48 features were required rather 
than 100, because some features were used in more than one 
model. Twenty seven of these features were engineered from the 
states described in Table 1. Of the remaining twenty one features, 
sixteen were based on other student interactions within the system 
(see Table 2). Many of these features were based on student 
actions on an immediate given problem, but some denoted with 
“Avg”, “Max”, “Min” or “%” are based upon the current problem 
and three preceding problems: “Avg” denoting Average, “Max” 
denoting maximum, “Min” denoting minimum, and “%” denoting 
the percentage of a particular action out of the total actions taken 
over the current and prior three problems. 

The remaining five features (see Table 3) were based on students’ 
responses on the pretest, surveys, and the experimental 
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conditions. These features remain constant from problem to 
problem. 

Table 3.  Pretest and Agent Based Features 

Features Based on Survey Responses and Agent's Behavior 

CON – Baseline measure of confidence when problem solving. 

FRUS – Baseline measure of frustration when problem solving. 

INT – Baseline measure of interest towards problem solving. 

MathValuing – Baseline measure of the degree to which the 
student values mathematics. 

pre_lor –Student’s mastery orientation (willingness to learn new 
and interesting things in spite of challenge) based on a survey. 

 

4.2 Model Performance 
The R values of the linear regression models derived from the 
selected features achieved a fit comparable with prior work 
detecting frustration [34, 35], as well as boredom, confusion, and 
flow [35]. Specifically, prior work has achieved detectors of 
frustration with kappa values ranging from 0.16 to 0.32 [16], and 
boredom at kappa = 0.28 [16]. While the detectors presented in 
this paper may achieve slightly lower kappas than detectors 
presented in the above cited work, it’s important to note that our 
kappas are weighted [32], which suffer a penalty as compared to 
the typical Cohen’s kappa [33] that is meant for bivariate 
classification. Consequently our model distinguishes between 
three possible classifications rather than two. This increased the 
likelihood of accidental misclassification, but with the benefit of 
more sensitive measurement.  One cost of modeling affect as 
polynomial rather than binary is that binary classification has 
metrics for false and true positive and negative rates such as 
sensitivity and specificity [36] or A’ [37], which we cannot utilize 
in this work. 

It is important to note the sample size when considering the 
relative strength of each model. As previously mentioned the 
largest sample was found in the 2009 data set, where each model 
was built on an average of 1138 instances split across six batches. 
The 2011 data set contains 120 instances split across three 
batches. However, for the 2011 data set there were only ten 
instances of positively valenced interest. The particularly low 
values of interest in 2011 may explain why the 2009 derived 
model better predicts interest in that sample than the 2011 derived 
model. 

Tables 4 through 7 show performance indicators of each model, 
which consist of R values (indicating model fit) and weighted 
kappas [32] (denoted by “K”, indicating classification power into 
low/neutral/high levels). Each cell contains performance results 
for a model created from a dataset indicated by the column, and 
evaluated over a dataset indicated by the row. Note that values 
along the diagonal (in bold) correspond to testing and training 
over the same data set. In such cases, student level batch cross 
validation was used to prevent overfitting. The process of 
applying the model to the same data set (to generate estimates of 
the emotion) is thus slightly different than for other cells. Under 
batch cross validation, a separate model is generated (i.e. trained) 
for each batch, and estimations/classifications are made for the 
testing batch. The performance of six distinct models is thus 
aggregated in the end for the 2009 data set; the performance of 
three distinct models is aggregated in the 2011 data set); and the 

performance of two distinct models is aggregated in the case of 
the 2013 data set.  

Table 4.  Confidence Detector Performance (Pearson’s R & 
Cohen’s Kappa) 

 2009 Model 2011 Model 
2009 Data Set 
N = 1102 

R = 0.404  
K = 0.200 

R = 0.306   
K = 0.163 

2011 Data Set 
N = 127 

R = 0.515  
K = 0.249 

R = 0.238  
K = 0.147

 
Table 5.  Frustration Detector Performance (Pearson’s R & 
Cohen’s Kappa) 

 2009 Model 2011 Model 
2009 Data Set 
N = 1159 

R = 0.372   
K = 0.173 

R = 0.307  
K = 0.146 

2011 Data Set 
N = 125 

R = 0.374  
K = 0.139 

R = 0.341  
K = 0.281

 

Table 6.  Excitement Detector Performance (Pearson’s R & 
Weighted Kappa) 

 2009 Model 2011 Model 2013 Model 

2009 Data 
N = 1145 

R = 0.224  
K = 0.151

R = 0.211   
K = 0.083 

R = -0.089  
K = -0.022 

2011 Data 
N = 122 

R = 0.454  
K = 0.278 

R = 0.316  
K = 0.131 

R = -0.142  
K = -0.050 

2013 Data 
N = 66 

R = 0.004  
K = 0.102 

R = 0.201  
K = -0.024 

R = 0.137  
K = 0.192

 
Table 7.  Interest Detector Performance (Pearson’s R & 
Weighted Kappa) 

 2009 Model 2011 Model 2013 Model 
2009 Data 
N = 1145 

R = 0.240 
K = 0.090

R = 0.058   
K = 0.026 

R = 0.071  
K = -0.024 

2011 Data 
N = 105 

R = 0.300  
K = 0.140 

R = 0.174  
K = 0.005 

R = -0.001  
K = -0.036 

2013 Data 
N = 86 

R = 0.006  
K = 0.055 

R = 0.153  
K = -0.023 

R = 0.020  
K = -0.144

 

In general,  the results in Tables 4-7 show that: a) affect detectors 
for confidence/anxiety, excitement and frustration achieve 
reasonable levels of performance, while for interest/boredom, the 
R and Kappa values are much lower; b) models generated over 
larger datasets transfer better to smaller datasets, compared to  the 
other way round; c) models perform similarly well across 2009 
and 2011 but not as well over the 2013 dataset, which 
corresponded to a summer camp in a different part of the country; 
d) models created over the 2013 dataset don’t transfer well to the 
2009-2011 datasets either. These points will be explored in the 
discussion section.  

4.3 Linear Regression Models 
The linear regression models for the four affect states are 
displayed in Tables 8 through 11.  
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Table 8. Models of Confidence 

2009 Features Weight 2011 Features Weight 

NOTR→BOTT -53.00 GIVEUPLast3 75.77 

BOTT→GUESS -21.64 NOTR→BOTT -40.42 

GIVEUPLast3 -10.74 BOTT→BOTT 5.14 

SOFLast3 0.34 SOF→BOTT -4.96 

Pre_LOR 0.34 SOFLast3 1.06 

MinLogTimePerAction 0.31 Pre_LOR 0.87 

Wrong -0.20 MaxWrong 0.28 

WrongLast4 -0.07 WrongLast4 -0.27 

FRUS -0.04 CON 0.10 

CON 0.04 TimetoSolve 0.01 

 
Table 9. Models of Frustration 

2009 Features Weight 2011 Features Weight 

NOTR→NOTR -99.37 GUESS→NOTR -79.74 

GIVEUP 11.56 SHINT→NOTR -36.07 

GUESS→SOF -2.47 GIVEUP -22.85 

SHINT→SOF -1.58 SHINT -3.32 

%Wrong 0.66 SOF -1.77 

AvgTimePerAction -0.24 %Wrong 0.98 

WrongLast4 0.09 Pre_LOR -0.53 

TotalActions 0.05 INT -0.12 

FRUS 0.04 CON -0.09 

INT -0.04 MaxActions 0.08 

 
Table 10. Models of Excitement 
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BOTT→ 
NOTR -74.00 GIVEUP 35.24 

SHINT→ 
BOTT 66.89 

SOF→ 
NOTR -22.52 

BOTT→ 
SHINT 25.32 

SHINT→
SKIP -4.31 

Min 
Wrong -2.57 Pre_LOR -0.84 SKIP 2.80 

SOF→ 
BOTT 2.55 

Hints 
Seen -0.49 

SHINT→ 
SHINT 2.09 

Incorrect 
Attempts 0.14 INT -0.14 Pre_LOR -0.76 

INT -0.14 
Wrong 
Last4 0.05 

Hints 
Seen -0.36 

Wrong 
Last4 0.12 CON 0.05 CON 0.08 

Max 
Wrong -0.07 

LogTime 
InTutor -0.04 

AvgTime
ToSolve 0.01 

MinTime 
PerActio -0.01 

AvgTime 
PerAction -0.01 

TimeIn 
Tutor < 0.01 

TimeIn 
Tutor < 0.01 

AvgTime 
ToSolve < 0.01   

Table 11. Models of Interest 
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1.16 GIVEUP 349.31 NOTR→ 
SOF 

30.20 

SHINT 1.06 GIVEUP 
→SOF 

-180.20 BOTT 19.68 

%Wrong -0.56 SHINT→ 
NOTR 

52.42 SOF→ 
GUESS 

-8.15 

SOF 0.41 SHINT→ 
SHINT 

26.43 SKIP→ 
SOF 

-7.33 

Pre_LOR 0.37 NOTR→ 
SOF 

-17.61 SHINT
→GUES

6.43 

INT 0.08 SOF→ 
NOTR 

17.00 LogTime 
InTutor 

-0.09 

Total 
Actions 

-0.05 BOTT→ 
BOTT 

7.14 Max 
Wrong 

-0.07 

MinTime 
PerActio

-0.02 Math 
Valuing 

0.09 INT 0.05 

TimeIn 
Tutor 

< 0.01 MinTime
PerAction 

0.03 TimeIn 
Tutor 

< 0.01 

  LogTime 
InTutor 

0.02   

 

5. DISCUSSION 
In this paper, we have proposed several models of affect based on 
students’ interaction with a tutoring system. In so doing, we have 
independently replicated prior work on sensor-free affect 
detection and contributed to existing work on predictive features 
of student affect and methods for building models of affect. In the 
following section we address opportunities and challenges 
regarding generalizability of the models to new populations. 

A major opportunity is to develop detectors which respond to 
differences between classrooms, schools, and even different 
regions of the country. We generated a rich set of features which 
combined student behaviors in the last problem seen, recent 
history, patterns of student behaviors, and even students’ affective 
background before starting the tutoring session. A combination of 
features from all these categories were best predictors for each 
affective state, showing that a variety of student descriptors as 
well as their behaviors can help to predict emotional states while 
learning.  

It is important to note that while some of the features we used 
bear a similarity to those in other research, the features are 
dependent on the environment from which they are inferred. 
Thus, validation is needed to ensure that these features transfer 
and apply to other tutoring systems, such as Wayang Outpost.  

In designing the features used, consideration was given to other 
detectors of affect [16, 38].  There is a tension between trying to 
use similar features from other systems, and recognizing features 
as being contextually distinct; this makes detector construction a 
custom work on each system. In the future, it is our hope to 
design even more informative features. This could be done by 
examining the data to look for patterns of behavior that align to 
affective states, and to observe students using the software for 
behaviors that might have been overlooked and could be 
indicators of affect. While examining the data in such a way could 
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“pollute” a researcher’s perspective and result in features that may 
overfit to a particular data set, this may be a necessary build 
generalizable detectors.  

Much of our feature selection work relied on the atheoretical 
approach of simple forward selection that yielded some features 
that may be only coincidentally correlated with our target affects. 
The best way to increase fidelity in identifying which features are 
true expressions of an affective state is to examine which 
coefficients remain similar in sign and magnitude across detectors 
built for different data sets. For example, in both confidence 
models generated, NOTR→BOTT enters into the regression 
model with a negative coefficient. This means that transitioning 
from responding to a problem in under four seconds to using a 
bottom out hint is negatively correlated with confidence, in both 
models generated over different data sets. Both of these behaviors 
seem expressions of disengagement, and other potentially 
disengaged student states like GIVEUP and GUESS also figure 
largely into both models. Unfortunately, the similarity in these 
states (as expressions of disengagement) may make the models 
more different than they need to be as in the case of 
NOTR→NOTR versus GUESS→NOTR in the case of frustration. 

The statistical power of using a larger and therefore likely more 
diverse data set is evident from our findings. In all cases (with the 
exception of frustration), the 2009 model outperforms the 2011 
when applied to the 2011 data set. The fact that the 2009 data set 
has about twice as many participants and roughly ten times as 
many affect reports may explain this trend. Thus, a larger and 
more diverse data set seems to generalize better to new samples 
and groups of students.  

Finally, it’s worth noting that the 2013 models transferred poorly 
to 2009 and 2011 datasets, and that the 2013 data set came from 
summer school students from the southwestern United States 
(Arizona & California). Models trained on the 2009 or 2011 data 
sets do not appear to generalize to the 2013 data set, or vice versa. 
We believe this is because the 2013 dataset was unique in several 
ways: it came from a different region of the country; it 
corresponded to students working in a summer program as 
opposed to during a typical school year; a slightly different 
version of Wayang Outpost was used. In addition, the 2013 
students only self-reported on two affective states: excitement and 
interest, but not confidence or frustration. While batch cross 
validation may address within sample distinctness between 
participants, it does little to address how well the model will 
perform when applied to a  distinct new sample group whose 
participants are distinct from the training group (e.g. summer 
school vs. not summer school, within a regular math class).  

Limitations of generalizability across samples might be the largest 
challenge, also found in other work. In a recent study [39], 
detectors trained on student sample groups from urban, suburban, 
and rural areas were shown to have difficulty generalizing to a 
different sample group. For example, a detector of Confusion 
trained on suburban students under batch cross validation 
achieved a kappa of 0.38 when applied to suburban students, but 
performed at chance when applied to rural students with a kappa 
of 0, and only slightly better when applied to urban students with 
a kappa of 0.06 [39]. This shows that while cross validation may 
provide a conservative estimate on how well a model may 
generalize to new data, the accuracy of this estimate is 
conditioned upon the training data being representative of the 
population to which the model is to be applied to.   
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ABSTRACT
Parameterized exercises are an important tool for online as-
sessment and learning. The ability to generate multiple ver-
sions of the same exercise with different parameters helps
to support learning-by-doing and decreases cheating during
assessment. At the same time, our experience using param-
eterized exercises for Java programming reveals suboptimal
use of this technology as demonstrated by repeated success-
ful and failed attempts to solve the same problem. In this
paper we present the results of our work on modeling and
examining patterns of student behavior with parameterized
exercises using the Problem Solving Genome, a compact en-
capsulation of individual behavior patterns. We started with
micro-patterns (genes) that describe small chunks of repet-
itive behavior and constructed individual genomes as fre-
quency profiles that show the dominance of each gene in
individual behavior. The exploration of student genomes
revealed the individual genome is considerably stable, dis-
tinguishing students from their peers. Using the genome,
we were able to analyze student behavior on the group level
and identify genes associated with good and poor learning
performance.

Categories and Subject Descriptors
Information systems [Information Systems Applications]:
Data mining

Keywords
sequential pattern mining, parameterized exercises

1. INTRODUCTION
Parameterized exercises have recently emerged as an impor-
tant tool for online assessment and learning. A parameter-
ized exercise is essentially an exercise template that is in-
stantiated at runtime with randomly generated parameters.
As a result, a single template is able to produce a large num-

ber of similar, but distinct questions. While parameterized
questions are considerably harder to implement than tradi-
tional “static” questions, the benefits offered by this technol-
ogy make this additional investment worthwhile. During as-
sessment, a reasonably small number of question templates
can be used to produce online individualized assessments for
large classes minimizing cheating problems [12]. In a self-
assessment context, the same question can be used again
and again with different parameters, allowing every student
to achieve understanding and mastery. The aforementioned
properties of parameterized exercises made them very at-
tractive for the large-scale online learning context. At the
same time, parameterized exercises as a learning technology
have their own problems. Our experience with personalized
exercises for SQL [17] and Java [7] in the self-assessment
context demonstrated that the important ability to try the
same question again and again is not always beneficial, es-
pecially for students who are not good at managing their
learning. The analysis of a large number of student logs
revealed some considerable number of unproductive repeti-
tions. We observed many cases where students kept solving
the same exercise correctly again and again with different
parameters, well past the point when it could offer any ed-
ucational benefit. While it might increase self-confidence,
students’ time and effort might be spent better by advanc-
ing to more challenging questions. We also observed cases
where students persisted in failing to solve the same, too
difficult exercise, instead of focusing on filling the apparent
knowledge gap or switching to simpler exercises.

The work presented in this paper was motivated by our belief
that the educational value of parameterized exercises could
be increased by a personalized guidance mechanism that can
predict non-productive behavior and intercept it by recom-
mending a more efficient learning path. The main challenge
with predicting unproductive behavior is to examine the sta-
bility of behavior patterns in the problem solving process.
If the patterns, such as specific unproductive sequences, ap-
pear at random, there is a slim chance to predict and prevent
them. If, on the contrary, specific patterns are associated
with certain features of the student (such as knowledge and
individual traits), exercise complexity, or the learning pro-
cess stage, there is a good chance to learn the association
rules and use it for prediction. In this paper we performed
an extended study of problem solving patterns in the con-
text of parameterized exercises. We explored the connection
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between these patterns and the components of the learning
process mentioned above. Our study produced a rather un-
usual result. While it was more plausible to expect that the
patterns are related to the current level of student knowl-
edge, our analyses revealed that the patterns are related to
student problem solving tendency. More exactly, we discov-
ered that every student has a specific combination of micro-
patterns, a kind of problem solving genome. We observed
that this genome is relatively stable, distinguishing every
student from his or her peers; it changes very little with the
growth of the student knowledge over the course. We also
discovered that genomes are not randomly distributed, and
instead, students with similar genomes form cohorts that
perform relatively similarly in the problem solving process.
We believe that our discovery of the problem solving genome
is a very important step toward our goal of predicting and
preventing unproductive behavior. Indeed, the stability of
patterns on the personal level makes the task of pattern
prediction feasible while the presence of cohorts opens the
way to detect the student problem-solving genome early in
the learning process. In this paper we present our approach
of detecting student problem-solving genome and report our
exploration of the genome on the level of individual students
and cohorts.

The rest of the paper is structured as follows. The next sec-
tion briefly reviews several areas of related work. Section 3
describes the dataset used in the study. Section 4 presents
the method for building the Problem Solving Genome. In
Section 5 we explore the Genome’s stability and its relation
with performance groups and the complexity of the exer-
cises. Section 6 summarizes the contribution and discusses
future work.

2. RELATED WORK
2.1 Parameterized Questions and Exercises
Recent studies in educational technology have demonstrated
promising results by leveraging computer and Web abilities
to deliver parameterized exercises worldwide, which has be-
come one of the focusing topics in Web-enhanced educa-
tion. One of the most influential systems, CAPA [9], was
evaluated in a number of careful studies, providing clear
evidence that individualized exercises can significantly re-
duce cheating while improving student understanding and
exam performance. The CAPA technology has been later
integrated into the popular LON-CAPA platform [12] and
its functionality defined the assessment architecture of the
MOOC platform eDX 1. Due to the complexity of parame-
terized assessment, the majority of work on parameterized
questions and exercises was done in physics and other math-
related domains where a correct answer to a parameterized
question can be calculated by a formula. There are, how-
ever, examples of using this technology in other domains.
In particular, our team focused on parameterized exercises
for teaching programming. We developed and explored the
QuizPACK platform for C-programming [3] and the similar
QuizJET platform for Java programming [7]. Problem solv-
ing repetition behaviors have been studied by psychologists
in different ways, providing evidence that repetition behav-
iors have roots in cognitive, metacognitive and motivational
aspects and explaining why some students quit and others

1http://www.edx.org/

persist when facing challenging problems [14]. Schunk [16]
shows a positive correlation between persistency in repeating
and self-efficacy (believe on self-capabilities to solve a prob-
lem). The attribution theory [19] describes how students
that attribute performance outcomes (successes, failures) to
effort tend to work harder than students who attribute them
to ability. Grounded in the literature in educational psychol-
ogy, we conjecture that patterns on problem solving repeti-
tion may be explained by individual learners’ motivational
traits that are part of learners’ personality [15]. These the-
ories provide insights into analyzing to what extent these
behaviors are stable in students.

2.2 Sequential Pattern Mining in Education
Mining sequential patterns of students actions has recently
gained attention in educational data mining field. Using ac-
tivity data collected from groups of students working with
interactive tabletops, Martinez et al [13], mined and clus-
tered frequent patterns to compare distinct behaviors be-
tween low and high achievement groups. The differential se-
quence mining method, introduced by Kinnebrew and Biswas
[11] has been successfully used to differentiate behavioral
patterns among groups of students (such as low and high
performance students). The method uses SPAM [1] to find
common patterns in the sequences of the whole dataset, and
then applies statistical tests to reveal differences in the fre-
quencies of the discovered patterns among different groups.
The same authors have applied this technique in data col-
lected from the system Betty’s Brain to discovered patterns
that can distinguish self-regulated behaviors in successful
and non-successful students [2] and to analyze the evolution
of reading behaviors in high and low performance students
during productive and non-productive phases of work [10].
Herold, Zundel and Stahovich [4] have used the differen-
tial sequence mining on sequences of actions on handwrit-
ten tasks and proposed a model to predict performance on
the course based on pattern features. Our work extends this
prior work by utilizing and aggregating the mined sequence
patterns to construct student activity profiles. Such pro-
files enable us to evaluate the statistical differences at the
student, exercise, and group levels.

3. SYSTEM AND DATASET
We collected answers of students who worked with QuizJET
[7] parameterized Java exercises in the context of an intro-
ductory object-oriented programming class at the School of
Information Sciences in the University of Pittsburgh. The
students accessed the exercises through the Progressor+ in-
terface [6]. The system was provided for self-study and its
use was not mandatory. Each QuizJET exercise was gener-
ated from a template by substituting a parameter variable
with a randomly generated value. Exercises generated using
the same template were equal from a semantics point of view.
To answer the exercise the student had to mentally execute
a fragment of Java code to determine the value of a specific
variable or the content printed on a console. When the user
answers, the system evaluates the correctness, reports to the
student whether the answer was correct or wrong, shows the
correct response, and invites the student to“try again”. Next
time, the exercise is be generated with other values and the
correct answer will be different. In this way, the student can
try the same exercise many times, leaving a trace of suc-
cesses and failures. Figure 1 shows a simple parameterized
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Figure 1: A parameterized problem in QuizJET. In
(a) the student answers wrongly and then hitts “Try
Again” button. In (b) the problem is reloaded with
different numbers.

Java problem answered incorrectly by the student (a) and
then repeated (b). Note the differences in the numbers in the
second attempt (b) which correspond to the same problem.
Progressor+ provided access to 103 different parameterized
exercises organized in 19 topics (Variables, Objects, Arrays,
etc.). Exercises are labeled in terms of complexity and there
are 41 easy exercises, 41 medium exercises and 19 hard ex-
ercises.

The dataset includes three semesters of student data (Spring
2012, Fall 2012 and Spring 2013) in which the use of the
system was optional. Overall, 101 students used the system
making 6489 incorrect and 14726 correct attempts. Easy
exercises were attempted 10620 times, medium complexity
exercises were attempted 7876, and hard exercises were at-
tempted 2719 times. Once a student started to work with
an exercise she might attempt it just once or try it several
times in a sequence. The dataset includes 4212 single at-
tempts (no repetition) and 4758 sequences with more than
one attempt. Among these there are 2717 with more than
two attempts, 1583 with more than three attempts, and 1016
sequences with more than four attempts.

4. BUILDING THE PROBLEM-SOLVING
GENOME

The key idea of our “genome” approach is to build a com-
pact characteristics of student problem-solving behavior on
the level of micro-patterns. To build a genome we started
by finding proper micro-patterns (genes) and then built a
genome of a student as a vector representing the frequen-
cies of different micro-pattern occurrences in the student
problem-solving logs. An overview of the genome-building
process is shown in Figure 2. To build the genes, we started
by labeling students’ attempts using time and correctness
(Figure 2(a), Section 4.1). We then apply sequential pat-
tern mining to extract sequential micro-patterns Figure 2
(b), Section 4.2). The most frequent micro-patterns were
selected as genes and used as a basis for the Problem Solving
Genome, which is a vector of gene frequencies (Figure 2(c),
Section 4.3). This section presents the genome-building pro-
cess in detail while the next sections report our exploration
of the Genome.

Figure 2: Steps for building the Problem Solving
Genome.
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Figure 3: Time distributions (logarithmic) for easy,
medium and hard exercises. The right curve is al-
ways the first attempt time distribution, showing
that first attempts usually take longer times.

4.1 Attempts labeling
We use both time and correctness of each attempt to label
it for further use in sequential pattern mining analysis. In
this way, each action will convey more information than us-
ing correctness only. As shown in Figure 3, distribution of
times for first attempts are different from other (non-first)
attempts. This is reasonable if we consider that the user
needs extra time the first time to read and understand the
exercise. Additionally, time distribution is different for dif-
ferent exercises, as in general, complex exercises need longer
times. Thus, for labeling the time factor, we used time in-
formation of historical records in our system to compute
the median times for each exercise for both first and other
attempts. Then, we labeled the attempt as short or long
depending on the time being shorter or greater than the
median of the distribution for the specific exercise. Combin-
ing correctness and time, we finally label the attempts using
the letters ‘s’ (lowercase s) for a short success, ‘S’ (uppercase
S) for a long Success, ‘f’ for a short failure, ‘F’ for a long
Failure.

The labeled attempts are organized in sequences by pairs
student-question within a session in the system. Each se-
quence su,e represent the sequential attempts of user u in
the exercise e within a session. If the user attempted the
same exercise in different sessions, there will be more than
one sequence su,e. Additionally, we mark starting and end-
ing points on sequences using ‘ ’ (underscore). For example,
a sequence fSs means start with a short failure, make a
long success and then finish with a short success.

4.2 Sequential pattern mining
To discover frequent patterns, we use the PexSPAM algo-
rithm [5], which extends the fast SPAM algorithm [1] with
gap and regular expression constraints. Given a sequence
database D = s1, s2, ..., sn, the support of a pattern α is
the proportion of sequences of D which contains α as a sub-
sequence at least once. If the support of α is bigger than
a threshold, then α is considered a frequent pattern. Sup-
port measure does not inform for multiple occurrences of
the pattern within a sequence. In this work, we set a small
minimum support in 1% because even when a pattern oc-
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Table 1: Top 20 patterns (genes) ordered by sup-
port (the percentage of sequences that contain the
pattern). Observe the presence of many inefficient
patterns like ‘ss’ or ‘FF’ among top 20.

Pattern Support Pattern Support
1 ss_ 0.163 11 _FS 0.07
2 ss 0.107 12 FS 0.066
3 Ss 0.101 13 FS_ 0.060
4 SS_ 0.091 14 FF 0.059
5 _FS_ 0.086 15 SS 0.058
6 _FF 0.083 16 _SS 0.054
7 Ss_ 0.081 17 _ss_ 0.053
8 _fS_ 0.079 18 _SS_ 0.052
9 _fF 0.077 19 sss 0.050
10 sss_ 0.074 20 _fS 0.048

curs in overall few sequences, it can still make a difference
when looking at the aggregation of pattern occurrences by
student. Additionally, since we are interested in looking at
patterns of 2 or more sequential attempts, we set the gap
to 0 and considered only sequences with more than one at-
tempt. After running the mining algorithm, we discover 102
common patterns occurring at least in 1% of the sequences.
These common micro-patterns of student behavior play the
role of genes in our approach. The top 20 genes and the
corresponding support can be seen in Table 1.

4.3 The problem solving genome: character-
izing students with pattern vectors

Using the 102 gene patterns discovered by the sequential pat-
tern mining, we build individual frequency vectors that show
how frequently each gene appears in student problem solv-
ing behavior. Since this vector captures in a compact form
the specifics of student problem solving behavior, we call it
student Problem Solving Genome. Note that the frequency-
based approach allows building individual genome using any
subset of gene sequences, for example, all sequences in the
term, the first half of sequences of the student activity in
the term, a random subset of sequences, etc. Since a pattern
might occur more than once in a sequence, and more than
one pattern may occur in a sequence, the frequency vectors
are not summing to 1. Thus, we normalize the vectors for
further analysis.

5. EXPLORING THE GENOME
In this section we analyze the pattern vectors within and
between students, across problem complexity levels, and
across different student performance groups. We use the
same dataset for all further analysis: we select 68 students
having pretest/posttest (see section 5.3.1) and a minimum
amount of usage of the system of 20 sequences and two ses-
sions. Addtionally, we exclude one outlier student with a
very unusual number of repetitions in the first 6 sequences.
At the end our dataset consists of 67 students.

5.1 Problem Solving Genome stability
The first step of problem-solving genome exploration is as-
sessing its stability. To what extent the name “genome” that
we assigned to the micro-pattern frequency vector is justi-
fied? Is it just a random mix of pattern which could be
different for different time slots or, like a real genome, it is

a stable characteristic of a user that distinguishes him or
her from peers? A good approach to check genome stabil-
ity is to randomly split sequences of user activity patterns
into two equal sets and build the genome vector from each
of two halves. If the genome is stable, then two random
halves of the split genome should be significantly closer to
each other than to half-genomes of other users. In contrast,
if genome halves are no closer to each other than to half-
genome vectors of other users, we can’t consider genomes as
stable user characteristics. To assess the stability hypoth-
esis we built two half-genomes for each user by randomly
splitting her observed sequences in half and compiling gene
frequency vectors for each half. We then calculate pairwise
distances between all half-genomes.

To compute distances, we use Jensen-Shannon (JS) diver-
gence as it is a symmetric version of Kullback-Leibler di-
vergence and has been widely used for computing distance
between frequency distributions. We filter out all students
with less than 60 sequences, limiting differences due to ex-
treme difference on amount of activity. Among the 67 stu-
dents in our dataset, there are 32 students with at least 60
sequences. In this analysis we use a paired samples t-test
on the difference between the self and other distances. The
normality assumption is met. Results are shown in Table 2
first row (a). Students self-distances are significantly smaller
(M = .2370, SE = .0169) than distances to other students
(M = .4815, SE = .0141), t = −15.224, p < .001, Cohen’s
d = 2.693.

While similarity of random half-genomes is a very strong
argument in favor of genome stability, the random split has
one weak aspect: since each of the random halves repre-
sents student micro patterns over the whole duration of the
course, it is still possible that the student genome gradually
changes over the course duration from one pattern frequency
to another. To assess the temporal stability of the genome
we need to use temporal split, i.e., to compare half-genomes
built from the temporally first half (early) and second half
(late) of student sequences. Results in Table 2 second row
(b) confirm the temporal stability hypothesis: while the dis-
tance between temporary split half-genomes is larger than
between randomly split halves (M = .3211, SE = .0214) it
is still significantly smaller than between-student distances
(M = .4997, SE = .0164), t = −6815, p < .001, Cohen’s
d = 1.205. This result confirms that frequencies of micro-
pattern appearances act as a true problem solving genome
“genome”: it is considerably stable, characterizing each user
as individual over the course progression, while sufficiently
distinguishing this user from others.

5.2 Effect of complexity
While we discovered that the knowledge level and course
stage doesn’t affect the genome, it is still possible that be-
havior patterns are affected by exercise complexity. To un-
derstand how the complexity level of the exercises impacts
on the pattern frequencies, we analyze distances between
the genome of the exercises (i.e. pattern frequency vec-
tor for each exercise). Having the exercises’ genome and
the predefined classification in easy, medium and hard, we
select pairs of exercises within and between complexity lev-
els and compute distances using Jensen-Shannon divergence.
We filter out all questions with less than 20 sequences and

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 156



www.manaraa.com

Table 2: Statistical tests comparing students with themselves and others.
self distances dist. to others

M SE M SE t sig. Cohen’s d
a) randomly split genome .2370 .0169 .4815 .0141 -15.224 < .001 2.693
b) early/late genome .3211 .0214 .4997 .0164 -6.815 < .001 1.205
c) randomly split genome in easy exercises .3736 .0214 .6065 .0128 -10.352 < .001 1.657

Table 3: Mean and standard error of distances
within and between easy and hard exercises.

Mean SE
within easy .3311 .0031
within hard .3478 .0085

between easy-hard .4145 .0050

perform comparisons between extremes groups, i.e. easy
and hard complexity levels to extreme the differences. Nor-
mality and homogeneity of the variance on pair distances
are not met on all levels, thus a non-parametric test is
applied. Results of the Krustal-Wallis test shows signifi-
cant differences between distances within and between lev-
els, χ2(2, N = 1596) = 160.359, p < 001. Mean and stan-
dard error of distances within easy, within hard, and be-
tween easy and hard groups are shown in Table 3. A Mann-
Whitney test is performed to test differences among the lev-
els. Distances within easy exercises (mean rank = 626.16)
are significantly smaller than distances between easy and
hard exercises (mean rank = 909.77), z = −12.564, p < .001.
Similarly, the distances within hard exercises (mean rank
= 277.20) are significantly smaller than distances between
easy and hard exercises (mean rank = 383.13), z = −4.733,
p < .001. These results show a clear dependency of the pat-
tern behaviors with the complexity level of the questions.
This is reasonable given that hard questions, which need
more time, are expected to discourage repetitions.

The impact of exercise complexity on the patterns suggest
that the genome is as much impacted by the unique exercise
difficulty profile than by individual differences of the stu-
dents. We re-examine the analysis on Section 5.1 now con-
sidering randomly split genome built only from activity on
easy exercises, to control for differences of students amount
of activity on different complexity exercises. We perform
this analysis with 39 students having at least 20 sequences
in easy questions. Results shown in last row (c) in Table 2
confirm the stability of patterns: students are more similar
to themselves (self distance M = .3736, SE = .0214) than
to others (distances M = .6065, SE = .0128), t = −10.352,
p < .001, Cohen’s d = 1.6569, even within exercises of the
same complexity.

5.3 Patterns of Success within student groups
Since one of the goals of this paper is using behavior anal-
ysis to identify and prevent inefficient patterns, it would be
valuable to use the genome to identify which patterns make
groups of students more or less successful in the learning
process. The easiest approach to do it is to split students
into performance-related groups and find unique genome as-
pects in this group. This simple approach, however, might
not work since for students with very different genomes, dif-
ferent behavior patterns might be related to success. In
this case, to find a connection between patterns and perfor-
mance, we should group students into groups with similar

Table 4: Number of students in each predefined per-
formance group (PPG).

Pretest Posttest Learning gain
(total=67) (total=65) (total=65)

low 24 22 22
medium 16 19 20

high 27 24 23

behavior and contrast most and least successful students
within each group. In this section we perform both kinds of
the analysis.

5.3.1 Patterns for Predefined Performance Groups
Predefined Performance Groups (PPG) are defined based
on pre and posttest scores that we collected. The pre and
posttest were highly similar among different semesters (small
variation on questions) and the scores were further normal-
ized as score / max score (min score is 0). Additionally,
we compute a normalized learning gain score as (normalized
post score) - (normalized pre score). For each of the pretest,
posttest, and learning gain measures, students are classi-
fied in three groups using the percentiles 33.3 and 66.7: low,
medium and high. For example, a student with pretest lower
or equal than the percentile 33.3 in the pretest score distri-
bution is classified as low pretest student. Summarizing,
we have 3 PPG (low, medium, high) for each performance
measure (pretest, posttest and learning gain). As explained
before, the dataset contains 67 students with pretest and
65 students with both pre and posttest. Table 4 shows the
number of students in each PPG.

Do students with similar performances have similar pat-
terns for solving parameterized exercises? Is this similarity,
between the students of the same predefined performance
group, more than the similarity we can find between the stu-
dents from different groups? For this analysis we contrast
the genome built using all the term activity (all problem
solving sequences) of the students classified in the perfor-
mance groups described before. We sample 50% of all possi-
ble pairs of students within and between PPGs and compute
the distances (Jensen-Shannon divergence) of all within and
between group pairs. Then, we compare the average of dis-
tances within and between groups to see if students inside
each group are more similar to each other than to students
in other groups. Normality and homogeneity of variance
is not met for all groups, thus we use Krustal-Wallis non-
parametric mean rank test and Mann-Whitney test for single
comparisons. We constrained the analysis to PPGs low and
high to see extreme differences.

Results are shown in Table 5. Mann-Whitney comparison
is reported only where significant differences among groups
were found (pretest). For pretest groups, distances within
the low group (mean rank = 222.70) are significantly smaller
than distances between low and high groups (mean rank =
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Table 5: Statistical tests on differences on distances between pairs of students within low, within high, and
between low and high PPGs.

low high low-high Krustal-Wallis test Mann-Whitney test
M SE M SE M SE Mean Ranks χ2 sig. Mean ranks z sig.

(low,high,low-high)
Pretest .465 .014 .547 .017 .512 .010 294.68, 368.67, 341.51 11.926 .003 222.70, 258.21 -2.537 .011

low < low-high
Posttest .486 .016 .516 .018 .511 .011 256.41, 271.97, 273.69 1.061 .588 - - -
L. Gain .507 .019 .470 .018 .517 .013 242.32, 216.57, 251.35 5.276 .071 - - -
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Figure 4: Top 30 patterns and their frequencies in each cluster. Patterns are ordered by the difference on
frequencies between cluster two (non-confirmers) and one (confirmers).

258.21), z = −2.537, p = .011. This suggests that stu-
dent with no previous experience tend to behave differently
than students with stronger background. There is no signifi-
cant difference between high and low-high distances, though,
meaning that the high group behaved more heterogeneously
than low group. For posttest and learning gain groups there
are no significant differences on distances within and be-
tween groups. These results are intriguing, as we will ex-
pected to find clear differences among performance groups.
Since we could not find those differences, we could hypoth-
esize that specific behavior patterns can’t be easily charac-
terized as universally helpful or harmful for student perfor-
mance, instead, the impact of each micro-pattern on student
behavior might depend on the whole profile of micro-patters,
i.e., the genome. Thus, to find connections between genome
and performance, we need to start from the opposite side:
cluster the students based on the genome, characterize the
clusters in terms of the distinguishable patterns, and find
helpful and harmful patterns within each class. We describe
these analyses in the following sub sections.

5.3.2 Clustering students by their genome
We use the genome as a feature vector and cluster students
using the spectral clustering technique [18] as it gives a bet-
ter separation of the students. We choose two clusters (K=2)
as we observe that two clusters give the largest eigen-gap,
suggesting there are two intrinsic groups in the data. Figure
4 shows the top 30 frequent patterns in both of the clus-
ters. Each point represents the average frequency of seeing
a particular pattern in the cluster. Error bars are included
to indicate significance. We order the patterns in x-axis by
the differences between clusters two and one. As we can see
in this figure, some of the patterns, such as fS , FS , ss,
Sss, etc., occur with significant frequency difference in the
two clusters and some other patterns, such as fS, fs , Ff,
etc., do not show significant differences. If we look more

closely, the sequences that start with failure are mostly re-
lated to the students in cluster two and the sequences that
start with success are mostly related to the students in clus-
ter one. Also, we can see that the students in cluster one
tend to repeat their successful attempts more and more fre-
quently (e.g. the ssss pattern). In other words, even when
they get the right answer to the question, they will insist on
confirming knowing the question by repeating it again and
again. Unlike students in cluster one, the students in clus-
ter two are much less prone to this “confirmation” behavior.
Instead, they are more prone to stop working with an exer-
cise early, frequently right after figuring out the first right
answer to the question, even if they have struggled for the
correct answer in their previous attempts (e.g. fS , FS ,
and FS patterns). Thus, using the student genome, we can
identify two major types of student behaviors in solving pa-
rameterized exercises. Based on these observations above,
we call the first cluster of the students the confirmers and
the second cluster the non-confirmers.

5.3.3 Performance differences among clusters
Once two clusters of students that are similar in their over-
all behavior are identified, we can re-examine the connec-
tion between student success and behavior patterns on the
cluster level. We study pattern by pattern differences be-
tween different PPGs within each cluster and describe the
patterns that distinguish them. Both of the clusters have
students from all PPGs. As a result, we cannot say that the
student’s genome has a direct impact on the performance of
the student. Both confirmers and non-confirmers can have
high or low performance. To look at the clusters deeply and
to see if there are any differences in the patterns, within each
cluster, that can drive students’ performance, we repeat the
first analysis within each cluster looking at the learning gain.
For each of the clusters, we look at the patterns and the dif-
ference between their average frequencies for the students
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with low and high learning gain. The result is shown in
Figure 5. The upper diagram shows the students in cluster
one (the confirmers) and the lower diagram shows the stu-
dents in cluster tow (the non-confirmers). The red line with
round markers show the pattern frequencies for low learning
gain students and the blue line with the triangle marker is
representative of high learning gain students.

If we look at the patterns in cluster one (the confirmers), we
can see that there are some patterns that show significant
difference between the low and high learning gain students.
Each of these patterns starts with a failure: FS and Ff
have long failures in the beginning of the patterns and fF,
fs , and ff, have short failures at the beginning of the pat-
terns. Among these patterns, only FS is practiced more by
the high learning gain students. This indicates that, among
the confirmer students, the ones that put a good amount
of effort to answer a question correctly after a long failure
and stop repeating the same question learn more. The low
learning gain group shows more frequent use of the Ff, fF,
fs , and ff patterns. The common element of all of these
patterns is short failure (f ). If we look at Figure 5 for con-
firmers, we can see that all of the patterns that include a
short failure, are practiced more by the low gain students.
This can indicate that the low gain confirmer students do not
spend enough time and thought on the questions to which
they do not know the answer.

The non-confirmers show more pattern differences between
the low and high learning gainers. We can see that the high
learning gain group follow the patterns of FF, FS, FS,
SS , SS, SS, and Ss more frequently. This means that the
high learning gain, non-confirmer students tend to continue
trying a non-parameterized exercise and spending time on it
after they failed in it or it took them a long time to get to the
correct answer for that exercise. In this sense, these students
are closer to the confirmer group of students (cluster 1) but
only at the times that they are not sure if they have learnt
the solution to an exercise. On the other hand, the low
learning gain group tend to develop the fs , fs , and ff
patterns in their sequences. The first two indicates that they
give up practicing the exercise after having a short success
that comes after a short failure. Also, they tend to repeat
short failures on the same exercise more often.

Comparing beneficial and harmful patterns for the two clus-
ters, we can make an interesting observation that the in-
creased use of several beneficial patterns for each cluster
make students more similar to the opposite cluster. For
example, while confirmers have a generally low tendency
to stop after first hard success FS , successful confirmers
demonstrate this pattern much more frequently. On the
other hand, while non-confirmers generally tend to stop af-
ter first hard success, successful non-confirmers have higher
tendency to continue after hard success as shown by signif-
icantly increased frequencies of such patterns as SS , SS ,
and Ss. In other words, while the two clusters are consid-
erably different by their behavior overall, the “centrist” stu-
dents that are closer to the opposite cluster tend to be more
successful, while the extreme behavior that distinguishes the
cluster is frequently related to less successful performance.

6. CONCLUSIONS AND FUTURE WORK
In this paper we explored patterns of student repetitive work
with parameterized exercises for Java programming domain.
The goal of this work was to understand the connections be-
tween micro- and macro-level behavior patterns and factors
that might be responsible for this behavior such as exercise
difficulty, student personality, level of knowledge, or posi-
tion in the course. In turn, we hoped that this understand-
ing could help us predict how a specific student would work
with an exercise and prevent inefficient behavior such as
repetitive successful attempts when the exercise become too
easy to contribute to student knowledge growth. To explore
the impact of students’ personal features on their work with
exercises, we built the student problem solving genome, a
compact representation that encapsulates the specifics of in-
dividual behavior patterns. To build the genome, we started
with micro-patterns (genes) that describe small chunks of
repetitive behavior based on correctness and duration of
each attempt. We then constructed a genome as a frequency
profile that shows the dominance of each gene in the student
behavior.

Using the genome approach we analyzed the stability of be-
havior patterns for students and groups and explored their
connection with student success in the course. The most in-
teresting finding was a considerable stability of the genome
on individual level. As our analysis showed, the genome
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uniquely identifies a user among other users over the whole
duration of the course despite a considerable growth of stu-
dent knowledge over the course duration. While the prob-
lem complexity does affect the behavior patterns as well, we
demonstrated that the genome is defined by some inherent
characteristics of the user rather than a difficulty profile of
the problems she solves.

To find a connection between the problem-solving genome
and student performance, we examined genomes for vari-
ous groups of students. Since a direct attempt to associate
genome with performance-related groups (a typical way to
group students in educational contexts) was not successful,
we started from the opposite side and formed student groups
on the basis of their genome similarity. As it appears, all
students could be most reliably split into just two cohorts
that differ considerably by their behavior. After that split,
we were able to contrast successful and less successful learn-
ers by their behavior and identify “beneficial” and “harmful”
genes for each cohort. In particular, it was interesting to ob-
serve that the behavior of successful learners in one cohort
was somewhat closer to the behavior of the opposite cohort.

Note that the reported finding are limited to a specific con-
text - non-mandatory work with Java programming exer-
cises. It is not clear whether problem solving behavior pat-
terns in other domains or the same domain with mandatory
exercises will exhibit the same properties. We also believe,
however, that the“genome”approach provides a new way for
exploration of student problem solving behavior and plan to
explore to the stability of the “genome” and the presence of
behavior cohorts in other domains and contexts. In addition,
we would like to proceed to our ultimate goal of recognition
and prediction of inefficient behavior. The discovery of a sta-
ble genome provides a good ground for developing a recog-
nition engine and the presence of behavior cohorts indicates
that some good guidance (encouraging “beneficial” patterns
and discouraging “harmful” ones) could be provided even in
the early stage of student work when it might be harder to
build a reliable genomic profile.
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ABSTRACT
The rise of online educational software brings with it the
ability to run experiments on users quickly and at low cost.
However, education is a dual-objective domain: not only do
we want to discover general educational principles, we also
want to teach students as much as possible. In this paper,
we propose an automatic method for allocating experimen-
tal samples, based on multi-armed bandit algorithms, that
balances between learning each experimental condition’s ef-
fectiveness and users’ test performances. Our algorithm,
UCB-Explore, allows the experimenter to explicitly spec-
ify the tradeoff these two objectives. We assess the per-
formance of our algorithm in a simulated experiment with
parameters drawn from a real-world data. In this simula-
tion, our algorithm is better able to navigate this trade off
compared to other multi-armed bandit algorithms such as
UCB1 and ε-greedy. As an example application, we show
how a researcher could use the generated samples to iden-
tify strong and weak interaction effects, and confirm these
findings on a separately-collected dataset.

Keywords
Multi-armed bandits, automatic experimentation, scientific
discovery

1. INTRODUCTION
The rise of online educational software has greatly increased
the amount of data available to researchers in the educa-
tional data mining community. Indeed, both the games and
e-commerce industries have already been transformed by the
introduction of A/B testing to understand how users react to
different software designs and incentives. These tests are tra-
ditionally done in a staged manner: run a test, then choose
the best option to deploy to all users. But why separate the
test phase and the optimized software? Just as systems like
Assistments promise to both educate and assess simulta-
neously [20], we should both educate and experiment at the
same time. With programmatic control of educational mate-
rial and automatic data collection, such systems could pro-
vide ever more effective educational experiences while also

generating scientific knowledge as they collect data about
the comparative effectiveness of different representations of
knowledge or teaching strategies. This knowledge could then
be used to inform educational theories, potentially produc-
ing new and better options to be investigated by the system.

However, this scientific objective is complicated by the fact
that in many educational contexts we are working in a high-
stakes domain: users of educational software should learn
from the system, so testing ineffectual conditions can cause
real harm. We want an approach that allows the experi-
menter to explicitly specify the relative worth of teaching
players (by giving out the best conditions) against the gain
of scientific knowledge (by giving out sub-optimal conditions
to better assess their worth). Then the algorithm can sample
the different experimental conditions, with a bias in favor of
finding and exploring the better ones depending on the spec-
ified weighting. As the algorithm obtains better estimates of
the effects of different conditions, it should eventually con-
verge to placing all students in the most effective condition.
This problem fits nicely into a multi-armed bandit formula-
tion, where the arms are conditions and the reward is user
learning, so we will attack it from this angle.

Our contributions are as follows. First, we formulate a dual-
objective bandit in which we want to optimize a weighted
combination of the 95% confidence interval sizes around the
condition means, and user test performance. We then intro-
duce UCB-Explore, a modification of an existing multi-
armed bandit algorithm that tries to directly optimize for
this user-specified tradeoff. Second, we analyze the perfor-
mance of our algorithm in a 64-condition simulation with
parameters learned from a real-world experiment involving
different ways of displaying number lines. UCB-Explore
better optimizes the weighted objective compared to exist-
ing bandit algorithms, and in our simulation appears fairly
robust to changes in its parameters. Finally, we show how
to use the samples generated from our algorithm to identify
likely and unlikely two-way interactions between factors, and
validate our hypotheses on a separate dataset.

2. RELATED WORK
2.1 Scientific Discovery, Massive Experiments
Researchers in AI have been working for years to develop
systems capable of automatically generating useful scientific
knowledge. This field, known as scientific discovery, has gen-
erated many such systems [14]. For example, Lee et al. used
a feedback loop between the RL rule induction program and
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expert knowledge to identify potentially carcinogenic com-
pounds [15]. Perhaps the most comprehensive example of
such a system is Robot Scientist Adam, a fully automated
robot capable of the full loop of hypothesis generation, ex-
perimental design, and data analysis in yeast genomics [10].
These systems are quite general, and try to automate many
aspects of scientific behaviors; we are primarily concerned
with the automation of certain kinds of experimentation in
high-stakes domains.

We can also be considered related to massive (educational)
testing, made possible in recent years through web-based
software. As noted by Stamper et al., online experiments
can be considered a new source of data with fundamentally
different properties than ones conducted at the lab or school
district level [24]. Experiments run online can have many
more users, and better measure true task engagement; how-
ever, it may be difficult or impossible to collect rich data
such as interview data. As examples, Lomas et al. con-
ducted two large-scale experiments with many conditions
on the effect of challenge on motivation and learning in an
educational game [18]. Lindsey et al. used Gaussian pro-
cess regression and an active learning framework to reduce
the number of samples required to learn functions of user
responses [16]. And in previous work, we proposed a greedy,
hierarchical algorithm that ran sequences of multivariate
tests in multi-factor settings [17]. In this work, however, we
want an algorithm that adapts incoming samples to maxi-
mize an experimenter-specified weighted sum user learning
and confidence in the estimated condition means.

2.2 Adaptive Trials
Clinical trials are another example of high-stakes domains
where it may be undesirable or unethical to assign pa-
tients to certain experimental conditions. Over the years,
researchers have developed different methods for minimiz-
ing patient harm while trying to identify the best treat-
ments. Some examples include play-the-winner, drop-
the-losers, sample size re-estimation, adaptive treatment-
switching, and so on; for a review, see [8] or [4]. The adaptive
randomization designs are closest in spirit to our work: they
bias the randomization in favor of successful conditions and
away from failed ones [29] [26].

These strategies are often heuristic and offer no guarantees.
However, clinical trials can also be formulated as multi-
armed bandit problems, for which algorithms with theoreti-
cal performance guarantees are known. The closest work in
this space is perhaps by Kuleshov et al., who propose the use
of existing multi-armed bandit algorithms for the allocation
of users to experimental conditions and show simulations
suggesting that more patients are successfully treated [12].
Similar empirical investigations of bandits have been under-
taken in the domain of web content retrieval by Vermorel
et al. [25]. They focus on the standard bandit formulation
in which the only objective is to maximize reward; in this
paper, we also care about scientific knowledge.

3. MULTI-ARMED BANDITS
Throughout this paper, we will be using data drawn from
an experiment carried out in the educational game Treefrog
Treasure, seen in Figure 1. We give out different types of
number lines to players and study how accurately they an-

Figure 1: A screenshot of Treefrog Treasure, our
source of users. Players navigate through a physics-
based world, solving number line problems along the
way. Notice that the number line has full tick marks,
pie chart labels on the line, and a symbolic (ex. a

b
)

target representation. In our experiment, these are
a few of the parameters we allow our system to auto-
matically explore to determine which types of num-
ber lines lead to maximal near-transfer.

swer a randomized test number line; the full experimental
design is described in Section 5.1. Importantly, we have two
competing objectives: teach as much as possible to play-
ers in the game (by only giving out the best number lines),
but identify the effectiveness of different fraction representa-
tions, hinting systems, or other number line properties (by
testing different kinds of number lines). The relative weight
of these two objectives will vary by application, so we will
later allow the experimenter to set the weight explicitly.

If our goal were solely to maximize player learning, then
this problem reduces to a multi-armed bandit (MAB). MAB
problems consist ofK probability distributions, D1, . . . , DK ,
with expected values µ1, . . . , µK . The Di and µi are not
known at the start. These distributions are classically
viewed as wins or losses (1 or 0) from various arms of a
slot machine, but in continuous formulations can be any
(bounded) user-defined function. In our scenario, we can
think of the arms as different types of numberlines to be
given as practice, and the reward as player success on a ran-
domized test number line.

In a bandit problem, the experimenter tries to pull arms in
order to collect as much reward as possible (e.g. assign play-
ers to conditions to maximize test performance). At each
turn, t = 1, 2, ..., we select an arm j(t) and receives some re-
ward from that arm’s reward distribution r(t) ∼ Dj(t). If the
Di were known, the optimal strategy would be to choose the
arm with the highest expected reward, j(t) = arg maxi µi:
that is, pick the most effective number line and give it to
every player. Unfortunately, the Di and µi are hidden.
Successful bandit algorithms must navigate an exploration-
exploitation tradeoff to discover information about the Di

while also generating high reward.

In general, we will not be able to give everyone the best
intervention. Define the total expected regret at some fixed
timestep T as the loss of reward from playing non-optimally,
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RT = T maxi µi −
∑T

t=1 µj(t). Lai and Robbins show that
regret must grow at least logarithmically in time [13], devel-
oping a lower bound of RT = Ω(log(T )).

Not all strategies that work well in practice meet this
bound. One such heuristic strategy is ε-greedy, which for
any 0 < ε < 1 plays a random arm with ε probability and
otherwise plays the arm with the highest empirical mean.
This strategy has linear regret because it has a constant
chance to play suboptimal arms. One could consider allow-
ing ε to decrease over time to eliminate this linear regret
term; however, this adds another parameter and does not
always help in practice [25].

A different, popular class of theoretically-motivated strate-
gies which meet the logarithmic regret bound are the Upper
Confidence Bound strategies (UCB) [3]. These algorithms
exemplify the principle of optimism under uncertainty by
pulling the arm which has the highest estimated upper con-
fidence bound on its mean. The simplest, UCB1, works in
the following way. Assume that all rewards are in the range
[0, 1]. To initialize, pull each arm once. Then at each sub-
sequent timestep, if the number of times an arm i has been

pulled is ni, choose the arm j(t) = arg maxi µ̂i
t + c

√
2 ln t
nt
i

.

In this formula, the exploitative first term is the estimate
of the arm mean, while the exploratory second term rep-
resents an uncertainty that grows slowly as other arms are
pulled but decreases sharply when this arm is pulled. UCB1
provably incurs logarithmic regret when c = 1.0, though c is
often set to be smaller for better empirical performance.

In this paper, we will focus on ε-greedy and UCB; for other
algorithms, see [6]. Note,however, that all of these algo-
rithms are focused on maximizing reward: bandit strategies
will try to only allocate enough samples to sub-optimal arms
to tell that they are indeed sub-optimal. Unfortunately, this
may leave uncertainty about the exact values of each arm,
which was our second goal. Furthermore, algorithms such
as ε-greedy and UCB can be quite sensitive to the settings
of their parameters.

On the opposite extreme, researchers have also studied the
case where the only goal is to learn something about the arm
distributions Di, such as their means, the µi. Antos et al.
introduce an algorithm for this problem, GAFS-MAX, which
attempts to minimize squared error of the worst estimated
µi by sampling the “most under-sampled” arm or the arm
with greatest empirical variance [2].

Our definition of “scientific knowledge” is similar: we wish
to minimize the sizes of our estimates of the 95% confidence
intervals around the arm means. To the best of our knowl-
edge, algorithms exist only for the extreme cases where we
maximize only for reward or only for estimation of arm prop-
erties. In this paper, we propose allowing the experimenter
to set a tradeoff between these goals, and introduce an algo-
rithm which smoothly interpolates between these extremes
by maximizing for the specified tradeoff.

4. UCB-EXPLORE
Our algorithm, called UCB-Explore, is a variant of UCB1.
As noted earlier, changing the scaling factor c on UCB1’s

confidence bounds often leads to improved performance in
practice: thus, the key idea behind UCB-Explore is to
self-adjust c in response to mistakes. Our algorithm takes
as input a set of arms with unknown reward distributions
Di, a function CI to calculate confidence interval sizes, a
weight w controlling the tradeoff between reward and confi-
dence interval sizes around the arm means, and a multiplier
m that controls how quickly c changes. Good choices of CI
in general depend on the shape of the reward distributions
Di, though methods such as the centered percentile boot-
strap [23] allow reasonable estimates in most situations. In
our example, the arms are Bernoulli processes generating
“success” or “failure” depending on whether the student an-
swers a test question correctly, so a reasonable choice for CI
is the Wilson score interval [27].

Let N be the number of arms, rt be the reward received
on pull t, and ∆t

j be the size of the 95% confidence inter-
val of arm j on round t. For any timestep T, our goal is
to maximize the expression w

∑T
t=1 r

t − (1 − w)
∑N

j=1 ∆t
j .

That is, we want to maximize the total reward received,
but minimize the sizes of the 95% confidence intervals sizes,
with some weight w between both goals. This type of goal
makes sense if the experimenter is able to assign “worth”
to confidence interval sizes, in terms of reward. For exam-
ple, an educational institution might be given funding based
on students’ standardized test scores, and be willing to pay
a certain amount of money for smaller confidence intervals
about certain educational interventions. As an alternative
interpretation, note that reward grows without bound while
the confidence interval sizes cannot go below 0, so w can be
thought of as a rough “switching point” after which the al-
gorithm will aim primarily to gather more reward. Say that
the experimenter knows a reasonable reward is 0.6, would
roughly like the reward term to dominate after n pulls, and
calculates that after this many pulls the confidence intervals
can be expected to decrease by about 0.3 per pull. Then
setting w = 0.33 causes the reward term to overtake the
confidence intervals after about n pulls.

Note that this objective is difficult to optimize directly. This
can be seen by considering the case w = 1.0, where we are
focused on reward: it is computationally intractable to op-
timally pull arms to optimize the objective [19]. It must
therefore be similarly intractable to optimize in the general
case. As such, we propose UCB-Explore as a heuristic al-
gorithm which lacks guarantees but seems to work well in
our scenario. Our algorithm is shown in Algorithm 1. Let
c1 = 1.0 be our initial scaling factor, as in UCB1. We first
pull each arm once; at subsequent times t, we choose the

arm j(t) = arg maxi µ̂i
t + ct

√
2 ln t
nt
i

. When ct is very large,

µ̂i
t has little effect, and we will tend to choose arms that

have fewer pulls (more exploratory). When ct is very small,
µ̂i

t dominates, so that we tend to pull only the arms with
highest empirical means (more exploitative). So far, then,
our algorithm is simply a tuned variant of UCB1.

The key change in our algorithm is that we increase or de-
crease c if we choose the wrong arm to pull. Say that arm i
has been pulled at times t1, t2, . . .. Then the rewards of all
pulls of arm i up until this time are Rt

i = rt1i , r
t2
i , . . .. Let

sti = wµ̂i
t + (1 − w)(CI(Rt

i) − Erti
[CI(Rt

i + rti)]): that is,
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Algorithm 1 UCB-Explore

Require: a tradeoff w, multiplier m, bandit arms A1,...,N

c = 1.0
for j = 1 to N do

rj = Pull(Aj)
µj = rj
nj = 1
Rj = {rj}

end for
for t = N + 1 to ∞ do

for k = 1 to N do

bk = µk + c
√

2 ln t
nk

cj = CalculateCI(Rj)
ej = CalculateExpectedNextCI(Rj)
sk = wµi + (1− w)(cj − ej)

end for
u = arg maxi bi
v = arg maxi6=u bi
if sv > su then

if µu > µv then
c = mc

else
c = c

m
end if

end if
rj = Pull(Au)
µj = njµj + rj
nj = nj + 1
Rj = Rj ∪ rj

end for

sti is the weighted combination of the expected reward and
the expected decrease in confidence interval size if we pull
arm i. The calculation of Erti

[CI(Rt
i + rti)] in full general-

ity requires a posterior estimate of Di; since we are working
with Bernoulli trials, we can estimate p(rti = 1) = µ̂i

t and
calculate the expectation directly.

When should we adjust c? In UCB-Explore, we ask
whether we should have picked the arm with the second-

highest upper confidence bound. Let bti = µ̂i
t + c

√
2 lnn
nt
i

for each arm i. Without loss of generality, assume that
bt1 >= bt2 >= bti, i = 3, . . . ,K. If st2 > st1, then our algo-
rithm has made an error: it could have (greedily) obtained
a better tradeoff respecting the researcher’s decision of w
by pulling the second best arm. If µ̂1

t > µ̂2
t, then the al-

gorithm was exploiting too much, so we set ct+1 = mct. If
µ̂2

t ≤ µ̂1
t, then the algorithm was exploring too much, so we

set ct+1 = ct/m. We then pull the arm j(t) and continue.
It is important to note that this algorithm is heuristic in
nature, but seems to work well in our simulation. It may
be possible to develop a more theoretically-motivated algo-
rithm to maximize for this weighted goal, which we leave to
future work. In either case, if the algorithm respects w in
its behavior and seems relatively robust to the choice of m,
then we will have achieved our goal. We will see in Section 6
that this is the case in our scenario.

5. EXAMPLE APPLICATION
We will examine the performance of our algorithm with a
64-arm simulation whose parameters are drawn from real-
world data. This will demonstrate the feasibility of our ap-

proach in a real-world situation. In this simulation, we will
try to identify how the appearance of a “practice” number
line affects player performance on a randomized “test” num-
ber line, a particularly challenging problem since we expect
the effect sizes to be small given that the intervention is
one number line long. We choose number lines as they are
a well-studied and commonly-used pedagogical tool, and a
fair amount of evidence suggests that much whole and ratio-
nal number knowledge is organized around mental number
lines [1], [22]. We will first describe the game from which we
collected our data, as well as the factors that vary between
number lines.

5.1 Treefrog Treasure
Treefrog Treasure is a platformer game that involves jump-
ing through a jungle world and solving number line problems
to reach an end goal. Number line problems serve as barri-
ers that the player must solve by hitting the correct target
location, as shown in Figure 1. It has been played by over
10 million players worldwide on various websites; data for
this experiment is drawn from BrainPOP [5], an educational
website aimed at school-aged children. Our dataset consists
of 34,197 players, who played from June 3, 2013 to June 20,
2013.

We consider each player as a sequence of many pairs of num-
ber lines, and treat each pair as an experimental unit. This
gives us 361,738 pairs. This potentially violates indepen-
dence assumptions in classical statistical tests, but greatly
increases the amount of available data we can use to esti-
mate our arm reward distributions. We will strictly adhere
to the correct assumptions when we attempt to generate
hypotheses and validate them on a new dataset, later.

The appearance of the first number line in each pair con-
stitutes the experimental condition - the full set of factors
is specified in Table 1, with illustrations in Figure 2. We
care primarily about Ticks, Animations, Backoff Hints, Tar-
get Representation, and Label Representation; the Fraction
and Initial Labels are randomly chosen, so that our results
are meant to generalize for different settings of these factors.
This gives us 64 separate conditions, one for each combina-
tion of factor settings.

There are additional complexities in the sampling distribu-
tions in this dataset that are not relevant to this work; for
a more thorough explanation, refer to [17]. The important
point is that we can obtain an unbiased estimate, for each
experimental condition, of the probability that a player re-
ceiving a number line with those parameters will reach and
solve the randomized next“test”number line correctly on the
first try. For our simulation we will assign each arm the as-
sociated mean estimated from our data, and draw simulated
samples from the arms by flipping coins with the specified
probability of success. These probabilities range from 0.38
to 0.47, with the vast majority falling in [0.41, 0.45]. Since
the arms are Bernoulli in nature and the probabilities are
close to 0.5, the variance is nearly the maximum possible for
distributions in [0, 1].
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Parameter Settings Interpretation

Fraction Any a
b
∈ (0, 1), b ≤ 9 The target fraction the player must hit

Initial Labels [0,1] For target a
b
, the proportion of labels of n

b
fractions shown at the start.

Target Representation Symbolic, Pie How the target fraction is displayed.
Label Representation Symbolic, Pie How fraction labels on the number line are displayed.
Ticks Present, Absent For target a

b
, we can display tick marks for each fraction n

b
.

Animations Present, Absent If the player misses a target a
b
, they might receive an lengthy pie chart

animation showing how to divide up the number line into b parts.
Backoff Hints 1, 2, 3, 4 The number of misses for target a

b
before the progressive hinting system

fills in all labels for n
b

and displays the correct answer.

Table 1: The parameters controlling number lines in our experiment. Bolded parameters are factors we are
interested in studying; non-bolded parameters are selected randomly.

Figure 2: The animation condition on the left shows
the player how to divide up the number line. The
backoff condition in the middle gradually more di-
rection about where to hit. The ticks condition ei-
ther divides up the number line into segments when
ticks are present, or leaves it empty besides the 0
and 1 labels when ticks are absent.

6. SIMULATION
Empirical MAB research such as [12] and [25] indicates that
MAB algorithm performance is very sensitive to the exact
values of parameters, and that tuned simple algorithms, such
as ε-greedy, outperform theoretically-motivated algorithms
such as UCB1. One reason that tuning affects reward is that
different settings of these parameters can result in a tradeoff
between identifying the best mean and exploiting the current
best. Although these parameters do not explicitly optimize
the tradeoff between confidence interval size and reward, it is
often the case that more exploratory parameter settings will
do a better job of minimizing confidence interval size. But
it is not immediately obvious how to set these parameters
for any particular tradeoff - what ε should we choose if we
want to weight confidence interval size and reward equally?
In contrast, UCB-Explore allows us to explicitly set this
trade off and optimize for it more directly. We will compare
how UCB-Explore trades off reward and scientific knowl-
edge compared to MAB algorithms ε-greedy, UCB1, and
UCB1-Tuned, ignoring the fact that the UCB-Explore
parameter is given by the objective while the other param-
eters may be more difficult to choose.

ε-greedy is a simple and straightforward method for bal-
ancing the dual goal of learning about the arm means and
also maximizing reward. It has the additional advantage
of ε being easy to interpret: the proportion of players who
will be devoted to exploring the non-optimal arms. UCB1
is also capable of trading off between learning and reward
by scaling the bounds: making them very large causes the
algorithm to prefer exploration, while making them small
causes the algorithm to focus on the highest empirical mean
and prefer exploitation. UCB1-Tuned replaces the loose
bounds of UCB1 with ones that depend on empirical vari-
ance of the arms, which usually works better in practice [3].
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Figure 3: Reward vs confidence interval sizes. Up
and to the right is ideal; we see that UCB-Explore is
typically better at generating high reward and learn-
ing the various arm means than other algorithms.
ε-greedy performs poorly overall.

Parameter Values (right to left)

ε-greedy, ε 0.3, 0.03, 0.01, 0.001, 0.0001
UCB1, c 1.0, 0.2, 0.15, 0.1, 0.03, 0.01
UCB1-Tuned, c 1.0, 0.2, 0.15, 0.1, 0.03, 0.01
UCB1-Explore, w 0, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1

Table 2: The parameter settings generating the
tradeoff graphs in Figure 3. All UCB1-Explore vari-
ants in the graph, which have different values of the
scaling multiplier m, are generated from the same
group of w.

We generate a tradeoff curve between average reward per
pull and the sum of the sizes of the 95% confidence inter-
vals around each estimated arm mean, shown in Figure 3.
Each point for each algorithm is the average reward and
interval size for 1000 trials of 10,000 pulls, for the parame-
ters shown in Table 2. Points that are up and to the right
are better. We see both that UCB-Explore tends to have
superior performance, especially when one does not care en-
tirely about reward, and also that ε-greedy appears much
worse than both strategies once we scale the bounds calcu-
lated by UCB1. In addition, the different UCB-Explore
curves are generated by different values of m - in our prob-
lem, it appears that the choice of m has little impact within
a wide range, with perhaps the exception of m = 1.01.

To gain some intuition about how UCB-Explore behaves
and how one should choose w, it is useful to examine the
behavior of the scaling factor c that controls the size of the
bounds. This is shown in Figure 4. As w → 0, the algorithm
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Figure 4: The value of the scale factor on the confi-
dence bounds in UCB-Explore as the algorithm pulls
more arms. When w = 0, c increases quickly and
does not stop, reflecting the fact that the algorithm
cares only about exploration.

cares less and less about generating reward, so we expect it
to explore more: as expected, c increases. Furthermore,
the gains from reward are constant over time, but the gains
from reducing estimated confidence interval sizes shrink as
we continue to sample. Thus as time passes we expect UCB-
Explore to focus more and more on reward as long as w >
0, and indeed this is the behavior we observe by the shrinking
values of c. In the case of w = 1.0, c actually shrinks so fast
that the algorithm exploits too quickly, explaining the small
dips in performance of both UCB-Explore and UCB1 when
tuned to be very exploitative.

7. VALIDATION
7.1 Interaction testing
Our algorithm is a method of allocating samples that re-
spects the tradeoff between encouraging player learning and
getting more accurate estimates of experimental condition
means. Had this experiment been run online, a researcher
could directly analyze the data gathered. However, we have
been running our algorithm in a simulated environment with
parameters drawn from real-world data, leaving us vulnera-
ble to overfitting. To demonstrate how one might use data
gathered from our algorithm, we will instead use these sam-
ples to generate hypotheses to validate on a separate dataset:
this is similar in principle to how a researcher might run mul-
tifactorial experiments in an online setting to find promising
hypotheses to test in a more focused setting, as suggested
by Stamper et al. [24].

UCBExplore can be thought of as a biased method of
drawing samples from different experimental conditions.
One natural analysis would be to ask if one condition is
significantly better than another. Many of our factors are
specific implementation choices in our game, so such com-
parisons may not lead to very generalizable insights. In-
stead, we will attempt to identify likely interactions using
the samples generated by our proposed method. In particu-
lar, we will search for two-way interactions which seem rel-
atively large or small; we study interactions instead of main
effects because we already examined main effects in previous
work [17]. Then we will use the likelihood ratio test to deter-
mine if models learned with these interaction terms fit our
validation data significantly better than models where these

Target: Pie Target: Symbolic
Label: Pie 0.431 0.410
Label: Symbolic 0.388 0.422

Table 3: Proportion of players in the validation set
able to reach and answer the randomized test num-
ber line correctly on the first try. Our simulation
results suggested that these parameters might in-
teract; in fact, they interact very strongly.

terms are set to zero. We stress that samples generated from
ε-greedy and UCB1 could also be used in the same way and
would likely lead to the same results, though in light of our
simulation results either more samples would be required or
more damage would be done to players in that case.

To do this, we run UCB-Explore with m=1.1, w=0.001,
and 100,000 pulls. We then calculate all main effects
and two-way factor interactions as is done in the ANOVA
test [28]. Our data is not normally distributed and the vari-
ances are unequal, violating ANOVA assumptions, but we
can still consider which interaction effects seem relatively
large or small. In our case, for each pair of factors, we can
calculate the average magnitude of the interaction effects
between all combinations of settings for those factors. We
see that Target and Label have the largest average magni-
tude at 0.007, while Animation and Ticks have the smallest
average magnitude at 0.0003. Thus, we suspect that Target
and Label are much more likely to interact than Animation
and Ticks.

To test these hypotheses, we will use a held-out validation
dataset. This dataset consists of 9,675 players of Treefrog
Treasure from June 20, 2013 to July 9, 2013. Unlike the
dataset used to estimate parameters of our simulation in
the previous section, we will consider only the first three
number lines for each player: the first two are treated as the
intervention, and the independently and randomly chosen
third as the assessment of learning. For any given pair of
factors, we can attempt to fit a model with only main effects,
or a model with main effects and two-way interaction effects.
Since these models are nested, we can use the likelihood ratio
test if the interaction model is a significantly better fit, given
the increase in degrees of freedom.

For Target and Label, we have that χ2(1, N = 9675) =
7.555, p < 0.006. For Animation and Ticks, we have that
χ2(3, N = 9675) = 0.204, p = 0.977. Thus, it is very likely
that the effects of Target and Label representation on num-
berlines should not be considered separately, while we have
no evidence that our Animation and Ticks hinting systems
need to be modeled simultaneously.

7.2 Target/Label representation
In this paper, our goal is to advocate the creation of algo-
rithms which allow experimenters to trade off user learning
and scientific knowledge, and the introduction of such an al-
gorithm. The validation is meant to show that this approach
generates samples that can lead to interesting hypotheses,
so we do not claim them to be mature educational results.
We will, however discuss them briefly.

The presence of significant interaction terms means that the
factors involved should only be interpreted together. As a
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reminder, the Target factor refers to the representation of
the fraction the player is asked to hit on the number line,
while the Label factor refers to the representation of the
fractions on the number line itself. The proportions of suc-
cessful players for the different representation combinations
can be seen in Table 3. The nature of the interaction is
immediately apparent: players are more likely to reach and
answer the next number line correctly if the target and la-
bel have the same representation, and Pie chart targets and
Symbolic labels are much worse than other conditions. Even
when we ignore players who quit before reaching the second
number line, these effects persist.

We do not know why this is the case. In our game, player
ability to answer number line questions correctly is mostly
a function of knowing where to hit, as the game informs
the player where they will intersect the number line before
they click to jump. In addition, the representation has no
effect on game mechanics. Thus, the difference is most likely
due to how players perceive the different fraction represen-
tations. One possibility is that number lines in classrooms
are generally presented with symbolic labels only, so that
the mix of familiar and new combinations of representations
is particularly confusing to players. As with nearly all on-
line experiments, we do not have access to players’ thought
processes, only their actions, so a more carefully designed
study or a think-aloud in a classroom might be profitable.
Regardless, our algorithm was able to generate samples that
we could analyze for interesting factor interactions, suggest-
ing that it is a viable method of adaptively randomizing
experimental conditions.

8. LIMITATIONS
While our results seem promising, there are some limita-
tions. It is extremely unlikely that UCB-Explore is ideal
for all bandit arm configurations; it seems to perform well on
many-arm Bernoulli distributions with similar means, but
some simulations suggest that it may not perform as fa-
vorably in very different cases. One example where our ap-
proach fails outright, as do ε-greedy and UCB1, is in the case
that there are more arms than subjects - the algorithm ex-
pends all its subjects on the initialization phase when pulling
each arm once. This problem occurs most obviously in the
presence of continuous factors, in which case there are an
infinite number of arms. It is less likely to occur in standard
categorical experimental designs, though the limit can still
be reached if researchers want to study something like the
exponential space of all possible problem sequences.

Furthermore, while the reward portion of our dual objec-
tives can be any measurable function of subject behavior,
there may be other ways to define “scientific knowledge” or
navigate the tradeoff between the two. For example, “scien-
tific knowledge” might be the probability that the ordering
of arms is correct. Or instead of assigning some weighting
between reward and knowledge, an experimenter might have
constraints of the form “maximize reward subject to at least
x knowledge.” Some of these are relatively easy to incor-
porate into our framework. The example constraint might
be handled by forcing the scale factor to stay at 1.0 until
enough information has been collected, for instance. Other
types of constraints or tradeoffs may require entirely differ-
ent algorithms: knowing the number of subjects in advance,

for example, leads to very different bandit algorithms than
the infinite horizon variant we have presented here.

9. FUTURE WORK
UCB-Explore appears to outperform UCB1, UCB1-
Tuned, and ε-greedy in our problem for most tradeoffs be-
tween reward and knowledge. However, our modifications
remove any theoretical performance guarantees. It may be
possible to alter the algorithm in a principled way to main-
tain its good performance and guarantee logarithmic regret.
Extensive simulation on other problems with more or fewer
arms and different reward variances would also be useful to
understand when it or another method of allocating samples
is preferable. We would also like to test if this algorithm is
robust to unusual continuous reward distributions.

In addition, there are other problem formulations that would
be interesting to investigate. In many practical cases (such
as delayed rewards), fully online learning is infeasible; for
these, we could adapt Bayesian techniques such as proba-
bility matching [21], which do not depend on online per-
formance. Also, in cases where there is a finite budget of
users, the algorithm will need to be modified based on work
in mortal bandits to exploit more as the experiment draws
to a close [7]. Lastly, in reality the arm distributions may
be nonstationary, which might require adaptation of work
in dynamically changing bandits [9].

More generally, UCB-Explore only makes sense in situa-
tions where we have enough users to get substantial infor-
mation about each condition. If we have many factors, we
may not be able to get information about each specific con-
dition, but may still be able to determine the best settings of
the most important factors. A similar problem arises when
we want to explore sequences of interventions, in which case
techniques from Monte Carlo Tree Search may be most ap-
plicable. And if one of the factors is continuous, the algo-
rithm will not be able to make progress: here, it could be
useful to adapt work on bandits in general metric spaces [11],
or modifying a function approximation scheme as in [16] to
incorporate the reward-knowledge tradeoff.

10. CONCLUSION
The rise of online educational software with massive num-
bers of users promises to change the experimental paradigm
in educational research. With access to so many users and
individualized control over what educational experiences
they receive, it is now possible to automatically run com-
plicated, multi-factor experiments quickly and at relatively
low cost. However, education is a high-stakes domain: in
many situations we have the ability to cause harm by plac-
ing students in sub-optimal conditions. Because of this we
want to automatically put less students into harmful con-
ditions while simultaneously discovering which are harmful
and which are beneficial.

In this paper, we propose allowing researchers to explicitly
weight subject welfare against the amount of generalizable
knowledge gained from the experiment. We show how the
problem of allocating subjects to experimental conditions
can be thought of as a multi-armed bandit problem with a
dual objective of gaining maximum reward and minimizing
the sizes of 95% confidence intervals around the arm means.
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We propose a new algorithm, UCB-Explore, which takes
a user-specified weight on the relative value of reward and
confidence interval size, and adaptively adjusts its optimistic
bound estimates to explore or exploit more when it makes
a mistake with regards to this weight function. We analyze
the behavior of our algorithm and compare it to tuned ver-
sions of other common bandit algorithms in a 64-arm simu-
lation with parameters drawn from real-world data, showing
that our algorithm is able to interpolate between these two
goals much more effectively than standard algorithms. We
use the simulated results of running our algorithm to gener-
ate some hypotheses about factor interactions, and confirm
these results on a separate validation dataset, showing that
the generated samples are useful from a research perspective.
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ABSTRACT
Students and instructors would benefit from a graphical dis-
play of student proficiency throughout a course. However,
valid and reliable proficiency estimates based on modern sta-
tistical techniques require data that are not usually collected
in traditional instruction. For example, problems that stu-
dents solve on tests and homeworks may not be properly
equated to a vertical scale; building a true vertical scale re-
quires that overlapping anchor items be administered in way
that supports the estimation of student growth between as-
signments. This paper suggests an alternative, a stationary
scale in which the expected student growth is subtracted
out so that a student making normal progress remains at the
zero point in the scale. We define the stationary scale model
and validate it on a real-world data set of student answers
to homework items. We further produce a Progress Map, a
visualization of student proficiency throughout a course.

Keywords
Ability estimation, Homework, Item Response Theory, Kalman
Filter, Smoothing, Partially Observed Markov Decision Pro-
cesses, Progress Maps, Graphical Displays, Vertical Scales

1. INTRODUCTION
All students in a course usually have the question,1 “Am I
on track to master the objectives listed in the course syl-
labus?” Good students will revisit this question throughout
the course and adjust their studying strategy if they are at
risk of not mastering the objectives. Instructors have two
related questions: “Are my students (as a class) on track to
master the objectives?” Again, good instructors will moni-
tor the answers to these questions and “Which students are
at risk to not master the objectives?” and adjust the in-
struction as needed. This is an issue of measurement.

1The actual question is something more like “Will I get a
good grade?” Good grades, however, should follow from
mastering the objectives.

Optimal measurement is not the only consideration when in-
structors choose items for assignments and quizzes. Instruc-
tors primarily choose items to practice objectives recently
introduced in class. Although using multiple items per in-
structional objective produces more reliable measurement,
the instructor must balance the test length with student fa-
tigue. If students do not all work on the same items, as may
be the case if items are adaptively selected or automatically
generated by an Interactive Learning Environment (ILE),
then despite item differences, instructors rarely attempt to
put the scores onto a common scale. In particular, ensuring
that there are sufficient overlapping items between forms
to do any kind of common item equating is usually a low
priority when choosing items for an assignment.

The lack of a proper equating design in the assignments com-
plicates estimating student growth over time from homework
assignments. Most procedures for estimating growth require
all of the assignments to be linked to a common vertical scale
[13]. One method of constructing a vertical scale requires
overlapping items between adjacent assignments. This is
a problem for the instructor because the overlapping items
will either cover problems from prior or future topics. As
the instructor’s goal is maximizing the time spent practic-
ing the current topics, such review and preview items are
seldom included on assignments. A second method of con-
structing a vertical scale requires administering items from
throughout the course at a common time point to a group
of students who have been subject to a standard set of in-
struction. Usually courses offer limited opportunities (e.g.,
pretest, midterm, final) to do such calibration.

To address the problem of tracking student progress across
time using homework assignments that have not been ver-
tically scaled, this paper introduces an alternative to the
vertical scale called a stationary scale. The basic assump-
tion of the stationary scale is that the average student abil-
ity and the assignment difficulty increases at the same rate;
in other words, the instructor designs each assignment to
match the expected ability distribution of the students at
the time when the assignment is due. On the stationary
scale, the expected ability of a student who is on track re-
mains at 0 throughout the course. This is equivalent to a
stationary time series. We use the stationary scale to con-
struct a unified model for multiple assignments over time,
incorporating at once all the observations about each stu-
dent over the duration of a course. This has two benefits:
First, it lowers the error of measurement for each assignment
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and each student. Second, it puts the assignments on a com-
mon scale so that growth can be interpreted as deviations
from expected growth.

The next section lays out a time series framework for as-
signments and talks about previously developed models for
growth and observed outcomes on assignments. The follow-
ing section describes the stationary model and the calibra-
tion of models to the stationary scale. The fourth section ex-
plores the application of the stationary model to a database
of online homework results. The last two sections explore
some possible graphical displays and offer suggestions for
improvement and future work.

2. MODELS FOR STUDENT CHANGE OVER
TIME

Figure 1 shows a general Markov decision process frame-
work for integrating information from multiple assignments
over time [2]. Here St represents the latent ability of the
student, and Ot represents the observed outcomes of the as-
signment offered at Time t (both of these quantities could
be multidimensional). The nodes marked Activity repre-
sents what activity the instructor chooses for the students
between sessions. If the problem is to choose an optimal
strategy for selecting activities, then Figure 1 is a partially
observed Markov decision process (POMDP)[3]. To simplify
the problem, assume that all students get the same action,
“continue with the next lesson according to the syllabus,” at
each time point. This reduces the problem from a POMDP
to a hidden Markov model (HMM).

S

t=1 t=2 t=3

O

S

O

S

O

Assessment

Growth

Activity Activity

Figure 1: Generic Framework for Accumulating As-
sessments over Time [2].

The POMDP/HMM framework decomposes the modeling
problem into two pieces: what happens within a single verti-
cal time slice (i.e., within an assignment) and what happens
between time slices (i.e., the growth model). In a single time
slice, familiar models such as item response theory (IRT)
apply. For the growth model, the Brownian motion process
provides a simple starting point. The biggest drawback of
this framework is that the scale of the latent variable, St

is not identified; this causes difficulty in estimating model
parameters from data [1]. The common solution is to put
the latent variables onto a vertical scale.

2.1 IRT Models for observed outcomes
For simplicity, assume that the latent state of Student i at
Time t, Sit, can be represented with a unidimensional, con-
tinuous random variable. If every student is in the same
course with the same syllabus, the distance along the com-
mon path through the multidimensional space defined by

the course syllabus that the student has traveled [14] can
appear like a single dimension. Care must be taken when
comparing the stationary estimates from different courses as
different paths through the multidimensional space will give
different meaning to the same value on the unidimensional
scale.

Again for simplicity, assume that observable outcome from
Student i interacting with the assignment given at Time t
is a binary vector Oit = {Oi1t, ..., OiJt, where Oijt = 1
if Student i got a correct answer to the jth item given at
Time t, and zero otherwise. Item response theory (IRT)
models the likelihood of each observation as conditionally
independent given the latent state of the student [11]. There
are several possible models; this paper uses a one-parameter
logistic (1PL) or Rasch model:

P (Oijt = 1|Sit) = logit−1(Sit − bjt) (1)

bjt is an item-specific difficulty parameter.

In an IRT model, the scale and location of the latent variable
Sit is not identifiable from the data. One conventional way
to resolve this, as we do here, is to set the average of the
difficulties, bjt, to 0. If we calibrate the IRT model using
the data from a specific class taking a specific assignment,
then this will produce a set of class-specific IRT parameters.

IRT has mostly been applied in the world of high-stakes test-
ing, where each examinee attempts a problem exactly once.
However, in online learning, most of the assignments will
be homework and other lower-stakes assessments. Online
homework systems frequently allow multiple attempts at an
item, and access learning aids (e.g., tutorials and worked
solutions to similar problems) when difficulty arises. Fur-
thermore, the course policy may allow multiple attempts at
the whole assignment, even for tests and quizzes which only
allow a single attempt at each item within the assignment.

In the world of online homework systems that allow multiple
attempts it becomes difficult to define “correct”. Two pos-
sible definitions are Correct-on-first-try—solving the item
on the first item-level attempt in the first assignment-level
attempt without the use of learning aids,—and Eventually-
correct—solving the item on any attempt with or without
learning aids. The two different definitions of correct will
give slightly different meanings of proficiency. These corre-
spond to Falmagne’s inner and outer fringes of the learn-
ing space [8]): correct-on-first-try corresponds to the in-
ner fringe—those things that the student can do without
assistance,—and eventually-correct corresponds to the outer
fringe—those things the student can do with assistance.

2.2 Brownian Motion Growth Model
As the goal of this paper is to produce quick estimates of
proficiencies that can be used to track student progress, the
simplest growth model discussed in [2] provides a good start-
ing point. Assume that between Times t− 1 and t, the av-
erage expected growth following the syllabus is δt, and let
∆t be the time (either in calendar time, or some measure
of progress through the course as number of chapters of the
textbook covered) between the assignments at Times t − 1
and t. Further assume that the growth for an individual
student over one time period is normally distributed around
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the class average, let ω2 be the variance over a unit time in-
terval. The variance of the growth between two assignments
is ω2∆t, that is, the variance of the growth is proportional
to the elapsed time. Thus, Sit ∼ N(Si,t−1 + δt, ω

2∆t). This
is a non-stationary Brownian motion process.

The Brownian motion model implies that the less frequently
the student is assessed, the more uncertainty there is about
the student’s ability. Almond [2] suggests that when the
variance of the growth increments, ω2∆t, is small with re-
spect to the standard error of measurement, τt, the ability
estimates can be smoothed across time to have a lower mean
squared error. Almond suggests a number of techniques
for smoothing: a simple exponential filter (down weight-
ing each prior observation by a factor λ), the Kalman filter
[10] (this assumes that Oit is approximately normally dis-
tributed given the latent ability) and the particle filter [7]
(which supports many models for both within and between
time slices). These models can also forecast future ability
states.

Attempting to estimate the within-time slice (observable
outcome) and between time-slices (growth) models at the
same time can cause difficulty [1]. In particular, either the
average ability increase δt or the average difficulty of the
items at Time t cannot be identified from the data. The
usual approach in these circumstances is to put the assess-
ments given on each time slice onto a vertical scale.

2.3 Vertical Scales
Educators frequently want to measure student learning us-
ing tests administered at different times and covering dif-
ferent but overlapping content. In order for differences in
the test scores to be meaningful, the tests must be placed
onto a common or vertical scale [13]. Vertical scales can
be challenging to develop [15] and require difficult to verify
assumptions [9].

In particular, constructing a vertical scale usually requires
anchor items, items that are placed in two adjacent tests in
the series. By assuming the anchor items have the same psy-
chometric properties in both administrations (an assump-
tion which is open to question [12]) the adjacent test forms
can be equated. While anchor items are included in high-
stakes testing programs, they are seldom included in home-
work assignments, where the focus is maximizing practice of
the most recently introduced material.

An alternative is to place the anchor items into a separate
test which is administered at a single time, so the students
see the items covering many parts of the curriculum at the
same time. Pretests and final exams provide natural exper-
iments of this type. Even so, the number and quality of the
anchor items controls the quality of vertical scale (in par-
ticular, the standard error of the equating that underlies its
development). It is unusual to have enough anchor items to
properly build a vertical scale for homework data.

Assume that a number of anchor items have been assigned
difficulty parameters on the vertical scale. Let Jt be the
subset of items in the assignment given at Time t that have
associated difficulty parameters on the vertical scale, b∗j . To
equate the current assignment to the scale defined by the

vertical scale [11], replace the difficulties in the assignment,
bjt with the equated difficulties:

b′′jt = bjt − ct , (2)

where

ct =
∑
j∈Jt

bjt − b∗j .

Note that the quality (i.e., standard error) of this equating
will depend on the number of anchor times in each assign-
ment. As homework assignments are typically short, the
number of available anchor items is typically small and hence
the quality of the vertical scale is questionable.

3. STATIONARY SCALES
Consider the problem of estimating students’ abilities as
they progress through a course. Assume that homework,
quizzes and tests are given online, so that the course learn-
ing management system has a record of each item from each
assignment, as well as which items were and were not at-
tempted. Furthermore, assume that the class size is large
enough that parameter estimates from calibrating the IRT
model given in Equation 1 will have reasonable standard
errors. The instructor would like proficiency estimates for
each student at the time of each assignment, as well as end-
of-course forecasts.

If the item parameters are not already available, the diffi-
culty of each item must be estimated from the course data.
However, the instructors usually assign items when they
make sense according to the syllabus of the course, i.e.,
shortly after the objectives covered in the item were cov-
ered in class. This pattern of item assignment does not
usually produce the kind of overlap needed to support the
construction of a vertical scale.

The alternative we are proposing is a stationary scale. Let
bt be the average difficulty of the items given at Time t on
the vertical scale. Then the stationary scale is defined by
assuming δt = bt − bt−1. In other words, the difficulty of
the assignments grows at the same rate as the ability of the
students. To put the item parameters and ability estimates
on the stationary scale, set:

S0
it = Sit −

t∑
s=1

δt , (3)

b0ijt = bijt −
t∑

s=1

δt . (4)

On this scale, the ability of a person moving through the
course at the pace determined by the syllabus will be a sta-
tionary (zero mean) time series. In particular, the growth
model of the previous section will be a stationary Brown-
ian motion process, Sit ∼ N(Si,t−1, ω

2∆t). Stationary time
series are simpler to work with than non-stationary time
series. In fact, many books on time series (e.g., [4]) rec-
ommend differencing the time series to make it stationary
before analyzing the data. Similarly, many filtering tech-
niques which could be used to smooth the observed ability
estimates assume stationary time series.
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The key assumption of the stationary scale is that the in-
structor, in the process of constructing the assignments, has
taken care of the vertical scaling problem. In particular,
we assume that the instructor is picking items so that the
expected percent correct, hence the average difficulty, is ap-
proximately the same on each assignment. (The first author
has found that after 2 or 3 times teaching an elementary
statistics course, the median score on the midterm exam is
usually close to the target score of 85%.)

Unfortunately, this assumption is difficult to test in prac-
tice. A convincing test would require a data collection de-
sign similar to the one required for a true vertical scale.
The following section explores some more superficial checks
which can be done using an arbitrary set of homework data
from a large class. The remainder of this section looks at
two operations which are now possible under the stationar-
ity assumption: comparing a class to a database of similar
classes, and smoothing ability estimates over time.

3.1 Classroom Level Estimates: Equating a
class to a database

Assume that the IRT parameters have be calibrated using
data from a single class, and that the scale has been iden-
tified by setting the average difficulty of each assignment to
zero. Care must be taken in the interpretation, because a
sudden drop in the average class ability could mean that the
assignment was poorly designed rather than the class is not
meeting expectations.

For many instructors, it would be useful to compare the
performance of their class to similar classes: perhaps the
same class offered in different years, or similar classes offered
by other instructors. In particular, if we have a database of
homework results from different classes using the same text,
and if we assume that all of the instructors who use this
database are also assigning items according to the stationary
scale, then we can equate each class to the scale defined by
the database using Equation 2.

Again, a version of the stationarity assumption allows a
meaningful interpretation of item difficulties averaged across
different courses. If we assume that each instructor intro-
duces the item when it is instructionally relevant, that is
when its difficulty matches the average student ability in
the class, then the average difficulties across all classes in
the database will also be on a stationary scale of sorts. This
is a stronger version of the stationarity assumption than the
single class version. If historical homework results are drawn
from one textbook and pool of items across any instructors
and syllabi, this will result in differences in which book sec-
tions are covered, their relative emphasis, and timing of de-
livery. Applying the stationarity assumption to the whole
database assumes that the variability in the item difficulties
produced by the variations in context are ignorable.

3.2 Smoothing the Ability Estimates
The real advantage of the stationary scale is that we can use
the model of Figure 1 to smooth the proficiency estimates.
Thus, at any time point the best estimate for a student abil-
ity is a weighted average of the student’s ability estimate at
the previous time point and the estimate from the current

assignment. The weights depend on the relative size of the
standard error of measurement for the assignment and the
variance between time steps in the growth process [2]. As-
suming that the growth model is normal process and that
the ability estimates are normally distributed around the
true ability allows the Kalman filter to be used to smooth
the proficiency estimates. Although the observations are bi-
nary, the shape of the likelihood for the ability in the IRT
model is approximately normal with a mean corresponding
to the point estimate and a standard deviation correspond-
ing to the standard error of measurement.

Implementing the Kalman filter requires knowledge of the
variance of the growth increments, ω2. If the Brownian
model model holds, then the variance of the ability variable
should increase linearly with time. We estimated a Rasch
model using a regression with a random student effect [6] for
each assignment. This produces a variance for the student
ability variable at each time point. The slope of the line for
the ability variances regressed against time provides an es-
timate of ω2. This provides all of the necessary information
to smooth the ability estimates using the Kalman filter.

Smoothing across time points should reduce the standard
error of the ability estimates. In particular, the ability es-
timate at each time point will have a standard error that
depends on both the direct evidence from the current as-
signment and the indirect evidence from the past history
and the typical trajectory of student abilities. This will
given a pattern of constant ability (on the stationary scale)
and shrinking standard errors for students who are progress-
ing normally. It helps answer one question instructors often
have: when is a low assignment score a one-off fluke and
when is it an indication of a problem which requires atten-
tion. In the former case, the filter will smooth the estimate
towards the student’s usual performance; in the latter case,
the instructor will see the student trend line drifting away
from the average trend of the class.

The biggest problems for instructors are not the students
who progress normally, but the students who do not, espe-
cially students who do not complete assignments. Following
the Brownian motion growth model, student ability will have
an expected increase of δt on the vertical scale for each as-
signment, or on the stationary scale, expected ability will
stay the same. The standard error of that estimate should
increase. In particular, the variance of the estimate will be
ω2(t−t0)+σ2

t0 , where σ2
t0 is the standard error of the ability

estimate at the last time t0 for which work is available for
the student. If the student later returns to a normal com-
pletion pattern, the standard error will once again decrease
and the proficiency estimate will track the student’s abil-
ity. If the student continues to not submit assignments, the
uncertainty will grow steadily larger.

4. MODEL VALIDATION
In practice, the stationary assumption is difficult to test:
a rigorous test requires overlapping items in same kind of
pattern as is used to construct a vertical scale. There are,
however, three consequences of the model that we can test.
First, if we separate the data into two pieces the mean abil-
ity on the stationary scale should change at the same rate
for both groups. Second, the smoothed estimates of abil-
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ity should have lower standard errors than estimates using
data only from the most recent assignment. Third, the fil-
ter should produce reasonable predictions for the current
assignment based on past assignments.

We fit the model to a data set of 578 students, spread across
9 sections, enrolled in an Intermediate Algebra course in the
same semester. Students completed homework assignments
online using the MathXL system2. There were 18 assign-
ments taken from 3 chapters, Chapters, 3, 6 and 9 (with
time elapsed between chapters). The assignments ranged
in length from 12 to 62 scorable item parts3, with most as-
signments having around 20. The number of students active
in the course declined over time ranging from 567 attempt-
ing the first assignment to only 408 student attempting the
penultimate assignment.

We randomly chose 10% of the students as test data and
used the remaining students for training data. Using only
the training data, we fit a Rasch model to all of the items
in each assignment using a logistic regression with a ran-
dom effect for student (ability estimate) and a fixed effect
for items (difficulty) [6]. We then put the item parameters
for that assignment onto the stationary scale by subtracting
the average difficulty for each assignment. Once we had the
final item parameters, we constructed expected a posteriori
(EAP) estimates and the corresponding standard errors for
the ability of each student in both the training and the test
samples. Because the EAP estimates would later be com-
bined with prior information about the student ability in a
filter, a flat prior was used for the EAP estimates.

Figure 2 shows the average EAPs for the training and test
samples. Note that the two estimates track each other closely.
The correlation between them is r = 0.92(n = 18). While
this does not prove that the stationary assumption holds, it
does demonstrate that if it holds for the training sample, it
holds for the test sample as well.
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Figure 2: Average EAP ability estimates over time

2http://mathxl.com
3Some items had multiple scorable parts. We treated those
parts as separate items, ignoring the dependence between
the parts of the items.

If the Brownian motion model holds, the variance of abil-
ity estimates (from the random effects logistic regression)
against time (sections of the book completed) should rise
with a slope of ω2. Figure 3 shows the observed variances.
For the first two chapters, where the variance is decreasing,
the participation rate dropped by about 100 students. Dur-
ing the third chapter (Chapter 9) the sample size was more
stable, and the population variance shows the expected lin-
ear increase. Consequently, we used the slope of the increase
during the final chapter as the estimate of ω2.
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Figure 3: Population ability variance over time

Next, the ability estimates from the IRT calibration were
smoothed using the Kalman filter. Because the smoothed
estimates take both current and historical evidence into ac-
count, the standard errors for the smoothed estimates should
be lower than that the standard errors of the original IRT
estimates (which only include the current time point). Fig-
ure 4 verifies this is the case, plotting the average4 standard
error. The standard errors for the filtered estimates get bet-
ter over time as the filter incorporates more data. Also, the
standard errors increase during the intervals between chap-
ters when some time elapses without measurements of stu-
dent progress. It is also possible to run the filter backwards
to get improved estimates for earlier time points (incorpo-
rating later data), but that was not done.

Validating the quality of the forecasts is difficult because
there is no baseline to compare it against. As a weak form
of validation, we look at the size of the average difference
between the forecast from the filter and the EAP estimate
from the IRT data (with no smoothing). Let θ̂n,r be the
EAP estimate using only data from the current assignment
at the time of Assignment r, and let se(θ̂n,r) be its standard
error. Further, let θ∗n,r be the one step ahead forecast from
the filter incorporating only data from past assignments. Let
zn,r = (θ∗n,r − θ̂n,r)/se(θ̂n,r) be the standardized difference
between the forecast and the current data only estimate.

Figure 5 shows the root mean squared standardized differ-
ence between the filter forecast and the IRT estimate using

4The average used here is the root mean square standard
error, that is the square root of the mean prediction variance.
Data points with missing assignment data are excluded.
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only the current assignment data. The average (over the
test set) difference is less than one standard error (of the
IRT estimate) for all the time points, indicating the filter
is doing reasonably well. Note, however, that the filter is
doing fairly well even at time point zero where it is simply
predicting the class mean for every student. Therefore, the
positive result speaks more to the low information from the
relatively short homework assignments than it does to the
quality of the forecasts from the filter.
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5. PROGRESS MAPS
To illustrate how the stationary scale can be displayed to
an instructor or student, we display the progress of an ar-
bitrarily chosen student. One simple graph plot the ability
estimate from the IRT model against the time. We connect
the measurements with a line; a dotted line indicates that
one or more intermediate assignments is missing. There are
a number of possible time scales to use. The method we
found provided the clearest displays was to simply use the
sequence number for each section, adding an extra step be-
tween the chapters. Figure 6 shows the result.

There are two additions we would like to make to this progress
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Figure 6: Stationary Map: Graph of student
progress on a stationary scale

map. First, we would like the scale of the graph to give the
visual impression that students making normal progress are
increasing in proficiency. Second, we would like visual in-
dications of the standard errors and expected performance
standards.

5.1 The Progress Scale
Although the stationary scale is mathematically convenient,
the ability estimates for students making normal progress
will remain flat. Students and instructors would prefer to
see progress towards a goal, i.e., rising ability. If the ability
increases, δt, were known at each time point, then the data
points could be put back on the vertical scale by inverting
Equation 3 or 4. However, learning the ability increases is
equivalent to the problem of learning the vertical scale. In
particular, it requires the existence of a set of anchor items
assigned in a pattern that supports the establishment of a
vertical scale.

An alternative is to simply pick a convenient value, dt, and
set δt = dt. We call this scale the progress scale. There
are now three possible scales (related through Equations 3
and 4):

Vertical Scale The values of δt are estimated from data.
The quality of the scale will depend on the available
anchor items.

Stationary Scale This defines δt ≡ 0. Item parameters
can be put on this scale by calibrating each assignment
separately.

Progress Scale This defines δt ≡ dt as an arbitrary series
of constants. It can be readily produced from the sta-
tionary scale to make an increasing scale for display.

In our preliminary experience with graphical displays we
have found letting dt = 1/Kt, where Kt is the number of
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sections in the chapter administered at time t works well.
This corresponds to an increase in one standard deviation
in the population ability for each chapter covered in the
text. Figure 7 shows an example. Here dt is set so that
progress through 1 chapter is the equivalent of 1 point on
the scale; the dt for a section is the corresponding fraction of
the chapter. Note that the progress scale is slightly different
scale from the section count scale used for the x-axis; that is
why there appear to be sharp rises between the end of each
chapter and the beginning of the next.
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Figure 7: Progress Map: Graph of student progress
on a progress scale

5.2 Error Bars and Control Limits
One drawback of the progress maps in Figure 6 and 7 is
that they provide no information about the precision of the
ability estimates. Figure 8 adds error bars to each point
estimate extending ±2 standard errors from the point esti-
mates. Both the point estimates and the standard errors are
the unfiltered estimates from the IRT analysis.

Figure 8 also adds control limits to the display. The pro-
gressively darker shaded regions on the graph indicate areas
of increasing concern for the student and instructor. When
the point estimates pass the control limits, the size of the
plotting symbol is changed to make the problematic data
points more visible. The control limits are wavy instead of
smooth because two different time scales are used, one (num-
ber of chapters completed) for adjusting the ability and one
(assignment count) for plotting the time.

There are several ways of coming up with the control limits.
Figure 8 uses a simple idea based on the IRT model. The in-
structor chooses a proportion correct for the assignment. To
get the control limits, solve the IRT equation (Equation 1)
for the ability that leads to that proportion for a zero diffi-
culty item. This provides a roughly interpretable limit. The
probabilities used in Figure 8 are .4, .2, .1, and .05.

The big advantage of the stationarity assumption is that it
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Figure 8: Progress Map with error bars and fixed
percentile limits

allows smoothing ability estimates using the Kalman filter.
Figure 9 shows the filtered time series for the first student.
Note that the error bars in Figure 9 are smaller than the
error bars in Figure 8. This is an effect of the smoothing.
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The filter automatically imputes ability estimates for miss-
ing assignments. The student shown in Figure 9 is missing
data for assignments 9.3 and 9.5 (plotted with asterisks).
The filter imputes abilities based on the previous scores.
Note that the standard error grows larger for the imputed
values (dashed error bars) but shrinks down when assign-
ment data are again available. Adding thermometer plots
across the top showing the completion percentage of each
assignment would improve the utility of this display.
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6. LIMITATIONS AND IMPROVEMENTS
Building rigorous psychometric models for homework is prob-
lematic because homework items are seldom selected with an
eye to building a true vertical scale. By assuming that the
items are assigned according to a stationary scale, we gain
consistency in interpreting estimated student abilities. This
allows a growth model to be used to smooth the estimates
over time. The additional assumption that growth is simi-
lar between any two sections allows the ability estimates to
be placed on a progress scale, which has some of the same
visual appeal as a true vertical scale.

Stationarity is very much an assumption of convenience.
This is both a strength, in that it allows analysis to pro-
ceed without a true vertical scale, and a weakness, in that
without verification it adds an unknown bias to the abil-
ity estimates. Consequently, we only recommend the use
of unverified stationary scales for low-stakes purposes, such
as student ability tracking by student or instructor. High-
stakes uses of the stationary scale would require verification
of the stationarity assumption.

A key limitation is that the verification of the stationarity
assumption requires the same kind of anchor item design as
building a true vertical scale. This is part of a fundamental
model identification issue: if the scale at each time slice is
not identified, then neither is δt, the average growth between
time slices [1].

The stationary scale supports a variety of techniques, such
as the Kalman filter, for smoothing ability estimates. We
imagine that instructors will find smoothed graphs (e.g.,
Figure 9) more useful than unsmoothed graphs (e.g., Fig-
ure 8). A logical next step would be to evaluate Progress
Map usability with instructors.

This paper modeled student ability with a single continuous
variable, but stationarity generalizes in a straightforward
way to the multidimensional case. The Kalman filter works
as well for multidimensional normal models of proficiency.
Other models, for example replacing the model of Figure 1
with a dynamic Bayesian network [5], fit into the general
framework. The Kalman filter is no longer appropriate for
smoothing, but the particle filter is adaptable to a wide va-
riety of representations.

Further work is required in estimating the parameters of
the growth model. The scale identification problem is insur-
mountable without the stationarity assumption (or a true
vertical scale). But even under stationarity, estimating the
growth model variance of the innovations ω2∆t can be tricky.
Although the Brownian motion model implies that the pop-
ulation variance should increase over time, that was not
the case for our data set. This may be due to student
attrition; the number of students actively completing as-
signments dropped from approximately 550 to 450 over the
semester, and it is likely that the drop-outs were predomi-
nantly lower-ability students.
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ABSTRACT
Challenges of visualization and clustering are explored with 
respect to sequence data from a simulation-based assessment task. 
Visualization issues include representing progress towards a goal 
and accounting for variable-length sequences.  Clustering issues 
focus on external criteria with respect to official scoring rubrics of 
the same sequence data. The analysis has a confirmatory flavor; 
the goal is to understand to what extent clustering solutions align 
with score categories. It is found that choices related to data 
preprocessing, distance metric and external cluster validity 
measures all impact agreement between cluster assignments and 
scores. This work raises key issues about clustering of educational 
data, especially in the presence of multidimensionality. Different 
clustering protocols may lead to different solutions, no one of 
which is uniquely best. 

Keywords
Sequence mining, clustering, visualization, simulation-based 
tasks, assessment 

1. INTRODUCTION
Complex tasks in educational environments are intended to be 
more engaging for learners and more reflective of real life 
challenges than traditional test items [22]. In an assessment 
context at least, the additional time it takes to administer such 
tasks comes at a certain cost. One hopes therefore that data 
relating to the process provide more information than the outcome 
of the task alone. Examples of such process data range in 
complexity: they may include simple measures like response time 
[21], multiple attempt records [2], and use of hints [20]; or more 
expansive processes such as referencing a range of online learning 
resources [37], keystroke-level writing data [1], or actions taken 
in a simulation- or game-based task [18, 25]. One broad 
characterization of the data at the latter end of this list is that they 
comprise sequences of observable states. Temporal information 
about the duration of each state may be included or not. 

Clustering sequences is a way to detect similar patterns of 
behavior. In an educational context, the hope is that this structure 
is informative of some underlying characteristic, perhaps style, 
perhaps ability.  From the perspective of learning scientists and 
instructional designers, it is important to understand both of these 
aspects, and from an assessment perspective, it is important to 

distinguish between them. In other words, patterns in the structure 
of responses may detect both construct-relevant and construct-
irrelevant variance, and the distinction is critical for validity in the 
interpretation of scores [16]. 
We consider sequence data from a particular simulation based 
task, the Wells task used by the National Assessment for 
Educational Progress (NAEP) as part of the Technology and 
Engineering Literacy (TEL) Assessment [26]. The sequence data 
from Wells are only modestly complex as sequence data go, but 
their analysis introduces a number of operational choices. To map 
out the challenges to the data analyst, we organize some of these 
loosely into challenges of visualizing sequence data (and 
associated frequency or summary data) and challenges of 
clustering the sequences.  

The Wells task is scored along two cognitive dimensions by 
separate rubrics. Our goal is not to reproduce the results of the 
rubrics after the fact by alternate means. Instead we ask whether a 
bottom-up search for patterns in the data comes close to 
approximating the top-down scoring design in the scores of the 
sequences, and if not, why not? The analysis thus has a 
confirmatory flavor. We fully expect the two approaches not to 
meet in the middle, but hope that there may be insights to gain 
about principles of scoring and/or clustering from the concordance 
of scores with cluster assignments.  

The organization of the paper is as follows: in section 2 we 
describe related work on clustering and sequence mining. In 
section 3, we describe the NAEP task, scoring design, and the 
sequence data. Section 4 introduces two operational choices that 
affect the visualization of the data, while section 5 addresses 
choices with respect to clustering. Section 6, describes resulting 
measures of external validity when comparing cluster assignments 
to score categories. Section 7 includes a discussion of the results 
with extensions to future work.  

2. RELATED WORK
Clustering student actions is a common approach to various types 
of educational data. Some recent applications include reading 
comprehension tasks [28], discussion forum behavior [4, 23], 
collaborative learning sessions [29], automated speech act 
detection [33], and strategies in educational games [18, 25].  Most 
clustering studies operate on feature vectors from logs, not on 
sequences of states themselves. This is an important distinction. 
Whether feature vectors are numerical in nature (counts, ratios, 
etc.) or coded as binary indicators (e.g. [18]), such vectors are all 
the same length and permit straightforward metrics such as 
Manhattan, Euclidean, or cosine distance functions. Though their 
clustering analysis used only feature vectors, exploratory 
sequential pattern mining also figured in [29]. Time-series data 
and an agglomerative approach similar to ours was used in [4], but 
with a key difference. That analysis mapped each possible action 
type (e.g., reading or writing) to its own binary-valued time-series 
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using an indicator, and only clustered students based on one type 
of action at a time. Such binary data types do not invoke the same 
sequence matching issues.  

Many of the issues encountered here arose in the context of 
clustering web sessions from online learning environments in 
[37], namely: the desire to mine categorical activity sequences, 
rather than sets or counts of actions; the need to introduce 
appropriate similarity measures on these sequences; and lastly, the 
challenges of cluster validation. This work introduced several new 
algorithms and reported on the performance and scaling of these, 
but did not say much about cluster interpretation issues. Our 
approach and toolset is similar to those used by [7] to explore 
study patterns and identify groups, although there again the 
analysis was exploratory.  

In fact, most if not all of the studies mentioned above used 
clustering either in an exploratory fashion, or to examine 
correlation, for example with levels of answers to reading 
questions [28] or to course pass-fail rates [23]. In our application, 
by contrast, the student sequences are actually scored by an 
operational rubric (along two dimensions, as will be discussed). 
By looking closely at the external validity of our clustering results 
with respect to rubric-based scores, our analysis has a more 
confirmatory flavor. This paper thus contributes both a new 
application of sequence clustering methods in an assessment 
context and an extension of the discussion on cluster validity with 
respect to expert-based measures. 

The first part of this paper also concerns ordering a set of actions 
in a sequence with regard to proximity to the end-goal. Sequences 
of actions are not always goal oriented, for example when they 
describe web sessions or studying behaviors. Even in the cases 
where the activity itself has a goal, it is not always straightforward 
to tell whether the user activity represents movement towards or 
away from the goal, especially when the state space is large. 
Estimating the probabilistic distance to solution in computer 
programming exercises was the subject of [36]. Networks of states 
and actions in a logic tutor were analyzed using a novel data 
structure in [8], and social network methods were used to identify 
both solution sub-goals and conceptual problem areas. In our 
application, this task is much easier because the state space is 
small. However, one can imagine generalizations of the task or 
other simulation-based task applications, in which these 
probabilistic methods would be quite useful. 

Finally, alternatives to clustering in analysis of sequential data 
include approaches such as differential sequence mining [24] or 
the use of hidden or dynamic Markov models [19, 35] to 
distinguish successful sequences from unsuccessful sequences. 
Complex feature engineering, as in the design of affect detectors 
[3, 6], can also account for many of the salient features of 
sequential data. All of these approaches may be more applicable 
to open-ended group or individual problem solving sessions than 
to a task such as ours where success depends deterministically on 
certain actions and all of the sequences are ultimately successful.  

3. DATA FROM THE WELLS TASK
The data for our analysis (sample size N=1318) come from a pilot 
administration of TEL tasks by NAEP in 2013. The Wells task has 
been publicly released on the NAEP website [27]. 

Briefly, Wells is designed to elicit efficient and/or systematic 
behaviors in the diagnosis and repair of a groundwater well in a 
rural village. Extensive scaffolding is of course provided, as 
students are not expected to know already how such pumps work 
or what makes them fail. Through direct instruction and by 

leading the student to ask a simulated villager certain questions, 
information is communicated that the well is exhibiting two 
problems. Eventually the student is presented with an animated 
view of the well and a set of action choices (buttons) that will 
ultimately lead to its successful repair.  

Copyright © 2013 by Educational Testing Service. All rights reserved.Copyright © 2013 by Educational Testing Service. All rights reserved.

Wells, an NAEP Example

Figure 1: Screenshot of diagnosis/repair stage in Wells task 
A screenshot of the diagnosis and repair stage is shown in Figure 
1. The student is prompted to consider five common problems.
Corresponding to each are buttons to either check the possibly 
malfunctioning part of the pump or, independently of checking, 
repair the part. There are thus five check actions (C1, C2, …) and 
five repair actions (R1, R2, …), and each is allowed at most once. 
In addition, the student can test whether the pump as a whole is 
functioning normally. This pump test (P) is the only action that 
can be repeated.  

The two problems that need repair appear (always) in positions 
four and five, i.e., C4, R4 check and repair one of them, while C5, 
R5 check and repair the other. Once the broken parts of the pump 
have been repaired, a pump test ends the task with a success 
message. As the action set is small and students are allocated 
plenty of time to complete the task, all students reach the end goal 
of the task, even if they do so by random guessing. 

For example, a student sequence during the diagnosis and repair 
might be recorded as follows:  

C1, C2, C3, C4, R4, P, C5, R5, P 

Since the only problems with the well correspond numerically to 
problem 4 and 5, this sequence might correspond to a student who 
has not gained (or acted on) the prior knowledge about the 
problems exhibited by the well. Because such knowledge is 
possible from the information provided, the sequence C4, R4, P, 
C5, R5, P is very common. The sequence C5, R5, P, C4, R4, P 
should presumably be equally good. We will return to this point. 
In practice, the sequence of observed actions by the student 
generates two scores (Efficiency and Systematicity) using two 
separate rubrics. For the purpose of this analysis, we maintain a 
semblance of agnosticism about the rubrics themselves. Thus we 
will refer to these as F-score and Y-score going forward.  

4. VISUALIZATION
The classic visual representation of a state-sequence is a graph in 
which each state is represented by a node and a transition between 
states is represented by a directed edge (arrow) between nodes. 
These graphs have some relation to spatial maps, if the location of 
the node corresponds to the location in space, but the location of 
nodes in state-space graphs can be more abstract. The formal 
similarity between state-space graphs and (social) network graphs 
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has invited more than one application of methods of network 
analysis to sequence mining [8, 34].  

State-space or network graphs can represent an accumulation of 
data from many sequences, for example by using thicker arrows to 
represent more transitions. But a potential shortcoming arises in 
cases where a sequence represents progress towards a goal, as 
illustrated in Figure 2 for the case of the Wells task. As shown, 
randomly placed nodes remove any visual sense of progress 
toward the end-state goal, and this problem is not easily solved. 
States that are equally productive or counterproductive and states 
that recur (for example, the pump test action P) make ordering the 
node locations impossible. 

start

C1
C2

C3

C4

C5

R1

R2

R3

R4

R5

P

end

Figure 2: a state-space graph showing all 1318 sequences 

4.1 Ordering and Degeneracy of States 
One approach is to consider a remapping of the state-space into a 
new state space that permits such an ordering. This mapping is by 
design not one-to-one, since two equally good moves can reduce 
to the same state. It is also not without subjectivity, as will soon 
be clear. The first step might be to group together favorable 
moves and unfavorable moves. Actions in the set {C4, C5, R4, 
R5} are favorable moves in that they either provide confirmation 
of a failure point (good) or remediation of same (better). Actions 
in the set {C1, C2, C3} are unfavorable in that it is knowable 
beforehand that the pump does not have these problems. In that 
sense {R1, R2, R3} are arguably even worse. Pump testing P is 
difficult though: it is a good move to test the pump following a 
(needed) repair, but otherwise it is not particularly useful. Based 
on these observations, we could collapse all valid checks (VC) 
and repairs (VR) and invalid checks and repairs (IC, IR), which 
appears to shrink the state space. 

To be sure, making more valid repairs is better (and necessary to 
reach the goal), while making more invalid checks or repairs is 
counterproductive. Thus one should probably keep count (nVC, 
nVR, for the nth valid check, etc.) In fact, this reasoning applies to 
pump test P, though here is probably where the choice gets most 
subjective. There are two times that P is called for (after each of 
the needed repairs; denote these valid pump tests 1VP, 2VP). 
Other times, pump tests are at best neutral (1IP) or even 
counterproductive, for example testing the pump more than once 
in a row or testing it after an invalid check (2IP). With these 
(subjective) rules in mind, it is possible to map sequences in the 
original state space {C1, …, R1, …, P} to a new set of sequences, 
which we call remap. The new state space is actually larger (14 
states instead of 11), but the states are now ordered with respect to 
the end-goal: 

3IR < 2IR < 1IR < 3IC < 2IC < 1IC < 2IP < 1IP < 1VC 
 < 1VR < 1VP < 2VC < 2VR < 2VP

With an ordering in hand, visualizing the sequences is as easy as 

drawing a plot of state position (on the ordered scale) by step 
number in the sequence.  

The results are shown in Figure 3. Each sequence is drawn in 
partially transparent grey so that the accumulation of multiple 
overlapping sequences forms darker lines. Students who use no 
extraneous actions do not dip below the starting point (dashed 
line) and complete the task in 3-6 steps. A large number of 
inflection points for a sequence visualized this way might suggest 
haphazard guessing. 
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Figure 3: Ordered state position by sequence step (1318 seqs) 
The R package TraMineR [10], a toolbox for categorical sequence 
data originally designed for life trajectory modeling in the social 
sciences, can be used to generate sequence frequency and state-
distribution visualizations such as in Figures 4-5. Because an 
ordering can be associated with a color-palette, choosing “hotter” 
colors for negative states and green and blue shades for productive 
moves makes it possible to read information easily from the plots. 
It is clear from the frequency plot (Fig 4) that a large group of 
students complete the task using only the valid check-repair-test 
actions. Note that only the ten most frequent sequences are shown 
in the figure; over 500 unique sequences were observed. 

Sequence frequency plot (remap)
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Figure 4: Frequency plot showing 10 most frequent sequences. 
Colors correspond to the redefined states (see legend). 

4.2 Variable Sequence Length 
The state-distribution plot in Figure 5 raises an important issue 
concerning the variable length of sequences in our data set; it is a 
familiar issue from survival analysis [12]. Consider for example 
the vertical slice through the plot at step 10. This slice gives the 
impression that roughly 30% of sequences are entering the final 
correct state (2VP), another 20% completing the second valid 
repair (2VR), and the remaining half divided among states behind 
these in the progression. But it is important to remember that this 
is the breakdown only for sequences that continue out to this step 
number. In fact, a great number of respondents have already 
finished the task by this point and so have dropped out of the 
distribution. The plateau at steps 7-13 belies this fact.  
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State distribution plot (remap)
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Figure 5: state distribution plot; for color legend, see Fig. 3 

An alternative is to coerce the sequences to be of equal length by 
persisting in the final state until the maximum length is reached. 
The new state distribution, shown in Figure 6, now reflects the 
accumulating population of completers, and the plateau at steps 7-
13 is not a plateau at all. As we shall see, this manipulation of the 
sequence data also has a significant effect on clustering results, 
because it alters the similarity measure between two sequences 
when standard edit distances are used to compare them. 
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Figure 6: State distribution when the final state is maintained 
out to a fixed length 

 We have so far considered two operational choices for pre-
processing and visualizing the sequence data in Wells: remapping 
the original sequences using a new ordered set of states, remap, 
and padding out the sequences to a fixed length by repeating 
(persisting) the final state, remapP. Both of these choices can 
have significant informational impact on the visual 
representations data. We now turn to the question of whether the 
sequence data themselves can be seen to self-organize in a 
structure that is reflected in the scoring designs of the Wells task. 

5. CLUSTERING
In a taxonomy of data clustering methods [15], the first branch 
point separates agglomerative from partitional methods. Briefly, 
partitional approaches start with one large cluster and divide it 
once according to some algorithm and similarity measure. A 
canonical example is k-means clustering, but fuzzy clustering or 
expectation-maximization based mixture resolving are also 
partitional schemes. An agglomerative approach on the other hand 
starts with each datum as its own cluster and then groups them 
progressively in a nested structure (dendrogram) until one cluster 
is obtained. One advantage of this approach is that a single 
dendrogram can be cut at various levels, resulting in a 

deterministic refinement of clusters. This approach is suitable for 
our purposes, because we wish to compare cluster assignments in 
a confirmatory sense to categorical scores, and these categorical 
score levels can also be agglomerated based on cut scores. For 
example, we will make a case in Section 6.1 to agglomerate a five 
level F-score into either three levels or two.  
Hierarchical agglomerative clustering (we used the agnes method 
in the R package cluster) requires the specification of both a 
metric (or equivalently, a dissimilarity matrix) and a linkage 
algorithm, e.g., single-link, complete-link or Ward’s method [15]. 

5.1 Defining (Dis)similarity 
A distance defined between two sequences is highly related to the 
notion of string edit distance. Using the TraMineR package [9], 
we consider longest common subsequence (LCS), longest 
common prefix (LCP), optimal matching (OM) and simple 
Hamming distance (HAM), which are described in detail in [10].  
LCS distance (not to be confused with the LCS problem) is 
equivalent to Levenshtein distance with only insertions and 
deletions (indel cost 1), no substitutions. In optimal matching, one 
also specifies a substitution matrix. For example, the substitution 
cost may be computed based on transition rates, in order to 
accentuate rare events. With a fixed substitution cost of 2 and 
indel cost of 1, the OM distance metric is equivalent to LCS. We 
used OM with a fixed indel cost of 3 to distinguish this metric, as 
illustrated below. Consider the sequences defined in Table 1 in 
both their original and remapped representation: 

Table 1: Example sequences under original and remap states	  

Sequences S1 and S2 differ only by “equivalent” choices between 
whether to operate on issue 4 or issue 5 first. Compared with S1, 
S3 and S4 each insert one extra action, either an invalid check or 
an extra test. The distances between each pair of example 
sequences in Table 1 are shown for selected combinations of data 
representation and distance metric in Table 2.        

 Table 2: Distances between sequences under different metrics 

Note that the remap representation erases the difference between 
the S1 and S2, by design. Note also that in remapP.LCS, all single 
insertions (e.g. S1 to S3) have the same cost as a substitution (S3 
to S4), because in a fixed-length sequence, one cannot insert an 
element without removing one of the persisting states at the end. 
The choice of representation (remap vs. remapP) thus has an 

Sequence	   Original	   remap	  representation	  

S1	   C4,R4,P,C5,R5,P	   1VC,1VR,1VP,2VC,2VR,2VP	  

S2	   C5,R5,P,C4,R4,P	   1VC,1VR,1VP,2VC,2VR,2VP	  

S3	   C4,R4,P,C1,C5,R5,P	   1VC,1VR,1VP,1IC,2VC,2VR,2VP	  

S4	   C4,R4,P,P,C5,R5,P	   1VC,1VR,1VP,2IP,2VC,2VR,2VP	  

Distance	   S1-‐S2	   S1-‐S3	   S1-‐S4	   S2-‐S3	   S2-‐S4	   S3-‐S4	  

orig.LCS	   6	   1	   1	   7	   7	   2	  

remap.LCS	   0	   1	   1	   1	   1	   2	  

remapP.LCS	   0	   2	   2	   2	   2	   2	  

remap.OM	   0	   3	   3	   3	   3	   2	  
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effect on the distance, even when the same LCS metric is used. To 
counterbalance this effect, we introduce a higher indel cost for 
OM (see last row of Table 2). Since we have considered a 
persisting variant of the remap sequences, we also included an 
origP representation, in which the original states are used but 
padded out to fixed length.  
One can thus form all possible combinations of representations 
(orig, origP, remap, remapP) and dissimilarity measures and 
finally choose a linkage algorithm for hierarchical agglomerative 
clustering. Including single-linkage, complete-linkage, and 
Ward’s methods gave a total of 42 combinations. Each 
combination results in a dendrogram, which can be cut to produce 
a cluster assignment for any target number of clusters.  

Clustering may be evaluated using internal criteria—essentially 
how meaningful is the partition—or external criteria, such as how 
well does the partitioning agree with some ground-truth label. We 
are interested in external criteria with respect to operational scores 
in the task. This raises a set of issues we describe next. 

5.2 Relating Cluster Analysis to Scoring 
Comparing cluster assignments with rubric-based scores on the 
Wells task is complicated by several factors: multidimensionality 
of the score, number and ordering of categories to be matched, 
and chosen measure of comparison. We outline the issues here 
and address them further in the results section.   

The multidimensionality issue arises because cluster analysis does 
not result in a multidimensional assignment, whereas the rubric 
assigns to each sequence both an F-score (five levels) and a Y-
score (four levels). Although canonical correlation analysis [13] 
and MANOVA options exist, a reasonable first step is to take the 
scores one at a time and compare the clustering assignments to 
each. As we shall show, a single clustering algorithm may not be 
separately optimal for both scores.  

Cluster labels are inherently nominal, while the rubric scores are 
ordered categories. We may of course discard the ordering 
information in the scores themselves and use a purely nominal 
association measure, such as Goodman and Kruskal’s τ [11]. But 
while a clustering algorithm has no way of rank-ordering the 
clusters, we believe a priori that an underlying ordering exists if 
both the clusters and the scoring rubric have any validity. One 
way to derive an ordering of the clusters is by the mean score of 
the cluster members. We thus consider a set of measures that treat 
the cluster label as either nominal or ordinal. 
A standard ANOVA yields a measure of score variance explained 
by nominal cluster label, namely R2. If we order the clusters first 
by mean score, a linear regression model on the ordered 
categories also yields an R2. Along with τ, these measures have 
the advantage that the number of clusters does not have to match 
the number of score categories.  

For completeness, and to make contact with standard approaches 
in classifier performance, we also consider “agreement” types of 
measures. In particular, we add Cohen’s weighted κ [5] (using 
squared off-diagonal weights), Precision, and Recall. A detailed 
discussion of the merits, biases, and internal relationships of many 
classifier evaluation measures can be found in [31]. In any case, 
use of these measures requires that the number of clusters be 
selected to match the number of score categories. This is 
acceptable, since in our confirmatory approach, we do not try to 
identify the optimal number of clusters.  

There are some post hoc justifications for “agglomerating” some 
of the F-score levels, based on the pilot data, before choosing the 

number of clusters. The distributions for both scores in our pilot 
data are shown in Figure 7. F-score levels 1 and 4 are very 
sparsely populated (around 5% in each). The rationale is that if the 
level 4 data are construed as boundary cases between levels 3 and 
5, rather than genuine categories, then looking for a cluster 
assignment that correctly identifies them is stacking the deck 
against the clustering algorithm. Moreover, starting out with 
smaller numbers of categories for F-score has the further benefit 
of simplicity, especially in visualizations. 
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Figure 7: Distribution of scores in the pilot data (N=1318) 
We consider partitions of F-score into two and three levels. The 
two-level F-score introduces a single cut, F ≤ 3, F > 3, while the 
three-level version introduces a second cut, F < 3, F = 3, F ≥ 4. 
We examine agreement measures with repartitioned F-score for 
two- and three-cluster solutions. For Y-score, we consider only 
the three-cluster case. Because hierarchical agglomerative 
clustering is deterministic, the cluster assignments that result from 
different cuts of the dendrogram are stable.  
The subject of cluster validity is covered in many references, for 
example [14, 30, 32]. Our brief treatment of the subject here is 
meant only to highlight some examples of the issues that arise in 
our application.      

6. RESULTS
6.1 Alignment of Clustering with F-score 

Table 3: 2-cluster cuts with 2-level F-scores (sorted by R2) 

Method	   R2	   τ	   κ	   Prec	   Recall	  

1	   ward.remapP.LCS	   0.73	   0.44	   0.88	   0.89	   0.91	  

2	   ward.remapP.OM	   0.57	   0.26	   0.71	   0.84	   0.76	  

3	   ward.origP.LCS	   0.55	   0.23	   0.67	   0.85	   0.72	  

4	   ward.orig.OM	   0.47	   0.20	   0.62	   0.81	   0.71	  

5	   ward.origP.OM	   0.47	   0.21	   0.61	   0.82	   0.70	  

6	   ward.remap.OM	   0.42	   0.14	   0.49	   0.84	   0.63	  

7	   ward.remapP.HAM	   0.37	   0.17	   0.52	   0.76	   0.66	  

8	   complete.orig.OM	   0.24	   0.07	   0.35	   0.92	   0.55	  

…	   …	   …	   …	   …	   …	   …	  

11	   ward.remap.LCS	   0.22	   0.19	   0.26	   0.86	   0.63	  
…	   …	   …	   …	   …	   …	   …	  

Results for two-cluster comparison with two-level F-score are 
shown in Table 3, ordered by R2. In this simple case, the R2 from 
ANOVA and from a linear model are necessarily the same, and 
weighted κ is identical to unweighted κ. We point out a few 
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salient features of Table 3. First, the Ward’s method algorithm 
leads to the top seven clustering assignments. Second, it is 
apparent by inspection that the measure variables are almost 
perfectly monotonic; the rank correlations are high. Ward 
clustering of the remapP sequences using the LCS metric scored 
highest in all measures. Interestingly, it scored much higher than 
the same method used on the remap sequences, which differ only 
in the persistence of the final state. As we saw in Table 2, the 
computed distance between two sequences does change 
depending on the representation. In Figure 8 we examine the 
concordance effects visually. 
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Figure 8: Comparison of cluster assignments (red/blue) with 
F-score for different representations using the same method. 

Even though F-scores were aggregated for the calculation of 
agreement measures, we have left all of the original levels in 
Figure 8 for illustrative purpose. The effect of data preprocessing 
is quite noticeable. Using remap (no persistent final state), the 
two-cluster solution does not achieve good separation in the lower 
F-score levels, though no high F-scores fall into the red cluster as 
false positives. On the other hand, a small number of high F-
scores are misclassified by the assignment using remapP. Those 
sequences typically contained many extra pump tests (P), often in 
a row. From the clustering algorithm’s “point of view,” these 
sequences had more in common with other extraneous moves, 
though from the task designer’s point of view, extra pump testing 
was not penalized on efficiency. 
The ward.remapP.LCS dendrogram is still the best performer at 
three clusters (R2 = 0.78) and five (R2 = 0.78), not shown. 
However the monotonicity, or rank-correlation, among the 
measures degrades as cluster number increases. This issue arises 
in the Y-score results and is discussed in the next section.  

6.2 Alignment of Clustering with Y-score 
We now consider the second score dimension for Wells. Although 
the rubric describes four levels, the pilot test data, as shown in 
Figure 7, only contain three levels in a slightly U-shaped 
distribution. The association and agreement measure table for 
three-cluster dendrogram cuts with Y-score is shown in Table 4. 

Table 4: 3-cluster cuts with 3-level Y-scores (sorted by R2) 

Besides the fact that overall external agreement is worse in the 
case of Y-score, a few other details are worth noting. Our ordering 
heuristic, i.e. using the cluster means, appears to be reasonable, 
given the near-perfect correlation of the two R2s. The remap 
sequences are no longer clear winners; in fact the best performing 
dendrogram with respect to F-scores placed 12th in this table. Also 
there is no longer monotonicity between the measures, which is 
especially clear from looking at the τ and Precision columns. This 
is important, as is illustrated in Figure 9, in which three different 
cluster assignments are compared side by side. The plots from left 
to right correspond to dendrograms of rows 1, 2, and 4 in Table 4.  
The leftmost assignment is the one with the highest R2, τ, and κ 
score. One of the clusters here, shown as dark blue areas, does not 
discriminate at all between levels of Y-score. The yellow areas 
correspond to a cluster that reasonably captures the top Y-score, 
whereas the red cluster comprises mostly level 1 and 2. This 
assignment would probably have scored even better if the lowest 
two levels of Y-score were combined into one. Indeed, none of 
the solutions shown appear to identify three clusters that associate 
convincingly with each of the three score categories. 

The middle plot in Figure 9 shows a clustering solution with 

Method	   R2
anova	   R2

linear	   τ	   κ	   Prec	   Recall	  

1	   ward.origP.LCS	   0.45	   0.44	   0.30	   0.66	   0.55	   0.58	  

2	   complete.remap.LCP	   0.38	   0.38	   0.23	   0.61	   0.60	   0.54	  

3	   ward.remap.LCP	   0.35	   0.34	   0.22	   0.54	   0.50	   0.48	  

4	   ward.remapP.LCP	   0.34	   0.34	   0.24	   0.51	   0.61	   0.39	  

5	   ward.orig.LCP	   0.33	   0.32	   0.21	   0.51	   0.50	   0.46	  

6	   ward.origP.OM	   0.31	   0.31	   0.21	   0.55	   0.48	   0.51	  

7	   ward.origP.LCP	   0.30	   0.30	   0.22	   0.47	   0.62	   0.38	  

…	   …	   …	   …	   …	   …	   …	   …	  

12	   ward.remapP.LCS	   0.08	   0.08	   0.06	   0.22	   0.54	   0.41	  
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Figure 9: Visualization of the cross-tabulation from three cluster assignments with Y-score. Plots (a), (b), and (c) correspond to 
dendrograms of rows 1, 2, and 4 in Table 4, respectively.  
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lower R2, τ, and κ, but a higher Precision. It also has a non-
discriminating cluster, though here it is smaller. The yellow and 
red clusters are more or less equally split on the mid-level score.  

Finally the rightmost clustering has slightly higher precision, but 
low recall, R2 and κ. According to τ, it is the second best match to 
the scores. One is tempted to say that this cluster assignment 
“avoids getting it wrong.” Although many more sequences are put 
into the non-discriminating blue cluster, including all of the mid-
level Y-score, the red and yellow clusters have no false positives 
at all. Depending on the purpose, for example routing in a multi-
stage assessment [38], it might be argued that this “diagnostic” 
clustering is preferable.   

After varying the data representation, distance metric and even 
linkage function, examining alignment of clustering solutions with 
Y-score turns out to be rather subtle.  

6.3  Alignment of Clustering with Both Scores  
The best cluster dendrogram for F-score is a poor performer with 
respect to Y-scores (and vice-versa). Using MANOVA with both 
scores simultaneously, ward.remapP.LCS is still the winner 
(likewise if a combined six-level FY-score—two F-score levels 
and three Y-score levels—is matched to a six-cluster cut). It wins 
despite not resolving the Y-scores well, just on account of 
resolving the F-score as well as it does. The logical conclusion to 
draw from this is that, in the case of multidimensional scores, 
there is no one best clustering assignment. The appropriate 
clustering method and preprocessing of the data indeed depend on 
the intended purpose. 

7. DISCUSSION AND FUTURE WORK
We have tried to show some of the operational issues that arise in 
characterizing sequence data from a simulation-based task, 
specifically visualization and clustering choices. With respect to 
visualization, we were concerned with representing progress as 
unambiguously as possible, and we explored the consequences of 
both mapping the original sequences to an ordered set of states 
and padding out the sequences to a fixed length.  

With respect to clustering, we were most interested in measures of 
external agreement with the two-dimensional scoring rubric 
designed for the task. We found that the clustering dendogram 
that worked best in terms of one score did not necessarily work at 
all in terms of the other. Both data preprocessing and selection of 
the between-sequence distance metric had an impact, though the 
best agglomerative linkage algorithm was almost always Ward’s 
method. In the case of Y-score, while none of the solutions were 
great, we found it ambiguous to tell which was even the best 
among the mediocre. Whether this reflects a feature of the Y-
scoring that is ambiguous or just difficult to capture via sequence 
clustering is something we wish to investigate further. 

This work raises important issues about clustering of educational 
sequence data in the presence of multidimensionality: two 
different clustering protocols may reach different solutions, both 
of them valid. Furthermore, brute force search among clustering 
solutions for a best fit according to one particular external 
criterion may exclude solutions of interest. In practice, what this 
of course suggests is that the use of sequence clustering methods 
for inference needs to be handled with care.  

Without a doubt, much prior knowledge goes in to preprocessing 
educational data already. For example, we often simply exclude 
events we are not interested in. In the context of sequential data, 
an alternative might be to assign selective weights to particular 
insertions, deletions and substitutions of states. The web-page 

similarity index in [37] is designed to address this issue, because 
substituting one web page with a very different one should be 
treated distinctly from substituting similar pages. In our case, for 
example, a variable insertion cost for pump test actions P would 
have affected the agreement of cluster assignment with F-score.  

F-score and Y-score indeed stand for real constructs in the rubric 
design: efficiency and systematicity. We found that grouping by 
efficiency can be discovered through sequence clustering, but 
systematicity was not as well matched. If sequences with the same 
score do not self-group under edit distance, these discrepancies 
may merit closer examination. This is the confirmatory value of 
performing such an analysis. 

 The edit-distance similarity measures that we used here do not 
embed sequence data in a multidimensional coordinate space, 
whereas feature-vector descriptions of sequences do. The latter 
approach might have several advantages when the external 
measure is also multidimensional, as in the case of our expert-
based scores. Methods like canonical analysis [13] may be 
brought to bear on such multivariate data. Standard distance 
metrics also make internal cluster quality analysis more 
straightforward. While we did not delve here into such measures, 
it turns out that many internal cluster criteria are not well suited to 
the use of generalized dissimilarity, for example because a cluster 
“centroid” is not easily defined. Some authors have cautioned 
against using Ward’s method with non-Euclidean distances 
because of interpretability problems [17], although this 
prohibition would have removed the best clustering solutions—by 
external criteria—in our study. The lack of appropriate internal 
indices is an unsolved problem that we plan to investigate further.  

We note that ordering effects in the data were likely introduced by 
the fixed order of presentation in the task itself. The five sets of 
buttons corresponding to possible problems with the well were 
presented vertically and always in the order corresponding to the 
codes numbered 1-5. Within the sequence data, the two valid 
checks, C4 and C5, occurred in that order nine times as often as 
the reverse, and unnecessary check C2 preceded C3 almost four 
times as often as the reverse. A randomized order of presentation 
would have produced more balanced sequence data, and this 
might have enlarged the effect of remapping the sequences.  
We did not look at specific time or duration in this investigation at 
all. From the perspective of trying to understand student behavior, 
it might make a significant difference whether the student clicked 
through options quickly in a task or deliberated before a decision. 
Such behaviors are part and parcel of sequence mining efforts in, 
for example, affect detectors [3, 6] or keystroke analysis [1]. The 
inclusion of temporal variables to sequence clustering and 
validation is a natural extension of this work. 
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ABSTRACT 
The authors use dynamical analyses to investigate the relation 
between students’ patterns of interactions with various types of 
game-based features and their daily performance. High school 
students (n=40) interacted with a game-based intelligent tutoring 
system across eight sessions. Hurst exponents were calculated 
based on students’ choice of interactions with four types of game-
based features: generative practice, identification mini-games, 
personalizable features, and achievement screens. These 
exponents indicate the extent to which students’ interaction 
patterns with game-based features are random or deterministic 
(i.e., controlled). Results revealed a positive relation between 
deterministic behavior patterns and daily performance measures. 
Further analyses indicated that students’ propensity to interact in a 
controlled manner varied as a function of their commitment to 
learning. Overall, these results provide insight into the potential 
relations between students’ pattern of choices, individual 
differences in learning commitment, and daily performance in a 
learning environment. 

Keywords 

Intelligent Tutoring Systems, dynamical analyses, strategy 
performance, game-based learning 

1. INTRODUCTION 
Students’ behaviors during learning tasks vary both as a function 
of the student and the task. Some students approach learning tasks 
in a decisive manner, revealing a plan and purpose. These students 
are controlling and regulating their behavior: a crucial skill for 
academic success [1 – 6]. However, other students can approach 
the same task in an impetuous manner, showing little discernible 
schemes or methods. These students are failing to take control of 
their own learning behaviors; consequentially, their academic 
success often suffers [1, 7 – 8]. The emergence of students’ ability 
to set decisive goals, plans, and make decisions during a task is 
often referred to as self-regulation [5]. 

One important component of self-regulation is students’ ability to 
control their choices and behaviors during learning tasks [8]. To 
gain a deeper understanding of how self-regulated learning 
manifests in students’ choices, scientists have begun to examine 
patterns that emerge in students’ behaviors while they engage 

with adaptive environments [9 – 10]. These environments produce 
log data (e.g., keystroke or mouse click data) that are rich in 
information about what students choose to do while engaged with 
the system. Analyzing patterns that emerge within log data has 
been shown to shed light upon the amount of agency exerted 
during tasks. The utilization of log data is especially useful for 
researchers interested in examining how students engage with 
game-based systems, which typically offer students high levels of 
agency. As students engage with game-based environments, they 
are frequently provided with multiple choices and trajectories. 
These variations allow students to exhibit several levels of 
control, which influence the interaction patterns that manifest 
during their time within the system. Consequently, these 
environments provide researchers a unique opportunity to 
examine students’ ability to control their learning experience and 
the ultimate impact this skill has on learning outcomes. 

The ability to effectively self-regulate is challenging for many 
students, as they often struggle to set their own learning goals and 
control their behaviors during learning tasks. As a result, self-
regulation skills (e.g., ability to control behaviors) tend to vary 
widely among students [11]. Thus, it is critical to understand what 
individual differences drive various interaction patterns that may 
be indicative of students’ ability to control their behaviors. 
Historically, individual difference researchers have shown that 
students vary in the way that they learn and interact in the 
classroom [12 – 14]. More recently, it has been shown that 
individual differences, such as expectations of technology, prior 
reading ability, and commitment to learning, similarly influence 
students’ interactions and performance within adaptive learning 
environments [15 – 17].  

The current study builds up upon this work by investigating the 
extent to which students’ patterns of interactions display 
deterministic and controlled properties, and how those properties 
ultimately impact daily performance outcomes. Additionally, we 
investigate whether these interaction patterns vary as a function of 
individual differences in students’ commitment to learning, prior 
reading ability, or expectations of technology. By investigating 
students’ propensity to interact in controlled (i.e., deterministic) 
patterns within learning environments, our goal is to enhance 
theoretical understandings of self-regulation and its ultimate 
impact on learning gains. 
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1.2 iSTART-ME 
The context of this study is iSTART-ME (Interactive Strategy 
Training for Active Reading and Thinking-Motivationally-
Enhanced), a game-based Intelligent Tutoring System (ITS) 
designed to improve students’ reading comprehension skills by 
providing them with instruction and practice on how to use self-
explanation and comprehension strategies [18]. This game-based 
tutoring system was built upon a traditional ITS (i.e., that was not 
game-based) called iSTART [19]. iSTART and iSTART-ME are 
similar in that they both introduce students to self-explanation 
strategies, demonstrate the use of these strategies, and allow 
students to practice applying self-explanation strategies to science 
texts. This scaffolding is conducted in three separate modules (for 
more detail about these modules and the original iSTART system, 
please see [20 -21]). 
 
 

 
Figure 1. Screen shot of iSTART-ME Selection Menu 

 

iSTART-ME builds upon the original iSTART system by adding 
in game-based practice. This game-based environment provides 
an opportunity for extended practice and was designed to enhance 
students’ motivation and persistence during extended training 
sessions (see Figure 1; [21 -22]). Within this game-based practice 
environment, students can choose to interact with the interface in 
a variety of ways, such as reading and self-explaining new texts 
within the context of a game (see Figure 2 for a screenshot of a 
generative game), personalizing the system interface, or playing 
identification mini-games (see Figure 3 for screenshot of a mini-
game; for a more detailed description of the iSTART-ME system, 
please see [18]). iSTART-ME presents students with a variety of 
activities they can choose from. This flexibility puts iSTART-ME 
in a unique position to assess the agency exhibited within 
students’ patterns of interactions and how those various patterns 
ultimately impact learning.  

 
Figure 2. Screen Shot of Generative Practice Showdown 

 
iSTART-ME assesses students’ self-explanations through the use 
of a feedback algorithm [19]. Self-explanations are scored on a 
scale that ranges from 0 to 3. A score of “0” is assigned to any 
self-explanation that is composed of irrelevant information or is 
considered too short. A score of “1” indicates that the self-
explanation relates to the sentence but does not elaborate upon the 
information within the text. A score of “2” is assigned when 
students’ self-explanations incorporate information from other 
locations in the text beyond the target sentence. Finally, a score of 
“3” indicates that the self-explanation incorporates information 
from both the text and students’ prior knowledge.  

 

 
Figure 3. Screenshot of iSTART-ME mini-game Bridge 

Builder 
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1.3 Current Study 
Previous work has provided insight into the way that individual 
differences influence how students regulate their behaviors. 
However, there remain questions regarding the influence of these 
individual differences on students’ behavior patterns and learning 
outcomes. The current study attempts to address this issue by 
examining how students’ behavior patterns within the game-based 
environment iSTART-ME relate to system performance and vary 
as a function of individual differences. We investigated two 
primary questions:  

1) Do students’ behavior patterns influence their daily 
self-explanation quality?  

2) Do individual differences influence students’ 
patterns of interactions within the system?  

2. METHODS 
2.1 Participants 
Participants in the current study (n= 40) were high school students 
from the Midwest United States. The students were, on average, 
15.9 years of age, with a mean reported grade level of 10.4. Of the 
40 students, 50% were male, 17% were Caucasian, 73% were 
African-American, and 10% reported other ethnicities.  

2.2 Procedure 
The current work is part of a larger study conducted to compare 
iSTART-ME, iSTART, and a non-tutor control [18]. The current 
study solely focuses on the 40 subjects assigned to the iSTART-
ME condition, as they had access to the full game-based 
environment. The study consisted of 11 sessions. Session 1 was a 
pretest wherein the students answered a battery of questions, 
including measures of prior ability, commitment to learning, and 
attitudes toward technology. During sessions 2 through 9, students 
interacted with the game-based system. Session 10 comprised the 
posttest portion of the experiment, including measures similar to 
those in the pretest. Finally, one week after the posttest, students 
returned for session 11. During this session, students completed a 
retention test that included similar measures as the pretest and 
posttest. 

2.3 Measures 
2.3.1 Pretest reading comprehension  
Students’ reading comprehension ability was assessed using the 
Gates-MacGinitie Reading Test [23]. This test is a well-
established measure of student reading comprehension (α=.85-.92 
[24]). This task consists of 48 questions that ask students to read a 
passage and then answer two to six comprehension questions 
about the material in that passage. 

2.3.2 Strategy performance 
Students’ self-explanation ability was assessed at pretest and 
during training. At pretest, students were asked to read a short 
science passage and self-explain predetermined target sentences in 
that text. During training, students’ self-explanation ability was 
assessed through their interactions with the generative practice 
games. In these games, students were shown science texts and 
asked to generate their own self-explanations for various target 
sentences within the texts. All self-explanations were scored using 
the previously mentioned iSTART algorithm. 

2.3.3 System Interaction Choices 
Students’ recorded interactions with iSTART-ME involved one of 
four types of game-based features, each representing a different 
type of game-based functionality within iSTART-ME. Each 
interaction was classified as involving one of the four categories 
of game-based functionalities (see Table 1 for descriptions).  
 

Table 1. Interaction Categories within iSTART-ME 
Interaction 
Classification 

Description 

Generative 
Practice  

Students generate their own self-explanation  

Identification 
Mini-Games 

Students identify the self-explanation strategy  

Personalizable 
Features 

Students customize some aspect of the system 
interface 

Achievement 
Screens 

Students view their performance within 
iSTART-ME 

 

2.3.4 Commitment to Learning 
Students’ commitment to learning was assessed at pretest through 
two self-report questions. A composite score was calculated that 
combined the questions related to students’ enjoyment of learning 
and their frequency of reading for enjoyment (see Table 2 for 
questions).  
 

Table 2. Learning Commitment Questions 

 
2.3.5 Prior Expectations of Technology 
Students’ prior expectations of technology were assessed at 
pretest. This measure was a composite score that combined two 
self-report measures related to students’ expectations of computer 
helpfulness and their expected enjoyment while interacting with 
the iSTART-ME system (see Table 3 for questions). 
 

Table 3. Prior Expectations of Technology Questions 

 
2.4 Dynamical Methodologies 
Students’ interaction patterns were classified using two dynamical 
methodologies. First, students’ sequence of interaction patterns 
were analyzed using a random walk model. This method has been 
used in previous work to analyze fluctuations in patterns across 
time [16, 25]. Random walks create a spatial representation of 
categorical sequences across time. In the current study, we 
generated a unique walk for each student by first placing an 

Response Statement Scale* 
“Do you expect to enjoy interacting with this 
system?” 
“Do you expect computers to be helpful?” 

1 - 6 

1 - 6 

*1 (Strongly Disagree) to 6 (Strongly Agree) 

Response Statement Scale* 
“How much do you enjoy reading?” 
“How much do you enjoy learning about non-
scientific material?” 

1 - 6 

1 - 6 

*1 (Strongly Dislike) to 6 (Strongly Like) 
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imaginary particle at intersection of the x and y-axes (0,0). Then 
using system log-data we examined the patterns of interactions in 
which students engaged and moved the particle in a manner 
consistent with a simple set of rules (see Table 4). These rules 
dictated what direction the particle would “step.” For instance, if 
students played an identification mini-game the particle moved 
one “step” up along the y-axis. If students chose to play a 
generative practice game, the particle moved one “step” left along 
the x-axis. When students chose to interact with an achievement 
screen the particle moved one “step” down along the y-axis. 
Finally, when students chose to interact with personalizable 
feature, the particle moved one “step” right along the x-axis. 
Notably, the direction of movement is arbitrary (i.e., a certain 
direction is not associated with the quality of the feature). Figure 4 
reveals what a completed walk from the current study looked like 
for a student with 326 interaction choices. 
 

Table 4. Particle movement assignment  

Students’ Choice of 
Interaction 

Direction of Movement 

Generative Practice Games 1 step left along the X-axis  
Identification Mini-Games 1 step up along the Y-axis  
Personalizable Features 1 step right along the X-Axis  
Achievement Screens 1 step down along the Y-axis  

 
 

 
Figure 4. Complete Random Walk 

Using students’ sequence of categorical choices, we calculated 
Euclidian distances for each step within their random walk (see 
Equation 1). The combination of all distance calculations within 
students’ random walk generated a “distance time series.” which 
was representative of the fluctuations in students’ interaction 
patterns across time. These distance time series calculated how far 
students’ choice patterns fluctuated from the origin (0,0). Finally, 
the classification of each student’s interaction pattern was 
conducted by using the distances time series generated from the 
random walk analysis and entering them into a detrend fluctuation 
analyses (DFA). The result of each DFA was a scaling component 
called the Hurst exponent [26]. The Hurst exponent can classify 
the tendency of long-term time series as follows: 0.5 < H ≤ 1 
indicates persistent (deterministic or controlled) behavior, H = 0.5 
signifies random (independent) behavior and 0 ≤ H < 0.5 denotes 

antipersistent (corrective) behavior. Patterns that are classified as 
persistent are considered to be equivalent to a positive correlation. 
Time series exhibiting persistence are thought to reflect self-
organized and controlled processes [27]. Conversely, when 
patterns are classified as antipersistent, the pattern is said to be 
equivalent to negative correlations. This measure has been used in 
a variety of domains to view fluctuations and the persistence of 
complex patterns across time [26]. 

 
Distance = (𝑦! − 𝑦!)! + (𝑥! − 𝑥!)!             (1) 

   

3. RESULTS 
3.1 Hurst Exponents 
Hurst exponents were used to quantify students’ patterns of 
choices within the iSTART-ME system. In the current study 
students’ Hurst exponents varied considerably from weakly to 
strongly persistent (range =0.57 to 1.00, M=0.77, SD=0.11).  

3.2 Hurst Exponents and System Interactions 
Within the current study, students varied in the interaction 
patterns (Hurst exponents). To provide a visualization of what 
variability in Hurst scores looks like within the system two 
probability analyses were conducted. These probability analyses 
are similar to the ones used by D’Mello and colleagues (2007). 
This calculation can be described as L[It→Xt+1]. Simply put, we 
are examining the probability of a student’s next interaction (X) 
with an interface feature given their previous interaction (I). For 
the current study, we calculated two of these probability analyses. 
One for a student with a high Hurst score (i.e., deterministic 
pattern) and one for a student with a low Hurst score (i.e., weakly 
persistent pattern).  
 

 
Figure 5. Transitional Probability of a Student with 

a High Hurst Score 
 

Figure 5 illustrates how a student with a Hurst exponent of .98 
interacted with various features in the iSTART-ME system. This 
student interacted with the generative practice games almost 60% 
of the time, revealing very little tendency to interact with other 
features in the system. When this student did engage with another 
game-based feature, there was a tendency to transition back to the 
generative practice games afterwards. Thus, this student seemed 
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to be acting in a decisive manner, consistently interacting with 
generative practice games or transitioning back to generative 
practice games after engaging with another feature.  
 

 
Figure 6. Transitional Probability of a Student with 

a High Hurst Score 
 

Conversely, Figure 6 illustrates how a student with a Hurst 
exponent of .60 interacted within the system. This analysis 
revealed that the student with a low Hurst score explored more of 
the system interface than the student with a Hurst score of .98 (see 
Figure 5). However, the interaction pattern was more spread out 
and less predictable compared to the student with the high Hurst 
score. Thus, this student was not acting in a decisive manner and 
as such, may not have been regulating their learning experience 
within the iSTART-ME system. 
 
3.3 Hurst and Self-Explanation Quality 
The current study examined how variations in students’ 
interaction patterns within a game-based environment related to 
their daily strategy performance. Pearson correlations were 
conducted (see Table 5) to investigate relations between students’ 
interaction patterns and their daily self-explanation scores. Results 
from this analysis indicated that there was a positive correlation 
between students’ overall Hurst exponents (regulatory measure) 
and self-explanation quality on days 1, 2, 3, 4, and 6. Hurst 
exponents were also marginally related to students’ self-
explanation quality on days 5 and 7. However, there was no 
significant relation between Hurst exponents and self-explanation 
quality on day 8 of training.  

To further examine these relations, we conducted separate 
hierarchal regression analyses on students’ self-explanation 
quality scores for each of the eight training days. These analyses 
investigated how students’ interaction patterns predicted self-
explanation scores over and above prior self-explanation ability 
(i.e., self-explanation scores at pretest). This is reflected by the R2 
change attributable to the variance accounted for by the 
interaction patterns (i.e., Hurst exponents) after entering prior 
self-explanation ability in the regression model (see Table 6). 
These analyses revealed significant models and R2 change for 
session 2, F(1,37)=5.32, p<.05, R2=.21, R2Change=.11 (i.e., see 
session 2 in Table 6), session 3, F(1,37)=5.29, p<.05, R2=.29, 
R2change=.11, session 4, F(1,37)=9.42, p<.01, R2= 29, R2change=.19, 

and session 6, F(1,37)=6.251, p<.05, R2=.19, R2 change=.14. These 
analyses also reveal a marginally significant R2 change on session 
1, F(1,37)=3.08, p=.08, R2= .41, R2 change=.05, where prior self-
explanation ability accounted for the majority of the variance in 
performance during that initial session.  
 
Table 5. Hurst Exponents and Daily Self-Explanation Quality 

Self-Explanation Quality Interaction Patterns 
(Hurst) 

Session 1 .325* 
Session 2 .387* 
Session 3 .391* 
Session 4 .477** 
Session 5 .296 (M) 
Session 6 .405** 
Session 7 .282 (M) 
Session 8 .054 
p=.05*, p<.01**, p<.10 (M)  

 
Table 6. Hierarchal Linear Regressions Predicting Self-

explanation Quality from Interaction Patterns (Hurst) and 
Prior Self-Explanation Ability 

Self-Explanation Quality      β  ΔR2 R2 
Session 1    .41** 
Prior Self-Explanation Ability .56 .36**  
Interaction Patterns .23 .05(M)  
Session 2   .21* 
Prior Self-Explanation Ability .26 .10(M)  
Interaction Patterns .34 .11*  
Session 3   .29* 
Prior Self-Explanation Ability .36 .18*  
Interaction Patterns .32 .11*  
Session 4   .29* 
Prior Self-Explanation Ability .25 .10(M)  
Interaction Patterns .43 .19*  
Session 5    .22* 
Prior Self-Explanation Ability .37 .17*  
Interaction Patterns .23 .05  
Session 6   .19* 
Prior Self-Explanation Ability .16 .05  
Interaction Patterns .38 .14*  
Session 7    .16* 
Prior Self-Explanation Ability .28 .10(M)  
Interaction Patterns .25 .06  
Session 8   .15 
Prior Self-Explanation Ability .38 .14*  
Interaction Patterns .04 .01  
p<.05 *, p<.01 **, p<.10 (M) 
 
These findings reveal that students’ interaction patterns play an 
important role in students’ daily self-explanation performance, 
particularly after the first session. We further examined whether 
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students’ interaction patterns varied as a function of individual 
differences using pretest measures of reading ability, commitment 
to learning, and prior expectations of technology (see Table 7). 
Results from this analysis revealed that commitment to learning 
was the only pretest measure significantly related to students’ 
interaction patterns. This variable accounted for 15% of the 
variance among students’ interaction patterns as reflected by the 
Hurst exponent scores. Indeed, when students reported a higher 
commitment to learning they were more likely to interact with the 
system in a controlled and deterministic way. Interestingly, 
students’ prior ability level and expectations of technology was 
not related to their pattern of interactions. Thus, when given 
agency over a learning task, students learning goals may be one of 
the primary factors that influence how regulated they behave. 
These findings support previous work that shows that students’ 
goals are an important contributor to their ability to self-regulate 
during learning [29].  

Table 7. Correlations between Interaction Patterns (Hurst) 
and Individual Differences 

Variable Interaction Patterns 
Reading Ability  .150 
Commitment to Learning .387* 
Prior Expectations of Computers .281(M) 
*p < .05, M=Marginal  

 

4. DISCUSSION 
The current study investigated how students’ behaviors within an 
adaptive environment impacted their daily learning outcomes and 
varied as a function of individual differences. The current study 
utilized a scaling component (i.e., Hurst exponents) to classify 
students’ interactions with game-based features as random or 
deterministic (i.e., controlled). Previous work has posited that an 
important aspect of self-regulation is a student’s ability to control 
behaviors and act in a decisive manner [1, 7 – 8]. Thus, patterns 
that manifest within students’ behaviors may reveal one 
component of self-regulated learning.  

The analysis presented here is a potential means of covertly 
capturing one aspect of self-regulation (i.e., self-control). Students 
with higher Hurst exponents are said to be engaging in 
deterministic and controlled behavior patterns. Students with 
lower Hurst exponents are described as engaging in random 
behaviors. Random behaviors are associated with less purpose, 
control, or persistence. Results presented here indicate that these 
tendencies across time are related to students’ daily learning 
outcomes. When students engaged in controlled behaviors, they 
were more likely to generate higher quality self-explanations 
across training. When this analysis was taken a step further, it was 
revealed that this relation held for the majority of training days 
when factoring out prior ability in self-explanation.  

Although it is important to understand the impact that controlled 
interaction patterns have on daily learning outcomes, it is also 
important to identify students who are more inclined to engage in 
controlled patterns. Understanding how individual differences 
drive students’ patterns of choices within adaptive environments 
has the potential to contribute to a deeper understanding of self-
regulation. Thus, the current study investigated how individual 
differences in students’ reading ability, prior expectations of 

computers, and commitment to learning was related to their 
propensity to interact with game-based features in a deterministic 
manner. The current findings indicated that only students’ 
commitment to learning was positively related to controlled 
patterns of interactions within iSTART-ME. Hence, when 
students expressed a desire to learn, they were also likely to act in 
a decisive, persistent, controlled, and deterministic manner in the 
system. Self-regulation researchers have postulated that when 
students are motivated to achieve learning goals they are more 
likely to regulate their behaviors [30]. These findings support 
previous research, which reveals that self-regulation is related to 
students’ learning goals [29]. Thus, students’ ability to control 
their behaviors is not necessarily tied to their literacy skills or 
familiarity with computers. Indeed, students must choose to take 
an active role in their learning and behave in a manner that 
supports their learning goals. These findings are preliminary. 
Clearly, future research will call for better measures of learning 
orientation to gain a deeper understanding of how students’ 
attitudes influence the nuanced ways in which they approach 
learning tasks within game-based environments. Nonetheless, 
these results contribute to theoretical notions of self-regulation by 
revealing potential relations between students’ attitudes and 
patterns of controlled behaviors. 

In sum, these exploratory findings are promising for educational 
researchers as they reveal how students’ behavior patterns 
influence learning outcomes. The current work also begins to shed 
light upon the nuanced ways in which scientists may be able to 
trace and classify students’ interactions within adaptive systems. 
These analyses provide evidence suggesting that dynamical 
methodologies may afford researchers an online stealth 
assessment of self-regulation. Future work calls for confirmatory 
studies focused on demonstrating concurrent validity as well as 
how these dynamical methods of analysis can be utilized to 
improve student models within adaptive systems. Namely, real 
time analysis may offer a useful means of measuring self-
regulated behavior patterns without relying on self-report 
questionnaires. If student models are able recognize optimal vs. 
non-optimal patterns of interaction for each student, we expect 
that learning systems will more effectively adapt to students’ 
needs based on students’ behavior patterns. 
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ABSTRACT 

Automated acquisition of knowledge from text has been utilised 

across several research areas including domain modeling of 

knowledge-based systems and semantic web. Primarily, 

knowledge is decomposed as fragments in the form of entities and 

relations called triples (or triplets). Although empirical studies 

have already been developed to extract entities (or concepts), 

relation extraction is still considered as a challenging task and 

hence, performed semi-automatically or manually in educational 

applications such as Intelligent Tutoring Systems. This paper 

presents Natural Language Processing (NLP) techniques to 

identify subject-verb-object (SVO) in lecture notes, supporting 

the creation of concept-relation-concept triple for visualisation in 

concept map activities. Domain experts have already been 

invested in producing legible slides. However, automated 

knowledge acquisition is challenging due to potential issues such 

as the use of sentence fragments, ambiguity and confusing use of 

idioms. Our work integrates the naturally-structured layout of 

presentation environments to solve semantically, syntactically 

missing or ambiguous elements. We evaluate our approach using 

a corpus of Computer Science lecture notes and discuss further 

uses of our technique in the educational context. 

Keywords 

Triples, lecture notes, relation extraction, NLP, concept map. 

1. INTRODUCTION 
Automated annotation of unstructured text, which is decomposed 

as entities and relations, is beneficial for wide variety of 

applications. Among them, within the educational context, 

knowledge-based systems such as intelligent tutoring systems 

benefit from semi- or fully automated domain modeling. Concept 

map activities such as skeleton maps to fill missing nodes or links 

benefit from adopting concept map mining (CMM) techniques as 

a way of reducing manual workload. 

Although, previous studies focused on entity extraction [1], 

relation extraction is still challenging, with many techniques 

adopting pre-defined relations or 'named entities' (e.g. location) 

[2] and hence, restricted to specific domains. Although supervised 

learning approaches are more efficient, majority of such 

algorithms inapplicable to extract undefined relations. Technical 

disciplines like Computer Science lack named entities or pre-

defined patterns and hence, not possible to reuse existing works.  

This paper discusses a tool developed to automatically extract 

triples from lecture notes. Concept map extraction from text books 

is covered in other works [3]. Domain experts have already been 

invested in producing legible slides, allowing their expended 

effort to be applied to more activities that are beneficial for both 

the teacher and the learners. However, using NLP techniques to 

extract knowledge is challenging due to the noisiness of the data 

including use of sentence fragments, idioms and ambiguity. 

Therefore, we utilise contextual features such as the natural layout 

of presentation framework to resolve syntactically and 

semantically missing or ambiguous elements. This includes 

allocating missing subject or objects of fragments, resolving 

pronouns using a novel algorithm. Unlike other works which 

incorporate triple extraction from well-written sentences [5-6] or 

text books [3], to our knowledge, there are no studies until this 

which have implemented a full scale triple extraction from ill-

written text in educational materials.  

Two human experts having knowledge in Computer Science and 

linguistics were recruited to participate the experiments; 1. 

pronoun resolution 2. triple annotation. The comparison between 

machine and human extraction and the agreement between human 

experts is presented using accuracy (F-measure) and the positive 

specific agreement [7] respectively. We hypothesise that our 

proposed system is effective if human-to-machine agreement is 

greater than or equal to human-to-human agreement [8].  

2. RELATED  WORK 
Triple extraction from Biology text books has been studied in a 

previous work [3] which presented a drawback of their failure to 

extract every triple from every sentence which leads to poor 

coverage of number of triples and therefore, poor pedagogical 

value. Triple extraction using heuristics [5] compares 3 popular 

parsers: Stanford/OpenNLP, link parser and Minipar. We reuse 

their work; however, heuristics proposed are restricted to 

unambiguous, complete sentences.   Authors in [6] extracts all 

possible ordered combinations of three tokens (i.e. triple 

candidates) to train SVM using human annotated triples. This 

work has a limitation of considering all combinations of three 

tokens which exponentially increase with the length of sentences. 

3. CONCEPT MAP MINING 
Our core research focus is on automatically extracting concept 

maps from lecture notes to provide variety of 

assessment/reflective activities for learners. Initially, noise is 

automatically reduced using  co-occurrence analysis techniques. 

NLP-based algorithms developed to extract concepts and rank 

them using structural features such as number of incoming and 

outgoing links, proximity and typography factors. Finally, the 

system produces a CXL (Concept map extensible language) file to 

visualise concept maps using IHMC cmap tools 

(http://cmap.ihmc.us/). These techniques are broadly discussed in 

our previous works [1,4]. The nature of presentation framework 
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encourages incomplete, ambiguous sentences and hence, increases 

the difficulty of the automated knowledge acquisition. Section 4 

discusses the contextual features to solve the probable issues. 

4. CONTEXTUAL FEATURES 
The ‘word window model’ is a valid approach to solve word sense 

disambiguation [9]. It considers a window of n words to the left 

and right of the ‘ambiguous term’ to determine the context of the 

target word. The window can be several words in same sentence, 

several sentences in paragraph, or a document. By applying this 

method to our problem, we utilise contextual information 

embedded in slides to resolve ambiguity. To support our claim, 

we assume that the slide heading reflects the content in that 

particular slide. Further, we assume that each bullet-point shares 

logical relations with its sub points. However, there is no 

guarantee that an existence of logical relation between preceding 

and succeeding sentences in same indentation levels.  

1. Syntactic rules (subject or object allocation) 

This section proposes an approach to nominate syntactically 

missing elements in fragments. There are two main types of 

fragments in English called noun phrases (NP) and verb phrases 

(VP). Noun phrases contain a noun(s) followed by a verb. 

Therefore, noun phrases require an 'object' to create subject-verb-

object triples. Similarly, verb phrases contain a verb followed by a 

noun(s) which requires ‘subject’ to form a complete sentence. 

More information on the grammatical meanings of tags can be 

found in http://bulba.sdsu.edu/jeanette/thesis/PennTags.html. 

1. NP which contains the pattern [NP VP[VB]] look forward 

for candidate nouns in ‘child’ (i.e. sub-indentation) levels to 

allocate missing ‘objects’.  

2. VP which contains the pattern [VP[VB NP]] look backward 

for nouns in ‘parent’ (i.e. preceding-indentation) levels to 

allocate missing ‘subjects’. 

Weights are assigned to candidate nouns based on features such as 

grammatical structure (e.g. nouns, verbs), distance from 'input 

fragment' to candidate, number of tokens in the candidate phrase, 

whether it is an immediate level (backward or forward) or not. 

The weight calculation finds the subject or object to transform 

fragments into complete sentences.  

2. Semantic rules 

Lecture notes consist of semantic ambiguities such as pronouns. 

The widely used approach for pronoun resolution is utilising 

‘named entities’. Other works include searching replacement 

candidates in the same sentence or backward and forward search 

of preceding and succeeding sentences [11]. Since lecture notes 

lack logical relations between preceding and succeeding 

sentences, we propose a new algorithm.  

Pronoun resolution 

We applied a mechanism proposed in [11] to find replacements 

when bullet-point contains multiple sentences. Additionally, we 

find replacements in ‘parent-levels’, which is the preceding 

indentation level or heading. We assign weights for each 

candidate according to features such as 'location' of the candidate, 

distance from the pronoun, grammatical structure, grammatical 

number (singular or plural). The most suitable candidate is chosen 

using weights. 

 

Demonstrative determiners 

Lecture notes often contain demonstrative determiners (e.g. this, 

these), a word or phrase that occurs together with a word(s) to 

express the reference of that word(s) in the context. Our proposed 

approach to resolve them only considers lexical reiterations (e.g. 

these calls-> system calls). We consider features like grammatical 

number (singular or plural), number of strings overlaps with the 

candidate, grammatical structure and the determiner.  

5. TRIPLE EXTRACTION 
We propose a new set of features to extract entity-relation triples 

from English sentences. Our feature set is applicable regardless of 

the pre-defined patterns as in [5]. However, reusing their work 

might improve the accuracy in specific sentence patterns [5-6]. 

Our addition of new features is a consequence of broad analysis of 

approximately 140 lecture slide sets from different courses. This 

work has the potential for reuse for any knowledge source by 

eliminating features specific to the presentation framework.  

The NLP annotation includes parsing the sentence through 

Stanford statistical parser [10] and link grammar parser [12]. In 

order to assist better understanding of the features, we derive a 

decision tree (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Decision tree which describes features and actions 

1. Linguistic-based heuristics 

Syntactic parse tree 

Figure 2 illustrates a parse tree based on Stanford parser [10].  

 

 

 

 

 

Figure 2. Parse tree of an example sentence 

The following heuristics are based on previous work [5]. If the 

sentence contain the pattern ‘Root (S (NP_subtree) 

(VP_subtree)), it applies following rules to extract SVO triples. 

Rule 1 (subject): Perform breadth first search in NP_sub tree and 

select first descendant of NP_sub tree 

Rule 2 (verb): Search in VP_sub tree for deepest verb descendent 
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Rule 3 (object): Search in PP, NP or ADJP siblings of the 

VP_sub tree. In NP or PP_sub tree, select first noun or compund 

noun, or in ADJP sub tree, select first adjective 

We extended these heuristics to extract prepositional phrases. 

Linkage  

 

 

Figure 3. Linkage diagram of an example sentence 

Figure 3 illustrates the linkage diagram obtained from link 

grammar parser [12]. Following heuristics are based on [5]. 

Rule 1(subject): Selects the word left of S_link 

Rule 2(verb): Select first word right of S_link until {Pv, Pg, PP, 

I, TO, MVi} links found 

Rule 3(object): Select links from ‘verb’ until {O, Os, Op, MVpn} 

links found 

According to the decision tree, if input sentence follows one of 

the rules above, we simply extract SVO from them. However, 

there are many variations of sentence patterns found in lecture 

notes which arise us to exploit new features.  

2. Sentence-based features 

We extract the part-of-speech of all sentences filtered out from the 

criteria above. Our previous work implemented a greedy approach 

to identify nouns, compound nouns with their adjectives and 

verbs [1]. These extractions are checked against ‘order’ where a 

verb should be in-between two noun(s) to form an entity-relation 

triple. The candidate list should contain at least one none gerund 

verb. Computer Science domain contains verbs in its –ing form 

(called gerund -VBG), which can be used as nouns (e.g. Software 

testing). All the sentences exclude from above criteria might not 

produce triples and hence, important key terms are extracted from 

them (KEYTERM_EXTRACTION) [1]. 

The grammatical complexity is checked in remaining sentences 

using number of nested sentences (S) and dependent clauses 

(SBAR). If the sentence is identified as ‘complex’, but complete, 

Stanford typed dependency parser [10] splits them into simple 

sentences (SENTENCE_EXTRACTOR) and repeats all steps in 

the decision tree. The filtered out sentences consider fallback 

features (TRIPLE_EXTRACTION) such as number of nouns, 

number of verbs, numerals and symbols, negative verbs, subject-

object distance, subject-verb distance, verb-object distance and 

headword of the sentence. We determine whether any candidate 

nouns are emphasised using different font colors, underline. This 

expresses the importance of terms to be selected as triple 

candidates. However, this feature is specific to the presentation 

framework. Finally, the extracted triples are checked against 

'redundancy cycles' where the subject is repeated in an object. 

6. EVALUATION 
We selected lecture slide sets from recommended text books (e.g. 

Software Engineering by Sommerville) and Computer Science 

courses taught across different undergraduate levels in our 

University. We demonstrate our work using Microsoft 

PowerPoint, but our tool is applicable to other formats such as 

OpenOffice and Keynote with a structured template for header 

and text. Each selected lecture slide sets contains combination of 

contents such as text, programming, figures and notations. 

Experiment 1 – Pronoun resolution 
We observed that pronouns under study include you, we, us, itself, 

addressing students who refer to the course material. Due to lack 

of replacements in the context, we exclude these pronouns. 

Table 1. Statistics of pronouns discovered in our corpus 

Pronoun they their it(s) itself we them you(r) us 

Frequency 57 51 241 17 23 34 94 22 

Two human experts were recruited to nominate replacement 

candidate within a context of the slide. We did not provide 

replacements proposed by the system since it can influence the 

human judgment. We compare both of their pronoun resolution 

with machine’s prediction and results are averaged. In table 2, 

accuracy (F-measure) is calculated as the harmonic mean between 

precision and recall and the agreement between participants is 

calculated using positive specific agreement [7]. 

Table 2. Accuracy and agreement of pronoun resolution 

Lecture 1 2 3 4 5 6 7 8 

Frequency 17 16 0 67 54 39 44 50 

Accuracy 0.857 0.66 - 0.746 0.923 0.587 0.5 0.571 

Agreement 0.8 0.33 - 0.916 0.9 0.727 0.8 0.68 

 

Lecture 9 10 11 12 13 14 15 

Frequency 5 10 7 7 40 23 4 

Accuracy 0.5 0.909 0.19 0.41 0.528 0.857 0.66 

Agreement 0.6 1 0.142 0.571 0.384 1 0.5 

Table 2 verifies that the use of pronouns in courses vary depends 

on authors (e.g. L3=0). It is evident that courses which 

demonstrate grammatically rich, consistent writing styles provides 

probable replacement candidates, allowing computer algorithm to 

accurately (accuracy>0.8) resolve pronouns (e.g. L1- software 

architecture). As highlighted in the table 2, in some courses, 

accuracy is greater than human agreement. This validates our 

original hypothesis. We observed that the agreement is dropped 

when one rater suggests a replacement while other flagged it as 

‘null’ when they find it uncertain. Occasionally, some of machine 

replacements did not overlap with human, reducing the accuracy 

as shown in L11 and L12. Dependent clauses appeared to be the 

main cause for this. Besides, some sentences include dummy 

pronouns (e.g. it is raining) which do not contain a corresponding 

replacement. Our results cannot be compared with other works 

since our corpus under study is different (i.e. lecture notes). 

Experiment 2 – Triple extraction 
This study uses different slide sets from experiment 1, but same 

Computer Science courses. We extracted 1996 sentences from 15 

slide sets with approximately 40 slides per lecture note. The 

average number of sentence per slide is 3.3. From that, 265 

sentences excluded due to ‘insolvable’ pronouns (highlighted in 

Table 1). We extracted 1838 triples from rest of the 1731 

sentences. A sentence can consists of no, one or more triples. 

Similar to experiment 1, two human experts participated to 

identify subject-verb-object triples. There is no guarantee that 
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human annotations are identical with machine extracted triples 

since our algorithm mapped sentences into their base form using 

lemmatisation techniques.  Therefore, we calculated string 

similarity between each subject, verb and object and obtained an 

average score. An example of similarity calculation between 

subjects is shown below and more details can be found in [6]. 

 Computer (sub) – drawback of waterfall model (tokens=4) 

 Human (sub`) – waterfall model (tokens=2) 

Sim (sub, sub`) = overlap / (# tokens in x; x= max(sub, sub`)) 

            = 2/4 = 0.5 

Verb and object similarity is calculated in the same way. The final 

similarity between computer and human is ranged between 0-1, 

stressing 1 is identical and 0 means no overlap. We measured the 

precision by comparing computer extracted triples to human and 

recall when performing the other way around and obtained the 

mean using F-measure (accuracy). 

 

Table 3. Accuracy and agreement of triple extraction 

Lecture 1 2 3 4 5 6 7 8 

# Triples 107 81 24 173 207 108 145 221 

Accuracy 0.862 0.507 1 0.605 0.872 0.397 0.88 0.944 

Agreement 0.928 0.808 1 0.761 0.930 0.623 0.8804 0.975 

 

Lecture 9 10 11 12 13 14 15 

# Triples 82 134 74 180 130 110 62 

Accuracy 0.787 0.833 0.465 0.319 0.497 0.858 0.672 

Agreement 0.829 0.792 0.66 0.645 0.72 0.844 0.76 

According to Table 3, it is evident that some courses produces 

acceptable machine performance (accuracy>0.8) (e.g. L8-Software 

engineering). Computer networking slides (L3) from text book 

(source can be found in http://williamstallings.com/DCC6e.html) 

achieved an accuracy of 1, resulting in an ideal machine 

extraction. The accuracy is varying based on the richness of the 

content. Our algorithm is more effective (accuracy>0.8) for 

courses categorised as Software engineering, computer 

architecture, communications (see ACM classification in 

http://en.wikipedia.org/wiki/Outline_of_computer_science). We 

recognise these contents are well-fitted (e.g. rich grammar, 

complete sentences with apparent independent clauses) for CMM. 

Other courses with combinations of good text and notations (e.g. 

L15-distributed systems) are categorised as average-fitted 

(accuracy>0.5). The courses with low accuracy (<0.5) (e.g. 

programming languages, data structures) are classified as ill-fitted  

(More information on the classification can be found in [4]) 

Our results show that accuracy is greater than or equal to inter-

rater agreement in some courses which validates our original 

hypothesis into some extent. The agreement varies when one party 

(computer or human) extracts modifiers while the others extracts 

only the exact words. The machine performance is dropped in 

some occasions (e.g. L6, L11 and L12) mainly due to our failure 

to handle negations correctly. It is practically challenging for 

machine to outperform human in a corpus like lecture notes since 

there is no well-defined structure for writing course materials. 

An important aspect of studying concept maps mined from lecture 

notes is to facilitate students in understanding relationships 

between concepts allowing effective knowledge organisation 

which is not supported in the linear nature of lecture notes. The 

aim of this research is to adapt concept maps according to the 

learners' problem solving context. In future works, we evaluate 

our work by measuring students' performance in given tasks while 

learning through task-adapted concept maps. Besides, CMM 

techniques support wider concept mapping activities such as 

providing scaffolding aid and domain modeling of ITS. 

7. CONCLUSION 
This paper proposed a novel set of features to automatically 

extract entity-relation triple from lecture notes. While slides may 

have many potential issues, including incomplete, ambiguous 

sentences, we introduced a novel approach to resolve syntactically 

and semantically missing or ambiguous elements using contextual 

information of the slides. Our results showed that for well-fitted 

courses, machine performance is closer to human predictions 

(accuracy>0.8). However, our system indicates low accuracy for 

ill-fitted contents such as programming which are undesirable for 

CMM. The work presented in this paper is restricted to a corpus 

of Computer Science courses. We plan to conduct cross-

disciplinary study to observe the validity of our approach.  
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ABSTRACT 

This paper describes a study which is part of a project whose goal 

is to detect students’ prior knowledge levels with respect to a target 

domain based solely on characteristics of the natural language 

interaction between students and a state-of-the-art conversational 

Intelligent Tutoring System (ITS). We report results on dialogues 

collected from two versions of the intelligent tutoring system 

DeepTutor: a micro-adaptive-only version and a fully-adaptive 

(micro- and macro-adaptive) version. We extracted a variety of 

dialogue and session interaction features including time on task, 

student-generated content features (e.g., vocabulary size or domain 

specific concept use), and pedagogy-related features (e.g., level of 

scaffolding measured as number of hints). We present which of 

these features are best predictors of pre-test scores as measured by 

multiple-choice questions. 

Keywords 

Intelligent Tutoring Systems, Knowledge Assessment, Tutoring 

Dialogues 

1. INTRODUCTION 
One-on-one tutoring is one of the most effective forms of 

instruction [14, 23, 26] because it opens up the opportunity of 

maximizing learning gains by tailoring instruction to each 

individual learner. A necessary step towards instruction adaptation 

is assessing students’ knowledge such that appropriate instructional 

tasks (macro-adaptation) are selected and appropriate feedback is 

provided while students are working on a particular task (micro-

adaptation or within-task adaptation). Students’ knowledge state is 

a moving target and therefore, continuous monitoring and updating 

is necessary which makes the assessment task quite challenging. 

We focus in this paper on assessing students’ knowledge at the 

moment when they first start interacting with an Intelligent 

Tutoring System (ITS), which is a special case of the large problem 

of assessing students’ knowledge state, i.e. mental model. Students’ 

prior knowledge with respect to a target domain is typically 

assessed using multiple choice pre-tests although other forms of 

assessment may be used. 

Assessing students’ prior knowledge is very important task in ITSs 

because it serves two purposes: enabling macro-adaptivity in ITSs 

[14], and, when paired with a post-test, establishing a baseline from 

which the student progress is gauged by computing learning gains. 

While the role of pre-test is important for macro-adaptivity and for 

measuring learning gains, a major challenge is the fact that the pre-

test and the post-test usually take up time from actual learning. Pre-

test may even have a tiring effect on students. Last but not least, 

designing good pre- and post-tests requires domain expertise and 

could be an expensive effort. Being able to infer students’ 

knowledge directly from their performance would eliminate the 

pre-test thus saving time for more training, getting rid of the tiring 

effects or testing anxieties, and reducing developers’ effort. 

In this paper, we focus on identifying the most important dialogue 

features that best correlated with students’ prior knowledge as 

measured by pre-tests consisting of multiple-choice questions. This 

work is part of a large effort which has two major research goals: 

(1) to understand to what extent we can predict students’ pre-

training knowledge levels from dialogue features and (2) what is 

the minimum length of dialogue that is sufficient for predicting 

students’ knowledge states/levels with good accuracy. 

An interesting aspect of our work is the fact that we assess students’ 

knowledge levels from training sessions collected from two 

versions of the intelligent tutoring system DeepTutor: a micro-

adaptive-only version and a fully-adaptive version (the fully 

adaptive is both macro- and micro-adaptive). Micro-adaptivity is 

about within-task adaptation: the capacity of the system to select 

appropriate feedback at every single step while the student is 

working on an instructional task. The fully-adaptive condition adds 

macro-adaptivity on top of micro-adaptivity; macro-adaptivity is 

about selecting and sequencing an appropriate set of tasks to each 

individual student based on her knowledge level. We used a macro-

adaptivity method based on an Item-Response Theory approach 

[15]. As such, in the micro-adaptive-only version of DeepTutor, 

students worked on tasks following the one-size-fits-all approach, 

while in the fully-adaptive condition, 4 different task sequences 

were assigned to students based on their knowledge levels: low, 

medium-low, medium-high, and high. Analyzing the data from 

both conditions, our goal is to identify dialogue features and models 

based on these features that are good predictors of students’ prior 

knowledge as measured by pre-test scores. 

2. RELATED WORK 
The most directly relevant work to ours is the one by Lintean and 

colleagues [10] who studied the problem of inferring students’ prior 

knowledge in the context of an ITS that monitored and scaffolded 

students’ meta-cognitive skills. They compared student-articulated 

prior knowledge activation (PKA) paragraphs to expert-generated 

paragraphs or to a taxonomy of concepts related to the target 

domain (i.e. human circulatory system). Students’ prior knowledge 

levels were modeled as a set of 3 categories: low, medium, and high 

mental models. There are significant differences between the two 

approaches. First, we deal with dialogues as opposed to explicitly 

elicited prior knowledge paragraphs. Second, we do not have access 

to gold standard paragraphs or correct answers or a taxonomy of 

concepts that would allow us to make direct comparisons. Third, 

we model students’ prior knowledge using their score on a 

multiple-choice pre-test. 
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Predicting students’ learning and satisfaction is another area of 

research relevant to our work, and one of the earliest and most 

useful applications of Educational Data Mining [cf. 13]. Forbes-

Riley and Litman [6] used the PARADISE framework [24] to 

develop models for predicting student learning and satisfaction [7]. 

They used 3 types of features: system specific, tutoring specific, 

and user-affect-related. They used the whole training session as a 

unit of analysis, which is different from our analysis, in which the 

units are instructional tasks, i.e. Physics problems. Also, their work 

was in the context of a spoken dialogue system, while ours focuses 

on a text/chat-based conversational ITS. In addition, they focused 

on user satisfaction and learning, while we are interested in 

identifying students’ prior knowledge. 

Williams and D’Mello [25] worked on predicting the quality of 

student answers to human tutor questions, based on dictionary-

based dialogue features previously shown to be good detectors of 

cognitive processes [cf. 25]). To extract these features, they used 

LIWC (Linguistic Inquiry and Word Count) [10], a text analysis 

software program that calculates the degree to which people use 

various categories of words across a wide array of texts genres. 

They reported that pronouns and discrepant terms are good 

predictors of the conceptual quality of student responses. Some of 

our features are informed by their work. 

Yoo and Kim [27] worked on predicting the project performance of 

students and student groups based on stepwise regression analysis 

on dialogue features in Online Q&A discussions. To extract 

dialogue features they made use of LIWC too, but also of Speech 

Acts [11], a tool for profiling user interactions in on-line 

discussions. They found that the degree of information provided by 

students and how early they start to discuss before the deadline are 

2 important factors in explaining project grades. A similar research 

was conducted by Romero and colleagues [13], who also included 

(social) network related features. Their statistical analysis showed 

that the best predictors related to students’ dialogue are the number 

of contributions (messages), the number of words, and the average 

score of the messages. 

3. THE DATA 
We conducted our research on log-files from experiments with 

DeepTutor [14], the first ITS based on the framework of Learning 

Progressions (LPs) [3]. DeepTutor is a conversational ITS based on 

constructivist theories of learning, which encourages students to 

self-explain solutions to complex science problems and only offers 

help, in the form of progressively informative hints, when needed. 

This type of adaptivity, within a task, is also known as micro-

adaptivity [21]. Our approach to predict students’ knowledge levels 

relies on the fact that each DeepTutor-student dialogue has its own 

characteristics, strongly influenced by student’s profile. 

Our work is based on data collected from students interacting with 

DeepTutor after-school, outside the lab, in the course of a multi-

session online training experiment that took place in the fall of 

2013. This was possible because DeepTutor is a fully-online 

conversational ITS, accessible from any device with an Internet 

connection. During the experiment, students took a pre-test, trained 

with the system for about one hour each week for a period of 3 

consecutive weeks, and then took a post-test. Each training session 

consisted in solving a sequence of 8 physics problems with help 

from DeepTutor. The pre-test and post-test were taken under the 

strict supervision of a teacher. During the 3 training sessions, 

students were exposed to 3 different topics, one topic per week, in 

the following fixed order: force and motion (Newton’s first and 

second laws), free-fall, vectors and motion (2-D motion). In our 

analysis, we included only 150 the students who finished all 

sessions in one sitting. They were randomly assigned to one of two 

conditions mentioned earlier: micro-adaptive-only (µA; n=70) and 

fully-adaptive (ϕA; n=80). In this paper, we only analyze the 

dialogues corresponding to the first session of training as it was 

closest to the pre-test. The data consists of a total of 8,191 student 

dialogue turns (9,256 sentences) out of which 4,587 (5,102 

sentences) belong to µA condition, and 3,604 (4,154 sentences) to 

ϕA condition. Before feature extraction, the dialogues were 

preprocessed using Stanford NLP Parser [18]. The preprocessing 

pipeline consisted in 5 steps: tokenization, sentence splitting, part 

of speech (pos) tagging, lemmatization, and chunking. 

4. THE FEATURES 
The features we mined from dialogues was inspired by the work 

mentioned in section 2 of the paper, as well as by studies on 

automated essay scoring [16] in which the goal was to infer 

students’ knowledge levels or skills from their essays. Also, our set 

of features is grounded in the learning literature as explained next. 

The proposed dialogue features can be classified into 3 major 

categories: time-on-task, generation, and pedagogy. In general, 

time-on-task, which reflects how much time students spend on a 

learning task, correlates positively with learning [20]. We measured 

time-on-task in several different ways as: total time (in minutes) or 

normalized total time (using the longest dialogue as the 

normalization factor). Additional time-related features were 

extracted such as the average time per turn and winsorized versions 

of the basic time-related features. Generation features are about the 

amount of text produced by students. Greater word production has 

been shown to be related to deeper levels of comprehensions [2, 

22]. Pedagogy features refer to how much scaffolding a student 

receives (e.g. number of hints) during the training. Scaffolding is 

well documented to lead to more learning than lecturing or some 

other less interactive type of learning such as reading a textbook 

[22]. Feedback is an important part of scaffolding and therefore we 

extracted features regarding the type (positive, neutral, negative) 

and frequency of the feedback [17]. 

We extracted raw features as well as normalized versions of the 

features. In some cases, the normalized versions seem to be both 

more predictive and more interpretable. For instance, the number 

of hints could vary a lot from simpler/short problems, where the 

solution require less scaffolding in general even for low knowledge 

students, to more complex problems which would require more 

scaffolding as there are more steps in getting to the solution. That 

is, a normalized feature, such as the percentage of hints, would 

allow us to better compare the level of scaffolding in terms of hints 

across problems of varying complexity or solution length. In our 

case, we normalized the number of hints by the maximum number 

of hints a student may receive when answering vaguely or 

incorrectly at every single step during the dialogue. This number 

can be inferred from our dialogue management components. 

We mined a total of 43 features from 1,200 units of dialogue which 

led to 43×1,200= 51,600 measurements. The unit of dialogue 

analysis was a single problem in a training session. Because the 

force-and-motion training session consisted of 8 problems, and we 

collected 150 sessions from 150 students, we ended up with 

8×150=1,200 units. Due to space constraints, we do not provide the 

full list of features: 

Time-on-task features: total_time (the time length of the dialogue 

in minutes), avg_time_per_turn (the average length of a student 

turn in minutes); 
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Generation features: dialogue_size (length of the student dialogue 

(number of words, no punctuation included)), avg_dialogue_size_ 

per_turn, #sentences (number of sentences), #chunks (number of 

syntactic constituents), vocSize (vocabulary size), content_vocSize 

(vocabulary size of content words), non_content_vocSize, 

dialogue_length_div_voc (#words divided to vocabulary size), 

%physicsTerms (percentage of physics related words out of those 

used), %longWords (percentage of words longer than 6 characters), 

posDiversity (number of unique different pos-es divided by 

vocabulary size), %puctuation (percentage of punctuation out of all 

tokens), %articles, %pronouns, %self-references, totalIC (total 

Information Content of the dialogue: explained below), 

totalIC_per_word, positiveness (text positiveness computed based 

on SentiWordNet: explained below), negativeness. 

Scaffolding features: #turns (number of student turns), 

#normalized_turns, #c_turns (number of student turns classified as 

contributions), %pos_fb (percentage of turns for which student 

received positive feedback), %neg_fb, pos_div_pos+neg (positive 

feedback divided by positive plus negative feedback), 

vague_div_vague+pos (neutral feedback divided by positive plus 

neutral feedback), #shownHints (number of shown hints), 

#shownPrompts (number of shown prompts), #shownPumps 

(number of shown pumps). 

Next, we discuss on short the dialogue features on the Information 

Content and positive-negative polarity. 

Information Content (IC) was used by Resnik [12] to measure the 

informativeness of a concept c, on the assumption that the lower 

the frequency of c, the higher its informativeness. Resnik made use 

of Princeton WordNet [5] and its hierarchical taxonomy, where 

each node is a concept, also called synset. The more general 

concepts are at the top of the hierarchy, while the specific ones, at 

the bottom. Each synset can be realized in texts by any of the 

specific senses of certain words (i.e. literals), which are considered 

to be part of that synset. To count the frequency of a nominal synset 

s in a reference text, Resnik sums the frequencies of the literals of 

s and those of all the synsets for which s is a parent in the hierarchy. 

Thus, the estimated probability of occurrence can be easily 

computed and so is the IC value for that synset. 

We replicated Resnik’s work on WordNet 3.0 for all pos-es. 

Starting from synsets, we transferred the IC values to individual 

words. If a word has various senses associated with different 

synsets, we assign to it the IC value corresponding to the most non-

informative synset, so that high IC values are only associated with 

informative words. For a word that does not appear in WordNet, 

our algorithm selects a WordNet literal of the same grammatical 

category, so that the similarity between the two is sufficiently high 

according to an LSA model built on the whole Wikipedia [19]. We 

compute the IC of a text as the sum of the IC values for its words. 

To include features on the Positive-Negative Polarity of the 

dialogues, we made use of an updated version [1] of SentiWordNet 

[4] in which, each WordNet synset is assigned scores representing 

the polarity strength on 3 dimensions: Positive, Negative and 

Objective. Based on SentiWordNet, we extracted two lists: one of 

positive and the other one of negative words along with computed 

scores for positivity and respectively, negativity. For each word in 

WordNet, we summed up the values on all 3 polarity dimensions 

corresponding to the synsets that contain that word. If the Positive 

dimension value (p) is at least twice the Negative value (n) and also 

p is greater or equal to the Objective value (o) or greater than a 

certain threshold (> 2), than that word is added to the list of positive 

words with a positivity value computed as p / (p+ n + o). An 

identical procedure is applied for finding the negative words. 

Dialogue positiveness (negativeness) is simply computed as the 

sum of the values assigned to all positive (negative) words found in 

the text, divided by the total number of words in that text. 

5. EXPERIMENTS AND RESULTS 
Our larger goal is to understand how various dialogue units, 

corresponding to one problem in a session, individually and as 

groups, relate to students’ prior knowledge as measured by the pre-

test, which is deemed as an accurate estimate of students’ 

knowledge level. The group analysis would indicate after how 

much dialogue, corresponding to consecutive training problems, 

one can accurately infer students’ pre-test score. We present in this 

paper only our initial feature analysis, due to space reasons. 

5.1 Feature Analysis 

We started by extracting all the above-mentioned features for the 

sub-dialogues corresponding to individual problems. We worked 

on 1,193 sub-dialogues spanning over 7,927 turns (6.64 on 

average), 5,441 minutes (4.56 on average), with a total length of 

74,036 words (62.05 on average). The next step was to identify the 

features whose values best correlate with the pre-test scores. We 

considered both the entire pre-test (an extended version of Force 

Concept Inventory) [8], which can be seen as assessing students 

overall knowledge with respect to Newtonian Physics, but also the 

pre-testFM: the portion of the pre-test containing questions directly 

related to the force-and-motion training session. Table 1 shows 

correlations of features with the pre-test scores for µA condition. 

Table 1. Correlations values with pre-test (top) and pre-

testFM (bottom) for interesting features on each of the 8 

problems in the µA condition. 

 1 2 3 4 5 6 7 8 

f1 -0.36 -0.408 -0.141 -0.176 -0.225 -0.136 -0.254 -0.181 

-0.408 -0.333 -0.162 -0.182 -0.256 -0.225 -0.25 -0.219 

f2 0.344 0.262 0.242 0.202 0.213 0.23 0.321 0.236 

0.358 0.221 0.254 0.183 0.157 0.125 0.267 0.216 

f3 -0.423 -0.403 -0.303 -0.295 -0.35 -0.245 -0.283 -0.225 

-0.433 -0.293 -0.268 -0.296 -0.305 -0.258 -0.29 -0.228 

f4 -0.448 -0.444 -0.333 -0.308 -0.34 -0.36 -0.361 -0.276 

-0.473 -0.334 -0.305 -0.295 -0.278 -0.351 -0.331 -0.254 

f5 0.458 0.368 0.193 0.36 0.254 0.208 0.311 0.264 

0.458 0.297 0.122 0.386 0.206 0.168 0.251 0.23 

f6 -0.424 -0.425 -0.215 -0.291 -0.284 -0.326 -0.415 -0.326 

-0.464 -0.314 -0.248 -0.318 -0.223 -0.317 -0.393 -0.29 

f7 -0.404 -0.386 -0.295 -0.352 -0.28 -0.337 -0.194 -0.2 

-0.385 -0.284 -0.225 -0.31 -0.219 -0.304 -0.158 -0.208 

Table 1 shows that with some exceptions for problem 5, the time 

length (f1), the number of sentences (f3), the number of turns (f4), 

and the number of hints (f6) and prompts shown (f7) have negative 

correlations with the pre-test scores, while the average word-length 

of a turn (f2) and the percentage of turns receiving positive 

feedback (f5) have positive correlations. These outcomes confirm 

similar findings from previous studies [22]. Interestingly enough, 

the number of sentences students produce seem to be less and less 

correlated with the pre-test scores as the students advance through 

the training session. 

Correlations for the ϕA condition were derived using a more 

complex process given that students were grouped into 4 

knowledge levels based on their overall pre-test score and so, 4 

different sets of problems were used. As such, we could not conflate 

the data across knowledge groups and therefore we studied the 

correlations for each set of problems separately. In this case, 

because of macro-adaptation, but also because the number of 

dialogues for each knowledge level was much smaller (80 students 
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were grouped in 4 knowledge level groups: low (14), medium low 

(15), medium high (21), and high (30)), the best correlated features 

were somehow different. Given the space constraints, we will 

present these results in a future paper. 

6. CONCLUSIONS AND FUTURE WORK 
This paper presented our work towards predicting students’ prior 

knowledge based on the characteristics of their dialogue while 

engaging in problem solving with a conversational ITS. The 

proposed dialogue features can be classified into three major 

categories: time-on-task, generation, and pedagogy. The features 

were analyzed throughout an entire training session using 

instructional tasks as the unit of analysis. Our next step would be to 

analyze these features across increasing subsets of instructional 

tasks, e.g. the first Physics problem in a session vs. first two 

problems vs. first three problems, in order to investigate after how 

many instructional tasks the features best correlate with prior 

knowledge. It should be noted that the more tasks into a session we 

consider the more likely the student model may have significantly 

change, due to training, compared. Furthermore, we will investigate 

these features for students at different prior knowledge level, e.g. 

low knowledge vs. high knowledge students. Finally, we plan to 

investigate prediction models based on the analyzed features and 

also to add affect-related features. 
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ABSTRACT
The emergence of tablet devices, cloud computing, and abundant
online multimedia content presents new opportunities to transform
traditional paper-based textbooks into tablet-based electronic text-
books. Towards this goal, techniques have been proposed to au-
tomatically augment textbook sections with relevant web content
such as online educational videos. However, a highly relevant video
can be created at a granularity that may not mimic the organization
of the textbook. We focus on the video assignment problem: Given
a candidate set of relevant educational videos for augmenting an
electronic textbook, how do we assign the videos at appropriate lo-
cations in the textbook? We propose a rigorous formulation of the
video assignment problem and present an algorithm for assigning
each video to the optimum subset of logical units. Our experimen-
tal evaluation using a diverse collection of educational videos rel-
evant to multiple chapters in a textbook demonstrates the efficacy
of the proposed techniques for inferring the granularity at which a
relevant video should be assigned.

1. INTRODUCTION
Education literature has extensively highlighted the central role that
textbooks play in delivering content knowledge to the students,
improving student learning, and in helping teachers prepare les-
son plans [19]. The rapid proliferation of cloud-connected elec-
tronic devices has enabled the availability of textbooks in electronic
format. However, many of these e-textbooks are merely digital
versions of the printed books, and hence do not make use of the
rich functionalities provided by the electronic medium (and/or the
cloud-connectedness). Thus, we have the opportunity to enrich the
reading experience by augmenting e-textbooks with supplementary
materials appropriate to the learning style of the student, be it au-
ditory, visual or kinesthetic style [5, 6, 8, 15, 18]. In fact, studies
show better content retention [17] and improved concept under-
standing [14] when educational multimedia content is shown along
with textual material.

With the availability of abundant online video content [13], we can
use retrieval algorithms [2] to narrow the video collection to a rel-
evant subset for the textbook. Since the videos on the web are not
created specifically for the textbook of interest, there are significant
differences in the authoring style of a video creator versus that of
a textbook author. The textbook author creates a logical hierarchy

(chapter → sections → subsections, etc.) that is suitable for pre-
sentation of all the material that needs to be covered in the book.
In contrast, the author of a video focuses only on the content to be
presented in the video. This central difference makes it challenging
to match videos to textbook units. While some videos may provide
a high-level overview of the subject and hence may be appropri-
ate at the granularity of the entire book, other videos may illustrate
a specific concept or demonstrate an activity and hence may be
appropriate at the level of a subsection or even a paragraph. Sim-
ilarly, there may be videos that summarize a chapter or a section,
and hence may be best placed at an intermediate granularity. For
example, a video that contains material about different sections in a
chapter can either be placed at the chapter beginning (if it provides
an overview), or at the chapter end (if it helps to review the material
in the chapter).

The focus of this paper is to recognize this mismatch and automati-
cally determine the appropriate textbook locations for assigning the
videos. More precisely [11]: Given a textbook (or a chapter in a
textbook) and a video relevant to the textbook (or the chapter), how
do we identify the best subset of logical units (such as sections) that
covers the material present in the video?

We propose a rigorous formulation of the video assignment prob-
lem and present an algorithm for assigning each video to the op-
timum subset of logical units. As part of computing the objective
function, we provide a novel representation for videos in terms of
concept phrases present in the textbook, and their significance to
the video. Our empirical study over a diverse collection of edu-
cational videos corresponding to multiple chapters in a textbook
demonstrates the efficacy of the proposed techniques.

2. RELATED WORK
There has been considerable work on augmenting textbook sections
with relevant supplementary materials mined from the web [1, 2,
3]. In [3], the focus has been on finding textual content from the
web that is relevant for a section. Somewhat related is the work pro-
posed in [20] that augments textual documents such as news stories
with other textual documents such as blogs. In [1], a method was
proposed to identify the focus of the section, which was then used
to obtain relevant web videos. However, it is not always possible to
assign a video to a single section. A video may contain content that
extends across sections, as the author of the video may have chosen
a logical ordering different from that of the author of the textbook.
In this paper, we present a technique that, given the videos relevant
to the entire chapter, identifies the minimal combination of sections
that best encapsulates the material covered in the video. Towards
this goal, we infer a representation for a video as a byproduct of the
COMITY algorithm [2] which we adapt to obtain relevant videos.

3. CANDIDATE VIDEO SELECTION
We obtain the candidate set of videos relevant to a textbook chapter
using an adaptation of COMITY algorithm [2] that was proposed
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in the context of augmenting textbook sections with images. We
observed that when we applied this technique at the section level
(§5), there was a huge redundancy in the retrieved videos across
multiple sections1. We highlight two key observations: First, the
content of the same video can be shared across multiple sections,
calling for an approach such as the one proposed in this paper to
identify the combination of sections that best describes the video.
Second, by applying the algorithm at the chapter level, we identify
a richer set of videos, by exploiting dependencies across sections.

Our adaptation of COMITY is presented in Algorithm 1. A chapter
in a textbook is represented as a set of concept phrases (cphrs),
obtained as the set of phrases that map to Wikipedia article ti-
tles [7, 16], and further refined using the techniques proposed in [3].
COMITY forms

(
n
2

)
video search queries by combining two cphrs

each, in order to provide more context about the chapter. Note
that a cphr in isolation may not be representative of the text as the
same text can discuss multiple concepts. At the same time, a sin-
gle long query consisting of all concept phrases can lead to poor
retrieval [9]. Figure 1 shows an example of how the queries are
constructed from cphrs extracted from a textbook chapter on Biol-
ogy. A relevant video for the chapter is likely to occur among the
top results for many such queries. Thus, by aggregating the video
result lists over all combinations of queries, we obtain the most
relevant videos for the chapter.

Algorithm 1 COMITY

Input: A textbook chapter; Number of desired video results k.
Output: Top k video results from the web.
1: Obtain (up to) top n concept phrases from the chapter.
2: Form

(
n
2

)
queries consisting of two concept phrases each.

3: Obtain (up to) top t video search results for each query.
4: Aggregate over

(
n
2

)
video result lists, and return top k videos.

4. APPROACH & ALGORITHMS
4.1 Representation of Textbook
Each section in a textbook represented by a set of cphrs, along with
their context-dependent importance scores based on the importance
of cphrs to the section. The computation of the score is based on
the following observation: If a cphr is important for the context
of the text, then the videos retrieved using it as one of the query
terms will be related to each other. On the contrary, if the cphr
is not, then the videos retrieved using it as one of the query terms
will be very diverse and diffused. Figure 2 shows top cphrs asso-
ciated with three most frequent videos for two cphrs, ‘water’ and
‘gold foil experiment’ (we describe the computation of cphrs in a
video in §4.2). Consider the cphr ‘water’. The intersection of the
three sets of cphrs is only the cphr, ‘water’. On the other hand, for
the cphr ‘gold foil experiment’, the top three most frequent videos
have a much larger set of common cphrs: {electron, Ernest Ruther-
ford, gold foil experiment, foil, gold leaf, atom, structure, discov-
ery, neutron, proton} (note that the intersection is computed over
all the cphrs associated with the videos whereas only the top cphrs
are shown). Thus, a specific phrase is likely to lead to videos that
are more similar to each other than a generic phrase.

With this intuition, we measure the importance score, I(c) as the
average pair-wise inner product between top m videos retrieved
when c is used in conjunction with all other cphrs in the textbook.

I(c) =

∑
1≤i<j≤m < Vi, Vj >(

m
2

) ,

where Vi is the vector representation (in terms of cphrs and asso-
ciated weights) for ith top video for c. We used m = 3 in our
1Similar observation was made for image retrieval [2].
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[water, food]
[water, calculate]

...
[water, epithelium]

...
[epithelium, hydrogen]

Videos

“all you eat”

“cell membrane”

Figure 1: Query based video representation

experiments. To account for variances in the scores due to sparsity,
we also clustered the scores, and assigned the cluster means of the
closest cluster to each of the cphrs [10].

4.2 Representation of Candidate Videos
We devise a representation for the videos motivated by the follow-
ing observation: When a video is retrieved in a highly ranked posi-
tion for a query, the corresponding query represents some aspects
of the content of the video. As an example, consider Figure 1.
The video “all you eat” describes dietary habits, and is retrieved
as a top result for the queries “water, food” and “water, calculate”.
Thus, the cphrs, ‘water’, ‘food’, and ‘calculate’ can be associated
with this video. Similarly, for the video “cell membrane”, the rel-
evant cphrs are ‘epithelium’, ‘hydrogen’, ‘water’, and ‘calculate’.
However, the relative importance between the cphrs that lead to re-
trieving a video varies. In this example, the video on cell membrane
should be related more to epithelium than to water. Therefore, we
represent a video with not only the cphrs that led to the video, but
also their importance to the video. For each cphr c and video v , we
define the importance wv,c of c to v as the fraction of queries that
contain c for which video v was retrieved as a top result:

wv,c =
{q ∈ Qc|(v ∈ TopResults(q)}

|Qc|
,

where Qc is the set of queries that contain cphr c. The intuition
behind this definition is that the higher the fraction of queries that
led to a specific video, the more related this phrase is with the video.

In our implementation, we restricted the possible cphrs that can
lead to a video to be only those that are present in the textbook.
However, one can extend this representation in many ways, e.g.,
by using multiple books of the subject matter or by identifying the
cphrs in the transcript of the video, especially when the transcript
is user-uploaded.

4.3 Section Subset Selection For Videos
For a given candidate video v and a large candidate set S of sec-
tions from the textbook chapter, our goal is to select a minimal
subset of top sections, T ⊂ S that best covers the content in the
video. We model this section subset selection problem as identify-
ing a subset of sections T ∗ that maximizes the objective function:

T ∗ = argmax
T ∈2S

(cover(v , T )− λ|T |) , (1)

where cover(v , T ) is a function that measures how well the set of
sections T captures the content of the video v . Our objective func-
tion incorporates a penalty for using more sections than required
for explaining the video, by discounting for the number of sections
|T |. Thus, the objective function provides a trade-off between the
extent to which the content of the video is captured and the num-
ber of sections used. Different trade-offs can be obtained through
different choices of the non-negative parameter λ: A large value of
λ corresponds to a greater penalty for having more sections. We
estimated the value for the size penalty parameter λ using a cross
validation set. This process resulted in λ = 0.48.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 202



www.manaraa.com

water

[kind, water, report, shows, residue, list drink, alcohol, term, drinking water, watch, difference, note, category]

[water, scientist, opinion, word, percentage, tube, study, crystallization, variety, molecule, symbol, experiment]

[pressure, water, home, check, determine, Watt, work, atmospheric pressure, press]

gold foil
experiment

[electron, Ernest Rutherford, gold foil experiment, gold leaf, atom, implication, structure, neutron, proton]

[atom, experiment, structure, Ernest Rutherford, gold foil experiment, gold leaf, neutron, proton, particle]

[electron, Ernest Rutherford, gold foil experiment, gold leaf, atom, structure, neutron, proton]

Figure 2: Illustration of important (‘gold foil experiment’) vs non-important (‘water’) concept phrases

Computing cover(v , T ): Let Cbook denote the set of all cphrs
(concept phrases) in the book. Let C(v) ⊆ Cbook denote the set
of cphrs present in our representation of video v and let C(T ) ⊆
Cbook denote the set of cphrs present in the subset of sections T .
We define cover(v , T ) to be the weighted fraction of the cphrs in
the video that are also covered by the subset of sections:

cover(v , T ) =
∑

c∈(C(v)∩C(T )) wvcI(c)∑
c∈C(v) wvcI(c)

.

The cover score takes values between 0 and 1, and the higher the
value, the more video content is contained in the corresponding
subset of sections.

Brute-force optimization: Given the set of sections in a textbook
chapter and a candidate video as inputs, our algorithm first checks
whether a certain minimum fraction, θ of the video content can be
covered by including all sections in the chapter, and if so, returns
the optimal subset of sections (by exhaustively searching over all
possible subsets). Upon performing sensitivity analysis, we ob-
served that the algorithm is not sensitive to θ in the range [0.6, 0.9],
and hence we set θ = 0.8 in our experiments.

Greedy optimization: In [10], we show that our objective func-
tion (Eq. 1) exhibits submodularity and hence admits an efficient
greedy algorithm with provable quality guarantees, when the num-
ber of sections is large. Let k∗ denote the number of sections in-
cluded using this greedy algorithm, and Fk∗,greedy denote the cor-
responding value of the objective function. Let Fk∗,opt denote the
optimum value of the objective function subject to the cardinality
constraint that exactly k sections are present in the solution. We
formally state the theorem below (see [10] for the proof).

Fk∗,greedy ≥
(
1− 1

e

)
· Fk∗,opt −

λ · k∗

e
.

5. EVALUATION
We next perform empirical validation to demonstrate the efficacy of
our approach in identifying the subset of sections that best covers
the material presented in a video relevant to the chapter.

Dataset: We first construct a ground truth test set of videos for
each textbook chapter. However, given the huge number of videos
available online, it is infeasible to create such a set by inspecting
all the videos. Therefore, we take a different approach: We con-
sider the first five chapters of a 9th grade science book. We chose
this textbook for two reasons. First, these chapters span differ-
ent sub-branches of science: Physics (Chapter 1: “Matter in our
surroundings” and Chapter 2: “Is matter around us pure”), Chem-
istry (Chapter 3: “Atoms and molecules” and Chapter 4: “Structure
of the atom”), and Biology (Chapter 5: “The fundamental unit of
life”). There are about 5 sections (median value) in these chapters.

Second, these chapters differ in the extent to which there is con-
tent overlap and commonality across sections. These differences
help us to characterize when our approach is most beneficial. Al-
though our approach uses COMITY algorithm at the chapter level
to obtain the candidate set of relevant videos, for the purposes of
comparative evaluation, we chose to apply COMITY algorithm at
the section level (further explained in the next subsection). That is,
for each chapter, we run the COMITY algorithm, but by restricting
to combinations of top n cphrs that are present in a section. We
set n = 20, t = 50, and k = 20. This process resulted in 178
unique videos across all chapters. We assigned a human assessor
to read all these five book chapters. After reading the chapters, the
judge is asked to watch each video and manually identify all the
sections that together capture the content of the video2. The judge
can revisit the book to read multiple times. Note that the judge
does not have access to the underlying algorithm that identified the
video. The judge is also asked to remove videos that are irrelevant,
or cover material beyond the scope of the book. This judgment
process resulted in 112 videos (denoted by V) along with their sec-
tions assignments. In particular, for each video v , SG

v is the set of
ground truth sections assigned.

Baseline algorithm: We also used COMITY algorithm’s assign-
ments as the baseline for comparison. Specifically, for each video
v , we associate all the sections for which it was retrieved as a top
ranking video, and we denote this set as SC

v . In fact, only about
50% of the videos are assigned to a single section, 25% to two sec-
tions and the remaining to more than two sections. Thus, COMITY
can be used as a baseline since it also identified multiple sections
for the same video (in nearly half the cases).

Metrics: For each video v , let SP
v be the set of sections identified

by our proposed algorithm.

Accuracy: This metric measures how accurately an algorithm can
identify the entire set of sections that best captures the content in

the video: Accuracy =
∑

v∈V I[SA
v =SG

v ]

|V| , where A ∈ {C,P} and
I[X = Y] evaluates to 1 if the setsX andY have identical elements
and 0 otherwise. |V| is the number of videos in the ground truth.

Relaxed Accuracy: The above accuracy metric is stringent in that
it requires all the sections identified by the algorithm to match with
that of the ground truth. We define a relaxed version that takes into
account how different the inferred set is from the ground truth set:

Relaxed Accuracy =

∑
v∈V

(
1− |S

A
v 4S

G
v |

|Sall|

)
|V| , where A ∈ {C,P},

|Sall| denotes the number of sections in the chapter, and SA
v 4SG

v

denotes the symmetric set difference between the set of sections
2Our initial experiments confirmed that this task was not suited for
Amazon Mechanical Turk (due to the volume of work per judge).
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Figure 3: Performance based on COMITY assignment

identified by an algorithm and the set of ground truth sections.

5.1 Results
We evaluated the algorithms based on two different ways of slicing
the data: (A) grouping based on the number of sections assigned
by COMITY to evaluate overall performance, and (B) chapter–wise
results to understand performance based on chapter characteristics.

Performance based on COMITY assignments: Here, we compare
the two algorithms based on the number of sections to which a
video is assigned to by COMITY. To this effect, we partitioned
the videos into two groups: videos that are assigned to only one
section by COMITY, and those that are not. Roughly 50% of the
videos fall into either of these two groups.

Figure 3 shows the results. We can see that when COMITY assigns
a video to multiple sections, in many cases, it does so incorrectly, as
shown by the achieved accuracy of 0.47. On the other hand, our ap-
proach is able to assign videos to the appropriate subset of sections
with much higher accuracy (0.73). Under the relaxed accuracy met-
ric, COMITY’s performance is still lower than our approach (0.81
v.s. 0.90), indicating that even though the videos considered are
relevant (recall our assumption that relevant videos are provided
at the chapter level), COMITY either incorrectly assigns additional
sections or finds only a subset of the ground truth sections. We fur-
ther analyzed failure cases and found that our approach often fails
to assign the right set of sections due to insufficient representation
of the video, arising from the inherent restriction of issuing queries
based on the section content.

For the group of videos where COMITY assigned to only one sec-
tion, there is no significant difference in performance between the
two methods. We investigated the reasons for this similar perfor-
mance: For a video belonging to this group, the corresponding sec-
tion often tends to be very focused on a particular topic (we discuss
this next), and hence there is only a single logical section to which
the video could be assigned. Consequently, the two methods result
in similar performance for such videos.
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Figure 4: Performance across chapters
Performance across chapters: We also investigated if there is dif-
ference in performance across chapters. Figure 4 shows the results.
We further analyzed two chapters, one for which the two methods
had similar performance and the other with huge difference in per-

formance. For the former, we found that the corresponding sections
in the chapter “Is matter around as pure” have unique focus: for in-
stance, section 2 deals with different types of mixtures, while sec-
tion 3 presents procedures for separating mixtures. These sections
do not overlap much in terms of the concept phrases explained. As
a result, videos assigned to each section are unique, and thus, the
content of each video is not shared across sections in the chapter.
In contrast, in chapter 1 titled “Matter in our surroundings”, the
first section explains the physical nature of matter, while the sec-
ond one discusses the characteristics of particles of matter, leading
to a huge overlap in the content of these sections. This commonal-
ity across sections results in videos that have similar content. Since
our approach explicitly models these dependencies, it is able to as-
sign the videos more accurately. In contrast, COMITY is myopic
and hence is unable to tease out the relationships between sections
in the chapter.

6. SUMMARY AND FUTURE WORK
In this paper, we introduced the problem of identifying a set of
logical units in a textbook that best captures the content in a relevant
educational video. We provided a scalable solution that is effective
across various subjects and for educational videos in the wild.

Through this work, we have only touched the tip of the iceberg
for effective augmentation of textbooks with videos. There are
multiple other considerations such as presenter [12] or presenta-
tion styles that need to be taken into account. We also need to de-
sign rigorous evaluation methodology factoring in these considera-
tions and perform large scale user study in classroom settings [4].
In a blended learning setting, a teacher may choose to combine
course materials including multimedia presentations from multiple
courses. Our work is a step towards addressing challenges that arise
in such settings.
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ABSTRACT 
Generalizability of models of student learning is a highly 
desirable feature. As new students interact with educational 
systems, highly predictive models, tuned to increasing amounts of 
data from previous learners, presumably allow such systems to 
provide a more individualized, optimal learning path, give better 
feedback, and provide a more effective learning experience. 
However, any large student/user population will be heterogeneous 
and likely consist of discernable sub-populations for which 
specific models of learning may be appropriate. Student sub-
populations may differ with respect to cognitive factors, the level 
and quality of instruction, and many other environmental and non-
cognitive factors.  

The era of both “big data” and widely deployed educational 
software, including Carnegie Learning’s Cognitive Tutor (CLCT) 
intelligent tutoring system, presents opportunities to analyze 
increasingly large volumes of data collected during learners’ 
interactions with educational systems. These data cover a broad 
spectrum of learners, allowing researchers to investigate the 
structure of an increasingly representative student population. In 
this work, we investigate discovering student sub-populations 
from “big data.” Using a year’s worth of data from CLCT, we test 
the hypothesis that commonly used stratifications of student sub-
populations (e.g., school location, socio-demographic factors) 
offer ways to meaningfully partition learners. We discover that, 
rather than finding distinct subpopulations that should be treated 
differently, a particular sub-population of learners provides 
especially “high quality” data and that models learned from this 
sub-population outperform all other models even when predicting 
student learning for the sub-population on which other models 
were trained. In this way, “better data beat big data.”  

Keywords 

Big data, student modeling, learner sub-populations. 

1. INTRODUCTION 
Generalizability is an important property of any model of student 
learning developed by researchers and practitioners in educational 
data mining, learning analytics, and cognitive modeling. As such, 
investigators generally aim to iteratively refine models of student 
learning based on data as it is acquired; experimental iteration 

informs future versions of computer-based educational systems so 
that such systems can adapt to (and better serve) larger 
populations of learners. 

Discovering the appropriate grain size (e.g., learning models at the 
group-, school-, or class-level versus individualized, student-level 
models) to achieve such generalizability is a topic of recent 
interest in the literature. The student population (i.e., the user base 
of an educational system) is likely to be heterogeneous, and 
important aspects of its structure can potentially be identified. 
Student sub-populations may have particular characteristics and 
profiles that can be stratified with respect to demographics, 
learning capabilities, instructional quality, among other factors. 
Less clear are ways in which such stratifications can be useful for 
determining sub-populations over which better models of student 
learning might be learned. 

A body of prior work goes beyond building models of 
undifferentiated populations, modeling individual student 
differences [4, 8] and also modeling groups of students (e.g., 
classes and schools) [5, 7]. Other work builds models of student 
behavior and compares sub-populations defined by school setting 
(e.g., urban, suburban, or rural) [1]. Most efforts to model 
individual student differences or to stratify student sub-
populations consider relatively small datasets, with an exception 
of work by Pardos and Heffernan that uses the largest open access 
dataset on student learning currently available – the KDD Cup 
2010 dataset.1 

On an industrial scale, adapting at the student- and/or group-level 
provides an opportunity to deliver an optimized learning 
experience to a large user base, for example, the hundreds of 
thousands of users of Carnegie Learning’s Cognitive Tutor® 
(CLCT) intelligent tutoring system (ITS) [6]. Using CLCT data, 
we focus on the discovery of student sub-populations over which 
parameters used to track student mastery of knowledge 
components (KCs) or skills can be learned (i.e., “tuned”) to better 
deliver instructional content to different sub-populations. Little (if 
any) prior research considers what data to include in an a priori 
school profile that might determine appropriate sub-populations 
(i.e., groups of schools) for such tuning and similarly for a 
posteriori profiles that include student interaction data after CLCT 
has been used for a substantive period of time.  

In this work, we explore the possibility of utilizing information 
about a particular school (e.g., demographic and socioeconomic 
indicators) and about its students (e.g., prior performance) to 
effectively structure a large selection of schools into distinctive 
groups to determine if and how groups of schools might benefit 

                                                                    
1 KDD Cup 2010 http://pslcdatashop.web.cmu.edu/KDDCup/ 
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from a specific parameter tuning of the CLCT. We set out to 
discover generalizable sub-populations of schools, but rather we 
find that a subset of schools provides “high quality” data, models 
of which effectively generalize to all schools in our sample and 
outperform (in terms of prediction accuracy on held out data) 
models learned on other subsets and larger samples of data. In this 
sense: better data beat big data. 

2. CARNEGIE LEARNING COGNITIVE 
TUTOR 
CLCT is an ITS for mathematics that uses cognitive modeling to 
structure a target domain (e.g., algebra) into knowledge 
components (KCs). CLCT adapts instruction based on its 
assessment of which KCs a learner has or has not mastered at any 
given moment. CLCT provides feedback as to the correctness of 
their actions on problem-solving steps and also provides context-
sensitive hints upon request. Curricula, like algebra, are divided 
into units of instruction; units are comprised of topical sections, 
and sections consist of individual problems that are broken up into 
steps. Problem-solving steps are tagged with one or more KCs.  

As students solve problems, CLCT updates its assessment of 
students’ KC mastery using a probabilistic framework called 
Bayesian Knowledge Tracing (BKT) [3]. BKT is a Hidden 
Markov Model with two hidden states, representing whether a 
particular KC is un-mastered or mastered. Observations of student 
performance on opportunities to practice a KC are binary: a 
student either solves a problem step correctly or not (due to error 
or because of a hint request). While students might go through 
dozens of attempts to get a particular step correct, traditionally, 
only students’ first attempts are considered for updating KC 
mastery estimates. 

BKT uses probabilistic parameters to capture the nature of 
mastering a skill. These parameters are the probability of knowing 
the skill a priori, the probability of learning the skill at the next 
practice attempt (i.e., transitioning from the unknown state to the 
known state), the probability of guessing correctly while in the 
un-mastered state, and the probability of slipping (i.e., answering 
incorrectly despite being in the mastered state). In the commercial 
deployment of CLCT, BKT parameters are set by hand by 
cognitive scientists and also go through revisions based on data. 

3. DATA 
We consider a large set of CLCT student usage data, collected in 
2010. Although the tutor was used in several thousand schools 
across the United States, we do not collect detailed interactions 
for all schools, so our initial data covered 144,080 registered 
student accounts in 899 schools with close to 473 million records 
overall, including activity unrelated to problem-solving (e.g., 
login) as well as solving practice problems. Unfortunately, not all 
registered students used the tutor or attempted more than one unit 
of the curriculum. After trimming down the data we arrived at a 
dataset that included 342 schools, 72,082 active students, and 88.6 
million problem-solving actions. 

We queried the National Center for Education Statistics (NCES)2 
for school metadata that included: the number of students enrolled 
(as a proxy of school’s relative size), student-teacher ratio, 
number of students eligible to receive free or reduced price lunch 
(as a proxy for socioeconomic status), and the school’s location 
(metropolitan area): rural, suburban, or urban. Although some of 
                                                                    
2 National Center for Education Statistics http://nces.ed.gov 

the school metadata from NCES were from the year 2011, we 
assume that year-to-year fluctuations are negligible. We matched 
NCES data and our data and arrived at a set of 232 schools, 
narrowing our selection to 55,012 students with substantive usage 
(i.e., attempting more than one unit of instruction) and 67.3 
million problem-solving transactions.  

In addition to school metadata, we computed school-level student 
performance statistics from our logs. For each school, we have 
computed: the average number of distinct units students were 
attempting, the standard error of the mean number of units 
attempted, number of distinct units students attempted. We have 
also retained a binary vector of units attempted by schools’ 
students for grouping schools based on the similarity of attempted 
units. 

To further characterize schools, we ran a mixed effects logistic 
regression model on the data (see Eq. (1) and Eq. (2)). Here, θi 
represents the ability of student i (a student intercept), and βj is a 
problem complexity intercept. For each skill k relevant to problem 
j, δk is general skill easiness (i.e., a skill intercept), and γk 
represents skill k’s learning rate; tik captures student i’s number of 
prior attempts at skill k. 

mij =θi +β j + δk + tikγ k( )
k
∑  

Eq. (1) 

Pr(Yij =1|θ,β,δ,γ ) =
1

1+ e−mij  Eq. (2) 

In this regression model, we treat the student- and problem-
intercepts as random factors. From the regression coefficients, we 
calculated the following values to describe, per school: average 
student intercept (denotes relative prior preparation of students), 
average skill intercept (to capture each school’s general level of 
skill difficulties on top of student preparation), and average skill 
slope (to denote the relative speed of learning for students). Thus, 
overall we have collected, for each school, four a priori metadata 
descriptive factors and seven a posteriori student performance 
descriptive factors. 

4. APPROACH 
We seek to determine if, based on one or more descriptive factors 
described above, it is possible to effectively separate schools in 
our dataset into groups such that schools within groups are more 
similar to each other in terms of learning than to schools in other 
groups. We propose to use the accuracy of student modeling as a 
measure of similarity. That is, if a student model fit to a particular 
group of schools predicts performance of students in these schools 
better than models fit to the data of other groups of schools and 
this is true for all group models, then the school grouping in 
question effectively separates schools into distinguishable sub-
populations. 

 
Figure 1. An example criterion of a good split into sub-groups  
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An illustration of an effective separation of schools into groups is 
shown in Figure 1. In this graph using idealized data, all schools 
are split into three groups (or populations). Based on the data from 
each of the groups we built three models. Each of the three 
models are used to predict held out data from each of the three 
groups of schools giving us 3*3=9 predictions. Prediction of held-
out data for group of schools #1 is shown in the leftmost column 
where the accuracy of each of the three models’ predictions are 
shown as dots with serifs denoting standard errors of the mean. 
Here, we see that model built on group #1 performs better on held 
out data than models built on the data from groups #2 and #3. 
Since the range of the serif denoting standard error of the mean 
for model #1 does not overlap with serif ranges for models #2 and 
#3, the advantage of model #1 is deemed “significant.” Columns 2 
and 3 show the same phenomenon: a model built on the data from 
the respective subgroup outperforms models built on other 
subgroups.  

4.1 Dividing Schools 
We have considered all eleven descriptive factors to guide 
groupings of schools: 1) school locale, 2) percentage of students 
eligible for free and reduced priced lunch, 3) student-teacher ratio, 
4) enrollment, 5) average student units attempted, 6) standard 
error of student units attempted, 7) number of unique units 
students attempted, 8) school unit coverage group (based on 
similarity of binary vectors of distinct units attempted by students 
in particular school)3, 9) average student intercept from the 
logistic regression model (a proxy of average student preparation 
in the school), 10) average skill intercept for the school from the 
logistic regression, and 11) average logistic regression skill slope 
for the school. The factors are grouped into three batches: school 
metadata factors that are known a priori, student usage statistics 
factors that can be computed from surface logs of student activity, 
and student model factors that require detailed data to be derived. 

Among all factors, school locale and the school unit coverage 
group are categorical factors. We binned the remaining nine 
continuous factors into three value ranges – low, medium, and 
high – so that the number of students in all three is roughly the 
same. In addition to splitting schools using just one factor, we 
have computed school splits based on multiple factors. Namely, 
all factors from all groups4, only school metadata factors, only 
student usage factors, only student model factors, and all a 
posteriori student factors (student usage and model factors). The 
multi-factor groupings were produced with the help of R package 
cluster using Goward distances metric and Ward’s hierarchical 
clustering algorithm via function hclust with the number of 
clusters set to 3 for simplicity. 

4.2 Cross-Validating School Groups 
Since the number of the schools varied across single-factor and 
multi-factor splits, we sampled 30 schools from each group where 
20 schools were used for training a group model and 10 schools 
were set aside as held out test data. Rather than relying on single-
point estimations of model accuracy, we repeated sampling 20 
times and obtained the means and the standard errors of prediction 
accuracies. Thus, for each grouping we selected 20 
                                                                    
3 The grouping was done with the help of R package cluster 

using Euclidean distances and Ward’s hierarchical clustering 
algorithm via function hclust with k=3. 

4 School locale factor was excluded since using it defaulted the 
clustering to be identical to the metro area factor itself. 

(samples)*3(groups)*2(fit and test)=120 data sets; within each of 
the 20 samples fit and test data for a particular group of schools 
did not overlap, while across samples they could. 

For each of the 20 samples we fit three group models. Each of the 
three models is used thrice to predict three held-out data sets for 
each of the groups (9 predictions overall). Fitting models and 
producing prediction accuracies was done with the help of a BKT 
utility built for use with large datasets [8]. 
We stipulate that, in order for a grouping of schools to be 
considered producing distinct groups, for every group, the in-
group prediction should be significantly better than out-group 
prediction (cf. Figure 1). 

5. RESULTS 
First, we consider several school metadata factors, knowable a 
priori (prior to any student usage of CLCT). Figure 2 is a group 
split graph for school enrollment. As we can see, models built on 
groups of low and middle ranges of enrollment are not discernable 
from each other across all prediction tasks. The model built on 
high enrollment schools is visibly worse even when predicting 
held out data of high enrollment schools. 

 
Figure 2. Group separation by school enrollment  

 
Figure 3. Group separation by the ratio of students eligible for 

free and reduced price lunch  
Figure 3 is a group separation graph for the ratio of students 
eligible for free and reduced price lunch. Again, we see that this 
factor is not separating schools into reliably discernable groups. 
Models built on schools with a high proportion of students eligible 
for free and reduced price lunch are visibly worse across all 
populations, while models of low and medium groups are not 
discernable, again across all populations. 
Neither school metadata factors separately nor a grouping based 
on a clustering solution of these metadata factors produce a 
desirable split. Instead, we see model accuracies lined up in 
identical fashion: one particular model is a slightly better 
predictor universally; a second model is slightly worse, and the 
remaining model is worse than the second. 

However, for 3 out of 7 remaining individual factors and one 
multi-factor case (all factors but metro area), models built on one 
group of schools are consistently and significantly better than 
other models in at least 2 prediction tasks. See, for example, 
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Figure 4. Here, schools where students finish a high number of 
units on average (more than 9.2 units) produce a model that 
outperforms another model in two out of three comparisons and 
ties in third.  

 
Figure 4. Group separation by average student units 

attempted 
We find a similar pattern for average student intercept (a proxy of 
average student preparation), where the model built on a group of 
better-prepared students wins in two comparisons and ties in one. 
The third factor with one-model-trumps-all is the average skill 
slope (a proxy of speed of learning), where the winning model 
actually is built on the group of schools where the average skill 
slope is in the medium range. When cross-correlated, only the 
correlation of average units attempted and average student 
intercept is relatively high and significant (r=0.56, p<0.001). 

6. DISCUSSION 
We set out to discover subsets of schools for which models of 
practice could be built for sub-populations to optimize the CLCT 
learning experience for students in that sub-population. Instead, 
we find that particular sub-populations of schools can be used to 
learn parameters that perform best over the entire population. In 
essence, we have identified a set of schools for which particular 
aspects of their interaction with the CLCT provide high-quality 
(e.g., less “noisy”) data for such model building. 

While this substantial subset may still count as “big” data, we 
disregard a large number of students to arrive at this generalizable 
model, and the characteristics along which the group of schools 
from which these students are drawn are not obvious a priori. 
While much focus is placed on the revolutionary potential of big 
data applications in education, careful consideration and attention 
must be paid to the quality of such data for particular purposes 
and application contexts. 

We find that the sub-populations that yield a universally better 
model tend to contain students who are better prepared and 
students who attempt more CLCT units.. However, with respect to 
average skill learning rates, the best model contains many students 
in the “middle” group. At this point we hypothesize that students 
that should be considered for inclusion in learning a generalizable 
model are not just better students but those that yield a substantial 
data footprint in terms of curriculum coverage. Students who 
should likely be excluded are those who only cover a fragment of 
units, insufficient to provide for a “good” model. 

Several caveats could hinder how strongly the phenomenon of 
“better data” vs. “big data” manifests itself. One is that CLCT 
allows instructors to deploy “custom” curricula; different schools 
sometimes use different content units and, as a result, practice 
different skills. Consequently, when validating the model on the 
held out data where a particular unit was not practiced, we used 

default modeling parameters that could potentially lead to lower 
accuracy. Together with known issues with fitting BKT models 
(e.g., local maxima and non-identifiability [2]), this might have 
led to the inter-group differences being underestimated and the 
effect of “one group model takes all” – lessened. 

Second, we cannot judge, for example, whether our 2010 dataset 
constitutes a representative sample of all US schools with respect 
to the school metadata variables we considered. However, we 
estimated whether our selected subset of 232 schools maintains 
the same distribution of the school locale (i.e., whether schools 
are rural, urban, and suburban) as that over 729 school of our 
original 899 schools for which we have appropriate data to make 
the comparison. The split between rural, suburban, and urban 
schools in the larger sample of 729 schools are 29%, 33%, and 
38%, respectively. Our smaller sample of 232 schools breakdown 
as 29%, 25%, and 46%, respectively. While the percentage of the 
rural schools is the same, the percentage of urban schools 
significantly grew, and the ratio of suburban schools declined. 
While this may introduce bias, it is unclear whether such bias, 
given the relatively large sample overall, would have a substantive 
impact on the generalizability of our results. 
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ABSTRACT 
 
Poor graduation and retention rates are widespread in higher 
education, with significant economic and social ramifications for 
individuals and our society in general. Early intervention with 
students most at risk of attrition can be effective in improving 
college student retention. Our research aim was to create a first-
year at-risk model using educational data mining and to apply that 
model at New York Institute of Technology (NYIT). Building the 
model creates new challenges: (1)the model must be welcomed by 
counseling staff and the outputs need to be user friendly, and 
(2)the model needs to work automatically from data collection to 
processing and prediction in order to eliminate the bottleneck of a 
human operator which can slow down the process. The result of 
our effort was an end-to-end solution, including a cost-effective 
infrastructure, that could be used by student support personnel for 
early identification and early intervention. The Student At-Risk 
Model (STAR) provides retention risk ratings for each new 
freshman at NYIT before the start of the fall semester and 
identifies the key factors that place a student at risk of not 
returning the following year. The model was built using historical 
data for the 2011 and 2012 Fall Class and the STAR system went 
into production at NYIT in Fall 2013. 

Keywords 

Students At-Risk Model, Ensemble Model, End-to-End system 

1. INTRODUCTION 
On average less than 60% of full-time students who begin a four-
year program of college study graduate in six years [7]. Moreover, 
the highest rate of attrition occurs during the first year of study —
from the student’s first fall semester to what would be his or her 
second fall. Figure 1 shows a box plot of graduation and first year 
retention rates in the United States for 2006, 2007, 2008, and 
2009. (The dataset in the box plots derives from the Delta Cost 
Project [5], which in turn is based on Integrated Postsecondary 
Education Data System (IPEDS) data as made available by 
the National Center for Education Statistics [9].) The graduation 
rates are around 50% and the first year retention rates are 
clustered around 70%. Therefore, the logical starting point for 
improving graduation rates would be to find ways to improve 
first-year retention. 

 
Figure 1. Graduation and First Year Attrition Rates 

Research shows that counseling intervention with students at 
highest risk of attrition can be effective in improving retention 
[6][10][12]. Essential to this intervention, however, is that it be 
early in the student’s first semester at college [12]. The problem is 
twofold: (1)how to identify and intervene with these at-risk 
students before it is too late, and (2)how to identify the key factors 
putting these students at higher risk of attrition so as to inform the 
counseling intervention and improve its effectiveness. Given that 
evidence exists in the literature that it is possible to build a data-
mining based model that would address both dimensions of the 
problem [13], NYIT undertook such an effort, beginning in 
earnest in the fall of 2012.  

However, having the most powerful predictive model would not 
be useful if either (1)the counseling staff that must ultimately use 
the model were not willing to do so, either because they did not 
want the model in the first place or because they were 
uncomfortable with the model outputs, or (2)the model itself 
needs intensive manual intervention to produce the output, 
therefore slowing it down. To overcome these challenges we 
needed to employ an “end-to-end” approach in user-oriented 
model creation as well as in building a highly automated model on 
a technological level.   

In terms of building a user-oriented model, the model itself was 
built in an iterative cycle between the end users and the IT model 
creator. The problem definition came from the actual users—the 
retention-focused counseling staff. The data identification was 
done in collaboration with the solution provider and the users. The 
IT solution provider did the data gathering and preparation, model 
building, evaluation, and deployment. Once the knowledge 
deployment occurred, the users were looped backed in to provide 
feedback and critique and the process was restarted.  

On the technological level, we similarly used an end-to-end 
solution to build a highly automated model: We used the 
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Microsoft SQL server as our tool of choice and built the database, 
prediction models, and the front end used by the counselors all on 
the same platform. The model was built “in house” at NYIT.  

The resulting Student At-Risk Model (STAR) provides retention 
risk ratings for each new freshman at NYIT before the start of the 
fall semester and identifies the key factors putting a student at risk 
to not return the following fall. The model was built and used for 
intervention for the incoming Fall 2013 freshman class.  

2. NYIT STAR Model, Version 1.0 
NYIT’s Student Solutions Center (SSC), which is NYIT’s “one-
stop-shop” for enrollment services, engages with new students by 
providing counseling guidance to improve student success and 
retention. The SSC’s counseling intervention is called the 4-3-2-1 
Plan, which involves individual counselor-new student meetings 
occurring early in a new student’s first semester at NYIT.  
 
In fall 2011, the SSC attempted to build its own model to identify 
the most at-risk students, therefore allowing earlier, targeted 
intervention with these students. This STAR Model, version 1.0, 
was rather simplistic in its approach. We essentially gathered data 
on each student from multiple sources and compiled in one Excel 
sheet. We then used the retention literature and our own 
inclinations to identify variables and assign each variable with a 
score of “1” or “0”—with a 1 being a retention risk. The higher 
the score for each student, the more at risk he or she is.  
 
As one might expect, this approach was highly problematic. On a 
conceptual level, it was based on student behavior at other 
institutions (via the retention literature) and not behavior at NYIT. 
It was also a blunt instrument, in that all variables were weighted 
equally. On a practical level, compiling the Excel sheet involved 
significant labor, gathering information from multiple data 
sources manually.  

 

2.1 NYIT STAR Model, Version 2.0  
In order to overcome these “Model 1.0” limitations, we took two 
key steps: First, we built the dataset in our Data Warehouse where 
it can be created automatically as soon as a new student registers. 
Second, we decided to use data mining tools to train machine-
learning models to perform the classification task. These models 
use the variables to predict whether or not a student will return the 
following year which is then used to flag the risk of new students.  
   

We chose Microsoft SQL Server for the following reasons: All 
our data exists in the SQL Server; the SQL Server Analysis 
Services (SSAS) provides capability to use Neural Networks, 
Naïve Bayes, Logistic Regression, and Decision Tree models for 
prediction. And finally once a model is trained, SQL Server 
Reporting Services (SSRS) allows us to query the model on an 
on-demand basis to populate a report hosted on a SharePoint site 
that serves as the front end for the counselors to access the data. 
Figure 2 shows our Microsoft Business Intelligence stack that we 
used for building the STAR model. The SSAS Modeling part 
happens only once.  
 

 
Figure 2. End-to-End Technology Solution 

We selected a total of 25 variables after multiple iterations. These 
variables are from the same three sources as in STAR 1.0—
students’ admission application data, registration/placement test 
data at NYIT, or from a survey that the students complete when 
they take the Compass placement exam at NYIT. However, STAR 
2.0 also includes financial data, which research indicates plays a 
role in retention risk, albeit a complicated one (see, for example, 
[4][8]).  
 

3. Data Mining Models  
Campbell et al. [3] propose the use of analytics to academics, 
which is what we have attempted in building STAR 2.0. Bayer et 
al. [1] used student data enriched with data derived from students’ 
social behavior to predict student failure. This works well for 
longitudinal snapshot data. Romero et al. [11] present data mining 
methods for classifying students based on their Moodle usage 
data. They have defined a set of attributes specific to Moodle 
usage and compared a number of methods and their algorithmic 
implementations. Taylor and McAleese [15] presented a system 
that uses data intelligence and analytics for more efficient and 
effective student success interventions, though they used an 
analytics company to do the modeling effort. Since we developed 
our models in house, the data stays in house, so there are no 
security issues—a significant advantage. Further, having access to 
the models enables us to drill down into the prediction results to 
give a detailed picture for each student, as will be demonstrated 
more fully later. In addition to all the data mining methods, use of 
ensemble models is growing in popularity as it has the ability to 
generalize much more than any single method. Yu et al. [16] used 
Ensemble models in their classifier for 2010 KDD Cup and won 
the first prize in the challenge. 
 

  

The process of modeling involves training and testing of multiple 
models and then selecting the one that works the best for the 
application. We chose to build four different initial models: 
Neural Networks, Naïve Bayes, Decision Tree, and Logistic 
Regression. On top of this we built an Ensemble model that, in 
addition to taking the variables for each student, takes the output 
of the initial four models as input and predicts whether a student is 
at risk or not.  
 

3.1 Model Performance 
Key measurements that are used to gauge the power of a 
predictive classification model are recall and precision. Recall 
compares the number of students who were predicted as not 
returned with all those who actually did not return. That is, recall 
measures the following: Of all those students who actually did not 
return the following fall, what percentage were correctly predicted 
by the model as not returning? Precision compares the number of 
students correctly predicted as not returned with all those who are 
predicted by the model as not returned. That is, precision 
measures the following: Of all those students predicted by the 
model not to return, what percentage of those students actually did 
not return the following fall?  
 

3.1 Model Selection 
Each of the models has a number of parameters that can be 
changed. We analyzed each of the models and decided to vary the 
parameters to generate almost 400 variants of the initial models. 
For example, the reasoning for the number of models that can be  
built for Naïve Bayes is derived as follows. The Naïve Bayes 
model has four parameters that can be varied: Maximum Input 
Attributes, Maximum States, and Minimum Dependency 
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Probability. We chose not to alter the first parameter that enables 
feature selection for reasons explained below. We change states 
from 0 to 250 in steps of 10 for total of 26 different values. Also 
we vary the minimum dependency probability from 0.1 to 1 in 
steps of 0.1. In total we get 26*10=260 models of Naïve Bayes.  
 

In order to eliminate feature selection, we ran the 20 possible 
neural networks with all possible values for parameter Maximum 
Input Attributes going from 1 to 25 in steps of 1 for a total of 
25*20=500 models in all. The same recall and precision was 
obtained for classifiers with features 21 or more that was the best 
recall of all the 20 models generated. Further, since all our 
features are readily available, we decided not to deal with feature 
selection for our modeling process in order to speed up the 
development of a model that can be used. In the future, we will 
revisit the feature selection more rigorously to eliminate variables 
that may be irrelevant. 
 

Based on analysis for each of the models, we trained a total of 372 
models: 20 for NN, 26 for Logistic Regression, 66 for DT, and 
260 for Naïve Bayes. SQL Server Analysis Services (SSAS) has a 
scripting language called DMX that can be used to automatically 
generate and train models. A DMX script was generated using a 
SQL query to generate these models automatically. Once the 
models were generated, their recalls and precisions were 
computed automatically using another SQL query and stored in a 
table and the ones with highest recall were selected. If multiple 
models had the highest recall, we chose the one that provided the 
highest precision. The model that gave us the highest recall (and 
precision) for each of the four models was then chosen to generate 
the ensemble model. The ensemble model takes all of the student 
data as input as well as the output from the four initial models.  
 

A total of 1453 students who were admitted in fall of 2011 and 
2012 were used for the purpose of training and testing the models. 
Of these 983 students returned to the campus in following fall and 
470 did not return. We used 70% of the data for training and 30% 
for testing. SQL Analysis Services randomly samples the data to 
help ensure that the testing and training sets are similar.  

 

Following are the models and the selected parameter value chosen 
for each of the types based on the automatic selection of 372 total 
models built. 

1. Decision Tree: Complexity Penalty = .8, Score Method 
= Bayesian with K2 Prior, Split Method = Binary 

2. Logistic Regression: Maximum States = 10 
3. Naïve Bayes: Maximum States = 10, Minimum 

Dependency Probability = .1 
4. Neural Net: Hidden Node Ratio = 19 

 

The Logistic Regression had the best recall and was hence used as 
the model of choice for the ensemble model. We trained a 
Logistic Regression model with the same parameters as the 
chosen initial model to be our final model. This model not only 
had as input all the student variables, but also the outputs of the 
four initial models that were chosen automatically as explained 
above. 

3.2 Model Comparison 
The model performance using the 2011 and 2012 test data showed 
a stark contrast between the manual STAR model 1.0 and STAR 
model 2.0. The recall of the basic four models in version 2.0—
Logistic Regression, Neural Network, Naïve Bayes, and Decision 
Tree—varies from 45% to 62%. This means that the strongest 
model in version 2.0 in terms of recall was capable of correctly 
identifying 62% of the not returning population. This represents a 
major improvement over the 34% recall in version 1.0. In terms of 

precision, the models in version 2.0 vary from 54% to 70%. This 
means that in the strongest model in version 2.0 in terms of 
precision, 70% of those students identified as not returning 
actually did not return the following fall. This, too, is a major 
improvement over the 42% precision in version 1.0.  

 

To improve the recall of version 2.0 further, we built an ensemble 
model that can use the output of the four initial models along with 
the student data as input and predict whether a student will return 
or not. This provides the best recall results we have obtained so 
far, as the model’s recall is 74%. This means that the model is 
able to identify 74% of the students who did not return correctly 
whereas the other models were able to reach a 62% recall at best. 
Table 3 summarizes the performance of the models.  

Table 3. Performance Comparison of Models 

Model Name Recall Precision 
Manual (STAR 1.0) 34% 42% 
Logistic Regression 62% 57% 

Neural Network 56% 54% 
Naïve Bayes 51% 69% 

Decision Trees 45% 70% 
Ensemble 74% 55% 

 
In the end, version 2.0 compares very favorably with not only 
version 1.0 but also with a similar Data Warehouse-based 
retention modeling effort described at Western Kentucky 
University [2]. Bogard et al. report that they were able to achieve 
a recall of only about 30% based on pre-enrollment data, which is 
also the data space in which our model operates. As noted, we are 
able to do much better, in fact up to 74% recall for the ensemble 
model, due in part to our model selection and also due to the 
inclusion of financial data and a student survey which is missing 
in the efforts described by Bogard et al.  
 

We did another validation of our method and trained our models 
as explained above on Fall 2011 data alone (724 students). Then 
we used the ensemble model to predict the retention risk on Fall 
2012 new students (729 students). As can be seen in Table 4, our 
model was able to generalize well on 2011 students’ data and did 
a comparable job of predicting the retention risk for Fall 2012 
new students. 
 

Table 4. Ensemble Model Validation 

 
 

The answer to the bigger question of how well our model worked 
as a guide for actual intervention and as a way to change student 
enrollment behavior will not be known until Fall 2014.  

4. STAR MODEL PRODUCT  
As mentioned at the start of this paper, all the smart model 
building and predictions would not be of any use if they cannot be 
presented in a manner that is easily digestible and pleasing to use 
for the counseling staff. This is where our end-to-end iterative 
model building became essential to the project’s success. We built 
an actual “product” that the users could use that had the model 
and its output under the hood. 
 

As soon as the first version of model 2.0 was complete, we built a 
report using Microsoft’s SQL Server Reporting Services to show 
the prediction output to the counselors. After several cycles of 
counselor feedback and report revisions, the counselors had a 
final, user-friendly product that they were comfortable using and 
that they participated in creating. The final report tells the 
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counselor which students are at highest risk of not returning the 
following fall, which allows the counselor to target those students 
the model is most confident are at risk. Second, the output report 
lists the reasons for both student risk (e.g., Math placement, 
affordability) and lack of risk (e.g., high SAT scores, full time 
enrollment) in the final column. The most recent revision we 
made to the report was to create a STAR Counselor Log that 
provides all the output of the model and also allows the counselor 
to input data about when he or she met with the student, what was 
discussed, etc.  
 

This STAR Counselor Log is an evolving interface. We have 
plans to revise this interface further on the basis of feedback from 
SSC counselors as to how it could be improved. One suggestion is 
to find a way to categorize a counselor’s assessment of the student 
after the first meeting. For example, we could add a check box 
that indicates the counselor believes the student is at such high 
risk that he/she should be followed up with quickly—typically we 
wait for a second 4-3-2-1 Plan meeting until the following 
semester.  
 

5. CONCLUSIONS AND CHALLENGES 
For colleges considering building an at-risk student model, the 
key conclusions from the STAR modeling effort are as follows: 
First, a student at-risk model can be built “in house” if appropriate 
data is collected and stored in a Data Warehouse. Second, 
performing data mining is essential to building accurate models in 
order to weight variables correctly based on student behavior at 
your institution in particular. Ensemble models can be very useful 
as the data is rarely clean and each model can only capture so 
much information on its own. Third, any solution that is provided 
needs to have an end-to-end perspective in place so that the 
prediction modeling process is smooth one and the product is user 
friendly.  
 
As with most attempts to address a complex topic, many 
challenges remain: First, while the predictive ability of STAR 
Model 2.0 is quite high, and much higher than STAR Model 1.0, 
there is still significant room for improvement. For example, the 
strongest model had a recall of 75%, which means it failed to 
predict 25% of the students who did not return. Second, assessing 
whether the STAR-guided intervention is meaningful in a student 
retention context and, if so, how to demonstrate this. Third, the 
counseling intervention to at-risk students can affect the model 
over time. How do we get past the Heisenberg uncertainty 
principle to build the best model while intervening?  
 

Despite the challenges, the STAR model has been a large step 
forward at NYIT—it allows NYIT counselors to prioritize 
intervention with those first-year students most at risk early in the 
fall semester. This intervention is now based on real student data 
and is informed by key at-risk variables for each student, allowing 
the counselor to tailor intervention to the risk factors of each 
student.  
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ABSTRACT 
Student engagement is a reflection of active involvement in 
learning. In digital learning environment, research studies on 
engagement have been focused on detecting behavioral and 
psychological engagement indicators from the patterns of 
activities using feature engineering, but student engagement 
estimates were rarely compared across sessions or across domains 
of learning. This paper describes how this could be done by 
revisiting engagement instrument, diagnosing engagement 
indicators, estimating engagement parameters, and equating. This 
study illustrates how engagement reliability can be improved by 
refining engagement indictors. We demonstrated through 
DataShop data that student engagement levels can be compared 
across domains of learning.. 
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1. INTRODUCTION 
In digital learning environment, research study of engagement 
often focused on detecting behavioral engagement indicators 
[3,4,5] and psychological engagement indicators [2, 6, 14] using 
non-intrusive and unobtrusive means. Rather than using surveys 
to understand engagement, behaviors and affective indicators 
have been predicted from patterns of activities using feature 
engineering. The role of machine learning and data mining 
techniques is to predict behavior or affective status on big data 
using models developed from training data labeled by human 
observers. For example, disengagement is inferred by gaming [3, 
4] or response time [7]; persistence could be observed by number 
of revisits to challenging or incomplete tasks [6]; self-regulation 
could be inferred by the consistency of task completion [1]; and 
affect status learned from Bayesian Networks [2].  

Index of student engagement has been extensively studied to 
investigate its relationship with learning outcomes. For example, 
Pardos et.al [14] investigated how well affect states predicted by 
affect detectors while students worked on exercises throughout a 
school year in a web-based tutoring platform were correlated with 
learning outcomes at the end of year. In addition, Rowe, Shores, 
Mott and Lester [15] found a strong positive relationship between 
engagement and learning outcomes in narrative-centered learning 
environments.  

This paper is organized as follows. The first section presents the 
definition of student engagement with a focus on the type of 

engagement typically found in ITS. The second section presents 
validity and reliability of academic engagement instrument, 
diagnostic features of engagement indicators. The last section 
demonstrates through DataShop data that student engagement 
levels can be compared across domains of learning.  

2. STUDENT ENGAGEMENT CONSTRUT 
We argue that there are substantive benefits to study student 
engagement using methodology found in developing instruments 
in educational psychology. This approach from instrument point 
of view offers a number of benefits. Firstly, it sets out to clearly 
define what kind of student engagement is to be measured at the 
very beginning. Secondly, it facilitates the comparison of student 
engagement level across sessions and domains of learning. This 
means that a student engagement level at the beginning of 
semester could be compared to the engagement at the middle of 
semester; and also one’s engagement level on Mathematics can be 
compared to his/her engagement level on Science. Lastly, 
engagement estimate would be useful for secondary analysis, e.g. 
correlation between engagement and learning outcomes, or factors 
influencing engagement which leads to positive learning gains.  

2.1 Academic Engagement Construct 
It is necessary to develop a valid and reliable measure of student 
engagement in order to understand the relationship between 
student engagement and learning outcomes, and to provide 
tailored strategies to improve learning outcomes of students. Is it 
possible to define a blue-print of engagement levels in ITS 
environment like what we would see in conventional self-report 
survey instrument? The following section will address this issue. 

Table 1 provides a preliminary definition of student engagement 
by levels and corresponding indicators from observed behavioral 
activities. The definition of student engagement is based on 
Skinner and Belmont [17], Bomia et al [8], Schlechty [16], 
Chapman [9], Markwell [13], Willms [18] and Kember, Biggs and 
Leung  [11], and adapted to the indicators in digital learning 
environment, drawing on additional works by Baker and 
colleagues [4,5]. 

Table 1: Mapping of engagement levels to engagement 
indicators    

Level Behavior Indicators 

Level 5: 
Enthusiasm 
in learning 

Work on additional tasks. Respond to 
others’ questions in online forum. 
Multiple solutions on tasks. 
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Level 4: 
Persistency  

Revisiting and spent more time to more 
difficult tasks. Appropriate use of 
hints. Completion all tasks. Completion 
on time. 

Level 3: 
Participation  

Work on moderately challenging tasks. 
Completion of minimum number of 
tasks. 

Level 2: 
Passive 
participation 

Guessing on majority of tasks. 
Incompletion on all or majority of 
tasks. Frequent but inappropriate use of 
hints. 

Level 1: 
Withdrawal 

No response on assignments. 

 

2.2 Data Sets 
We used 'Assistments Math 2005-2006’ and 'Geometry Area 
(1996-97)' data sets from PSLC DataShop, available at 
http://pslcdatashop.org [12]. Both data sets were used for 
analysing student engagement. The first data set (or Algebra data 
set) contains action logs of 3136 students using ASSISTments 
Math tutor from middle schools in a city in central Massachusetts 
in 2005-2006. Students may use the software for two hours, twice 
a week. This data set contains 834 unique problems, 2,514 unique 
steps, total 685,615 transactions of attempting to answer questions 
and/or requesting helps, and total 6,395 student hours. The data 
set contains a variety of problem classifications (aka knowledge 
component).  

The second data set (or Geometry data set) is a much smaller data 
set. This data set was used to compare engagement levels found in 
the first data set. It has action log data of 59 students using 
Cognitive Tutor for a Geometry course on a single day, 
01/Feb/1996. This data set contains 40 unique problems, 139 
unique steps, total 6,778 transactions of attempting to answer 
questions and/or requesting helps, and total 21 student hours. The 
data set also contains a variety of Geometry knowledge 
component classifications in Geometry. Cognitive Tutor system 
determines which skills a student is having difficulty with, and 
presents each student with tasks of a skill that he or she has 
difficulty with. In particular, it estimates the probability of a 
student knowing each skill based on his/her responses recorded in 
the system, using Bayesian knowledge-tracing [10].  

3. RESULTS 
Our first research question is whether it is possible to create an 
academic engagement instrument guided by engagement construct 
blueprint outlined in Table 1 from action log data typically 
recorded in ITS. 

 

3.1 Validity and Reliability 
We adapted Baker’s behavioral classification [5, 6] and extended 
it into 11 categories in ITS environments: off-task, gaming, 
guessing, on-task, on-task using appropriate hints, completion 
minimum work, completion on time, revisit of moderate-difficult 
tasks, revisit of hard tasks, extra-task, and extra-time. The 
extended behavioral classification provides a number of indicators 
to capture moderate to high levels of academic engagement.  

The first 5 behavioral indicators are defined at problem level. Off-
task is defined as no observations on last-n temporal-order tasks, 
or a student is not working on (or skip) some of assigned tasks. 
Gaming is defined as using excessive hints in a short period of 
time. Guessing is defined as going through difficult tasks quickly 
without using hints, or going through easy tasks without even 
spending time reading tasks. On-task is defined as working on 
tasks by producing valid responses after spending a minimum 
amount of time. On-task using appropriate hints is defined as on-
task while seeking hints on tasks which are moderately hard 
relative to student’s ability.  

The remaining 6 behavioral indicators can be defined at any pre-
defined session or mini-session level which contains n temporal-
order problems. Completion minimum work is an indicator to 
show if a student is able to complete minimum assigned tasks in a 
session. Completion on time is an indicator to show if a student is 
able to complete minimum assigned tasks on time in a session. 
Revisit of moderate-difficult tasks is set to yes if a student took 
opportunities to revisit the moderately challenging tasks. Revisit 
of hard tasks is set to yes if a student made an additional efforts to 
attempt challenging tasks. Extra-task indicates if a student made 
additional efforts to practice on tasks beyond minimum 
requirement. Extra-time indicates if a student spent additional 
time on assignments.  

Behavioral indicators including gaming, guessing, on-task, on-
task with appropriate hints, revisit of moderate-difficult tasks, and 
revisit of hard tasks rely on a critical piece of information, i.e. the 
likelihood of success on a task. For example, guessing occurs 
when one finds a particular multiple-choice task hard, and it 
occurs to students of all ability levels. We can reasonably predict 
if a student is going to guess if we know the likelihood of success 
of this student on a particular task.  

Prior to estimate student engagement levels of behavioral 
indicators, observations were arranged in temporal order. For 
Algebra data set, behavioral indicators were created according to 
problem-level behavior classifications for n problems, which were 
named as B1 to Bn. In our experiment, n was chosen to be a 
number close to the average number of problems students 
attempted in a session (i.e. n=12). In addition, six indicators, i.e. 
completion minimum work, completion on time, revisit of 
moderate-difficult tasks, revisit of hard tasks, extra-task, and 
extra-time, were created at session level based on action logs from 
these n problems. ACER ConQuest software [19] was used to 
estimate KC difficulties and person ability, and the probability of 
success for each person on each KC was then calculated in SPSS.   

What engagement levels are typically found in elements of this 
instrument? Are the rank orders of instrument indicators working 
as expected?  Figure 1 shows variable map for Algebra data set. 
The engagement indicators represented by B1 to B12 and the 
names of six other indicators are displayed on the right hand side 
of map. The latent engagement levels of individuals represented 
by “X” are shown on the left hand side. The number of cases 
represented by each “X” is indicated at the bottom of the variable 
map. Students at the top of the distribution have higher 
engagement estimates, while engagement indicators at the top end 
require higher level of efforts.  

The variable map shows that it takes an increasing amount of time 
or efforts for students to complete more tasks, as indicated by 
increasing rank order of B1 to B12 in the map. It also shows that 
it takes more efforts to complete minimum tasks on time than just 
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to complete minimum tasks. Students who put additional efforts 
on revisiting challenging tasks, investing more time, or working 
harder on extra tasks are shown to be more engaged than those 
who just completing minimum tasks.    

---------------------------------------------------- 
   3            |                                  | 
                |                                  | 
                |                                  | 
               X|                                  | 
               X|                                  | 
               X|                                  | 
   2          XX|                                  | 
             XXX|                                  | 
           XXXXX|                                  | 
          XXXXXX|B12                               | 
          XXXXXX|B11                               | 
        XXXXXXXX|B10   ExtraTask                   | 
   1      XXXXXX|                                  | 
         XXXXXXX|      ExtraTime                   | 
        XXXXXXXX|                                  | 
       XXXXXXXXX|                                  | 
      XXXXXXXXXX|B9    RevisitHard                 | 
   0  XXXXXXXXXX|B8    CompletionOnTime            | 
        XXXXXXXX|B7                                | 
        XXXXXXXX|B6    RevisitModerate             | 
        XXXXXXXX|      CompletionMinTask           | 
       XXXXXXXXX|B5                                | 
       XXXXXXXXX|B4                                | 
  -1   XXXXXXXXX|B3                                | 
         XXXXXXX|                                  | 
         XXXXXXX|B2                                | 
            XXXX|                                  | 
            XXXX|                                  | 
           XXXXX|B1                                | 
  -2         XXX|                                  | 
              XX|                                  | 
              XX|                                  | 
              XX|                                  | 
               X|                                  | 
               X|                                  | 
  -3           X|                                  | 
==================================================== 
Each 'X' represents 79.8 cases 

Figure 1: Engagement Variable Map for Algebra Data Set  

 

The reliability coefficients of academic engagement instrument on 
Algebra data set and on Geometry data set measured by 
Cronbach’s alpha are 0.93 and 0.94 respectively, suggesting 
correlations among 12 temporal-ordered behavioral indicators and 
6 session-level behavioral indicators are high. In conventional 
survey instruments, reliability coefficients of 0.7 and higher are 
considered to be reliable. This indicates that reliability of 
engagement found in these two data sets is as good as those found 
in conventional survey instruments.  

It had been perceived that the rank order of problem-level 
indicators would be off-task, gaming, guessing, on-task, and on-
task using appropriate hints, ordered from the lowest level of 
engagement to the highest level. We checked this hypothesis by 
reviewing each indicator. Our detailed analysis on each indicator 
shows that all problem-level classifications appear to be working 
as expected, except for on-task using appropriate hints. The rank 
order of off-task (coded as 0), gaming (coded as 1), guessing 
(coded as 2), and on-task (coded as 3) can be observed by a clear 
pattern of increasing average engagement scores. Take the 
indicator B12 for example (see Table 2). The average engagement 
scores for off-task cohort, gaming cohort, guessing cohort, and 
on-task cohort are -0.77, 0.23, 0.57, and 1.32, respectively. 
However, on-task using appropriate hints did not turn out to have 
a straight-forward interpretation. In terms of average engagement 
score, the cohort of on-task using appropriate hints was similar to 
gaming cohort in observations 1 to 3; similar to guessing cohort in 
observations 5 to 7; and similar to on-task cohort in observations 
10 to 12. For this particular example (i.e. B12), this suggests that 
it might be better off to combine on-task using appropriate hints 
with on-task. 

 

Table 2: Engagement Indicator for B12 in Algebra Data Set  

Score Count % of 
Total 

Pt Bis Avg  SD 

0 9673 68.1 -0.68 -0.77 1.05 
1 344 2.4 0.06 0.23 0.53 
2 936 6.6 0.18 0.57 0.48 
3 2861 20.1 0.61 1.32 0.56 

4 392 2.8 0.13 0.88 0.64 
 

3.2 Comparison of Engagement  
We have demonstrated validity and reliability of academic 
engagement instrument through empirical evidence. However, 
whether the instrument is able to compare engagement levels of a 
cohort working in Algebra problems with a different cohort 
working in Geometry problems remains unanswered. In 
attempting to measure the difference in engagement levels 
between two different cohorts in different learning contexts of 
ITS, we will need to create exactly the same behavioral 
engagement indicators in these two data sets. 

Figure 2 shows the scatter plot of behavioral indicator estimates 
of Algebra data set and indicator estimates of Geometry data set, 
after adjusting difference in average indicator estimates and ratio 
of standard deviations. The chart shows that all behavioral 
indicators had similar rank order in both data sets after taking into 
account of standard error of estimates. It shows all behavioral 
indicators were falling into confidence interval lines, except for 
the indicator, Revisit of hard tasks (as circled in red) This 
indicator appears to be requiring significantly more efforts in 
Geometry data set than in Algebra data set, with indicator 
estimates of 0.4 logit in Algebra data set and 1.4 logit in 
Geometry data set. When the indicator of Revisit of hard tasks 
was excluded, the goodness of fit (R2) had been significantly 
improved from 0.78 to 0.99. This indicator was not used in 
equating due to its large difference in engagement estimates. 

 

Figure 2: Equating of Engagement Indicators between 
Algebra Data Set and Geometry Data Set  

After applying equating transformation to original engagement 
scores in Geometry data set, we obtained engagement scores of 
Geometry data set which can be directly compared to the scores 
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of Algebra data set. Table 3 shows mean and standard deviations 
of behavioral engagement scores found in Geometry data and 
Algebra data. The difference in mean engagement between 
Geometry and Algebra is 0.225 logit, but this difference is not 
statistically significant (p-value = 0.089), suggesting academic 
engagement of a cohort working on Geometry tutor was similar to 
the engagement of the other cohort working on Algebra tutor. The 
effect size of the difference in average engagement scores is 
moderate (Cohen’s d = 0.19). 

Table 3:  Comparison of Average Engagement between 
Algebra Data Set and Geometry Data Set   

Behavioral Engagement  
in Geometry  

Behavioral Engagement  
in Algebra 

N Mean SD N Mean SD 
59 0.123 0.992 14206 -0.101 1.340 

 

4. CONCLUSION 
This paper compared student engagement across domains of 
learning found in two sets of DataShop data. Our preliminary 
results did not find any significant difference in behavioral 
engagement between two different cohorts working on two ITS 
tutors.  
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ABSTRACT 

In our recent work, we have proposed that multiple behavior 

demonstrations can be automatically combined to generate an 

Example-Tracing Tutor model. In this paper, we compare four 

algorithms for this problem using a number of different metrics 

for two different datasets, one of which is publicly available. Our 

experiments show that these four algorithms are complementary 

to each other in terms of their performance along the different 

metrics. These findings make a case for incorporating multiple 

algorithms for building behavior graphs into authoring tools for 

Intelligent Tutoring Systems (ITS) that use behavior graphs. 

Keywords 

Tutor Models, Example-Tracing Tutors, Behavior Graphs, 

Authoring, Automation, Algorithms, Metrics 

1. INTRODUCTION 

Conventionally, Example-Tracing Tutors [1] are developed in 

three stages by trained domain experts: (1) User Interface 

development, (2) Behavior demonstration, (3) Generalization and 

annotation of the behavior graph. Recently, we proposed [2] that 

the effort involved in Stage 3 of this process can be significantly 

reduced by using algorithms that can automatically create a 

generalized behavior graph from multiple demonstrations. 

Automation of tutor model development has been explored in 

different contexts using completely automated methods as well as 

augmentation of authoring tools. Barnes and Stamper [3] 

proposed a method that uses existing student solutions to generate 

hint messages for the Logic Proof tutor. Recently, Eagle et al. [4] 

have used clustering of interaction network states as an approach 

to the same problem. In the context of knowledge-tracing and 

example-tracing tutors, McLaren et al. [5] proposed the use of 

activity logs from novice users to bootstrap tutor model 

development. They developed software tools that integrate access 

to novice activity logs with tutor authoring tools.  

In the next section, we briefly outline four algorithms for 

automatically generating behaviors graphs. In Section 3, we will 

present experiments using two datasets, to compare these 

algorithms along a number of metrics that measure desirable 

characteristics of tutor models. 

2. ALGORITHMS 

2.1 Behavior Graphs and Demonstrations 

Behavior graphs are directed graphs. The nodes in a graph 

correspond to valid solution states. Non-terminal nodes represent 

partial solutions. Edges in the graph represent events, some of 

which are correct and lead to the next state while others are 

incorrect and lead back to the same state. Edges are annotated 

with the conditions that an event must meet to traverse the edge. 

Behavior graphs may also include unordered groups. As the name 

suggests, states within an unordered group may be traversed in 

any order. Constituents of the behavior graph (i.e. nodes, edges, 

groups) may be associated with a number of annotations based on 

the educational application. 

On the other hand, behavior demonstrations are captured as a 

sequence of user interface (UI) events. Each event is represented 

as a 2-tuple ei = ( ui, di ) that includes an identifier ui of the UI 

element and data di associated with the event. Note that each 

behavior demonstration implicitly represents a behavior graph 

where the nodes in the graph correspond to the state of completion 

of each event in the demonstration. Such a behavior graph does 

not generalize to learner behaviors beyond those that are exactly 

identical to the demonstration. Automatic Behavior Graph 

Generation (ABGG) algorithms utilize multiple demonstrations of 

solutions of a problem to generate a behavior graph that can serve 

as a tutor model for the problem. 

2.2 Algorithm 1: Interaction Network 

The baseline algorithm used in our work combines the individual 

behavior graph corresponding to available demonstrations by 

merging identical nodes and edges in a sequential order. When a 

non-identical edge is found, a new branch is created in the graph. 

The resulting behavior graph is an interaction network which has 

been used in prior work [4] [6]. All paths in the behavior graph 

generated by this algorithm are assumed to be correct paths i.e. 

this algorithm is incapable distinguishing between correct and 

incorrect actions by the learner. While the behavior graph 

generated by this algorithm is more general than any individual 

demonstration used to create the graph, no unseen paths are 

generated. Furthermore, the number of nodes and edges created 

by this algorithm is fairly large, which makes the annotation of 

such graphs difficult for problems with many UI elements.  

2.3 Algorithm 2: Heuristic Alignment1 

Our next algorithm, shown in Table 1, utilizes two characteristics 

of behavior demonstrations. First, if two or more events in a 

demonstration have the same element identifier ui, the latter event 

likely corresponds to a correction of the data value input in the 

former events. Second, if we assume that there is one and only 

one correct solution sequence through the UI elements, we can 

transform the problem of generalizing behavior demonstrations to 

that of finding the optimal sequence of states through the UI 

elements. 

                                                                 

This research was funded by the US Office of Naval Research 

(ONR) contract N00014-12-C-0535. 

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 217



www.manaraa.com

Table 1. Algorithm 2 (Heuristic Alignment)  

Stage 1. Compute Retracted Demonstrations 

 For each demonstration D 

 For each retracted event e = (u, d) 

1. etarget = last event in D s.t. etargetu = eu 

2. Add ed to etarget.dwrong 

3. Remove e from D 

Stage 2. Find Sequence of States 

 For each unique identifier u 

1. pu = set of positional indices of events s.t. identifier = u 

2. modeu = mode(pu) 

 Sequence states (su) corresponding to each element 

identifier (u) in increasing order of their modeu 

Stage 3. Generate Edges 

 For each state su* 

1. Generate correct edge for each unique d for events s.t. 

identifier = u* 

2. Generate wrong edge for each unique entry in dwrong for 

events s.t. identifier = u* 

Stage 4. Identify Unordered Groups 

 For each pair of adjacent states (su1,su2) 

1. if |∩(pu1,pu2)| > √                , group su1, su2 

2.4 Algorithm 3: Center Star Alignment 

Note that Stage 2 of the previous algorithm is, in effect, aligning 

the multiple demonstrations. The Center Star Algorithm can be 

used to perform this alignment. Algorithm 3 uses the Center-Star 

Alignment between the retracted demonstrations. Similar to 

algorithm 2, a new state is generated for each position in the 

aligned demonstrations. However, since we obtain the alignment 

using the Center Star algorithm, the second assumption made by 

algorithm 2 is not necessary, which can lead to multiple states 

with the same element identifiers. This allows algorithm 3 to 

generate alternate paths. 

2.5 Algorithm 4: Combining Multiple Paths 

Algorithm 4 considers ABGG as the process of finding multiple 

paths in a directed graph. A first order transition matrix obtained 

from the demonstrations represents a directed graph. Specifically, 

the longest (non-repeating) path in this directed graph is the most 

likely path through the UI elements based on the demonstrations. 

While the problem of finding longest paths in general graphs is 

known to be NP-hard, in our approach, we employ an exponential 

time longest path finding algorithm within bounds of the number 

of UI elements and uses a transformed transition matrix to find 

multiple shortest paths. The transform changes the weight of each 

valid edge of the directed graph to row normalized inverse. We 

merge all the paths found to we construct a behavior graph similar 

to the process of constructing an interaction network. The 

algorithm uses Stage 1 and Stage 4 of algorithm 1. 

2.6 Discussion 

As mentioned earlier, incremental addition of demonstrations to 

generate interaction networks does not identify incorrect input 

data values. Using the assumption about retracted events, the 

other three algorithms are able to identify incorrect inputs. 

Johnson et al. [6] used a similar assumption in their work on 

reducing the visual complexity of interaction networks. We notice 

that the algorithms 2 and 3 are complementary in terms of their 

ability to find alternate paths and unordered groups. Algorithm 4 

on the other hand offers both of these abilities. In the next section, 

we will discuss the performance of all of these algorithms in terms 

of quantitative metrics  

None of the algorithms discussed in this paper are capable of 

discovering data values beyond those seen in the training 

demonstrations. This type of generative ability is particularly 

useful for learning tasks, such as language learning, where a large 

number of different inputs may be expected from the learners. In 

our ongoing work, we want explore the use of grammar induction 

techniques to learn regular expressions from correct and incorrect 

data values for each state. 

3. EVALUATION 

3.1 Datasets 

We use two collections of behavior demonstrations/traces to 

evaluate the performance of the four algorithms described earlier. 

The first dataset (referred to as the BBN dataset) comprises of five 

physics problems. Nine subjects spent upto one hour each to 

create demonstrations of the five problems. All nine subjects were 

able to complete demonstrations of three problems. Six subjects 

completed the fourth problem and only four completed the fifth 

problem. Additionally, we used three Assistments datasets 

accessed via DataShop [7] to form our second collection of 

behavior demonstrations. This publicly shared large dataset 

comprises a total of 683197 traces and 1905672 events for 3140 

problems. We filtered these datasets to use only problems that had 

six or more traces and had at least two UI elements. 

3.2 Metrics 

Metrics used in our evaluation are discussed in detail in our prior 

publication [2]. These metrics are categorized by the desirable 

characteristics of automatically generated behavior graphs they 

measure.  

 Readability/Maintainability: The conciseness of a graph can 

be measured using the number of nodes and edges in the graph. 

Compression ratio measures the rate at which an algorithm is 

able to reduce demonstration events into behavior states (i.e. 

nodes) by finding similarities between events. 

 Completeness: We use the rate of unseen events in held out 

demonstrations as a metric to measure the completeness of our 

automatically generated behavior graphs. 

 Accuracy: Edge accuracy measures the percentage of Correct & 

Incorrect edges that were accurately classified by the algorithm. 

Error rate is a frequency weighted combination of edge accuracy 

that measures the fraction of learner events that will be 

inaccurately classified by the automatically generated behavior 

graph.  

 Robustness: Branching factor is the average number of data 

values available at each UI element. A large branching factor 

indicates the capability to process a large variety of learner 

inputs at each state. Also, the number of unordered groups and 

the size of unordered groups are indicative of flexibility a graph 

affords to learners to explore the solution paths of a problem. 

3.3 Experimental Design 

We use two different experimental designs for the two datasets. 

Since the BBN dataset is comprised of a small number of 

demonstrations per problem, we use all available demonstrations 

for training and report only the metrics that can be derived from 

the graphs and the training demonstrations. Since a large number 

of traces are available for the problems in the Assistments dataset, 
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we use a three-fold cross validation design to split the available 

traces into three different training and held out sets. Reported 

metrics are averaged over each split. 

3.4 Results 

3.4.1 BBN Dataset 

Table 2 shows performance results for the four algorithms on the 

two datasets. As expected, the interaction networks comprise of a 

large number of nodes and edges that lead them to have 

significantly (p<0.01) lower compression ratio. Algorithms 2 

(Heuristic Alignment) and 4 (Multiple Paths) are able to achieve 

the highest compression consistently for all five problems. 

On the accuracy metrics, Algorithm 4 outperforms the other 

algorithms on average. However, it is significantly better 

(p<0.001) than Algorithm 1 and 3 on the incorrect edge accuracy 

metric. Furthermore, the high accuracy for incorrect edges for two 

of the three algorithms that use the retracted demonstrations partly 

validates the underlying assumption made by these algorithms. 

In contrast to the accuracy metrics, alignment based 

algorithms (2 and 3) outperform the multiple paths algorithm (4) 

on achieving a higher branching factor. The frequency based 

pruning underlying the selection of multiple paths in algorithm 4 

leads to the elimination of certain novel edges. Based on the 

performance of these algorithms on the edge accuracy metrics we 

see many of these novel edges are likely to be inaccurate due to 

limited evidence for their classification in the training 

demonstrations. While the algorithms complement each other, 

Algorithm 4 seems to be a potential candidate for optimal tradeoff 

between the different metrics. 

In terms of metrics based on unordered groups in a graph, we 

find that algorithm 4 leads to a larger fraction of nodes (31%) to 

be included in unordered groups. Finally, we see that pruning 

significantly degrades the performance of Algorithm 4 on 

percentage of unseen events i.e. completeness. Since interaction 

networks losslessly embed all events observed in the training 

demonstration, their performance on this metric is guaranteed to 

be flawless. In the next section, we will compare this result to 

their performance on held out demonstration sequences.  

3.4.2 Assistments Dataset 

The performance of the algorithms on the Assistments (Math) 

dataset is also shown in Table 2. Largely, the results on this 

dataset agree with the results on the BBN dataset. Algorithm 2 

(Heuristic Alignment) outperforms all other algorithms on three of 

the readability metrics. Unlike the BBN dataset, the average 

compression ratio for Algorithm 2 is significantly better than the 

other algorithms including Algorithm 4 (Multiple Paths). 

Algorithm 4 significantly outperforms the other algorithms 

on three of the accuracy metrics. Because of their lossless nature, 

Interaction Networks (Algorithm 1) performs the best on 

Completeness metrics (% unseen events) as was the case with the 

BBN dataset. However, we find evidence of over-fitting of the 

algorithms to training data on this metric as indicated by the 

approximately 9% higher rate of unseen events for held out 

demonstrations for all the algorithms.  

While the results on the branching factor metrics of the 

Assistments dataset are consistent with the BBN dataset, 

Algorithm 2 outperforms Algorithm 4 on the metrics based on the 

unordered groups. Because Algorithm 2 identifies unordered 

groups that are larger in size than Algorithm 4, the groups found 

by the Heuristic Alignment algorithm have a higher coverage of 

the generated graphs, especially in the Assistments datasets where 

the number of UI elements is relatively small. 

Figure 1 further explores the tradeoff between the key 

metrics for larger number of traces (i.e., more training data) in 

Figure 1a and increasingly complex problems (i.e., more UI 

elements) in Figure 1b. Algorithm 1 does not scale well on 

readability metrics (Compression Ratio). The algorithms 

demonstrate stability in accuracy and completeness performance 

with increasing problem or data complexity. Algorithms 3 and 4 

can produce a consistently low error rate despite increasing 

complexity. The rate of unseen events reduces by over 60% 

(relative) for a 10-fold increase in training data. This is also 

Table 2. Averaged metrics for the graphs generated for the problems in the BBN & Assistments (Math) dataset 
*indicates significant (p < 0.05) difference with other algorithms for the same dataset 

 

Metrics ▼ 

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

BBN Math BBN Math BBN Math BBN Math 

#Nodes 144.8 79.1* 32.4 5.4 37.0 6.0 32.4 6.6 

#Correct Edges 160.4 147.9* 70.0 12.8 97.0 18.3 71.4 17.5 

#Incorrect Edges   17.2 24.2* 19.8 33.4* 5.0 19.5* 

Compression Ratio 1.8 6.7* 7.3 77.3* 6.3 66.8* 7.3 60.2* 

% Accurate Correct Edges 76.7 39.1* 77.0 42.2 66.2 42.6 82.8 44.1* 

% Accurate Incorrect Edges   99.5 99.9* 99.5 97.5* 100.0 99.5* 

Training Error Rate 15.5 51.3* 7.6 25.2* 13.0 17.7 7.6 17.4 

Heldout Error Rate  42.7*  23.4*  16.0  15.6 

% Training Unseen Events 0.0 0.0 0.0 10.5* 4.4 2.2* 8.1 6.7* 

% Heldout Unseen Events  10.1*  19.0*  11.5*  13.8* 

Branching Factor 1.2 2.2* 3.1 11.1* 3.4 12.6* 2.7 8.5* 

#Groups   1.6 0.5*   2.6 0.02* 

Avg. Group Size   3.3 1.8*   2.8 0.04 

% Group Coverage   17.7 30.6*   31.3 0.5 
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evidenced in the BBN dataset if we compare problems 1, 2 and 6 

which have more data than problems 10 and 15. Finally, as is 

often the case with data-driven approaches, model robustness is 

dramatically improved with the use of more data. 

4. CONCLUSIONS 

In this paper, we have presented four algorithms for automatically 

building example-tracing tutor models using multiple solution 

demonstrations that may be crowd-sourced or collected from a 

sample of users in an online ITS. The transfer of this effort from 

the ITS developers to a low cost (potentially no cost) workforce 

affords scale to the ITS development process. 

Foremost, we must note that due to the inaccuracies in the 

automatically generated behavior graphs, they need manual 

inspection and further annotation before they can be 

operationalized. In our work on creating a general purpose 

learning platform focused on STEM domains, we are integrating 

these algorithms into our suite of authoring tools to allow ITS 

developers to use these algorithms in their workflow. Second, we 

notice that the algorithms have complementary performance on 

the different desirable characteristics of the automatically 

generated behavior graphs. Based on Table 2, we would choose 

Algorithm 2 for its Readability metrics, Algorithm 4 for 

Accuracy, Algorithm 1 for Completeness and Algorithm 3 for the 

key Robustness metric. All of these algorithms should be made 

available to the ITS developers through the authoring tools. We 

think that Algorithm 2 may be used as the default choice. 

 Looking ahead, the pursuit of automation of example tracing 

tutor modeling has a number of challenges of interest. The 

complementary nature of these algorithms suggests the potential 

for combining them to obtain better behavior graphs. Extension of 

the techniques presented in this paper to automatically update 

existing behavior graphs, which may have been manually 

authored, using traces from actual learners can help in 

maintenance and online improvement of the tutor models. 
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ABSTRACT
The assessment of a person’s traits is a fundamental prob-
lem in human sciences. Compared to traditional paper &
pencil tests, computer based assessments not only facilitate
data acquisition and processing but also allow for adaptive
and personalized tests so that competency levels are assessed
with fewer items. We focus on speeded tests and propose
a mathematically sound framework in which latent compe-
tency skills are represented by belief distributions on com-
pact intervals. Our algorithm updates belief based on di-
rectional feedback; adaptation rate and difficulty of the task
at hand can be controlled by user-defined parameters. We
provide a rigorous theoretical analysis of our approach and
report on empirical results on simulated and real world data,
including concentration tests and the assessment of reading
skills.

1. INTRODUCTION
The assessment of a person’s traits such as ability is a fun-
damental problem in the human sciences. Perhaps the most
prominent examples are the triennial PISA studies launched
by the OECD in 1997. Traditionally, assessments have been
conducted with printed forms that had to be filled in by the
testees, so called paper & pencil tests. Nowadays, computers
and handhelds become more and more popular as platforms
for conducting studies in social sciences; electronic devices
not only facilitate data acquisition and processing, but also
allow for real-time adaptivity and personalization.

Psychological testing differentiates between two types of tests,
namely power and speeded tests [2]. The former uses items
with a wide range of difficulty levels, so that testees will al-
most surely be unable to solve all items, even when given
unlimited time. By contrast, speeded tests deploy homoge-
neous items that are easy to solve, and testees are discrimi-
nated by the time needed to solve the items. In this paper,
we focus on pure speed tests akin to [4] as well as tests where
response times are assessed together with item correctness,
e.g. to study the efficiency of cognitive processes [5].

We devise an algorithm using a data-driven approach for
steering the time limits of individual items actively. Items of
constant inherent difficulty are administered in a sequence
t = 1, 2, . . ., and a limit on response time τ̂t is adapted
based on testee performance. After the administration of
each item, the algorithm chooses the limit for the upcoming
item such that as much information as possible on testee’s
expected response time is collected. The uncertainty of an
estimate τ̂ is represented by a belief distribution over a finite
interval of admissible response times. When administering
item t, an estimate τ̂t is drawn, such that τ̂t divides the
belief mass in two parts whose areas have a predefined ratio
roughly corresponding to the odds that the testee responds
within the time limit. After the testee attempts solving the
item under the time limit τ̂t, the algorithm receives feedback
φt encoding three cases: (i) if τ̂t−τt < ε, the time limit τ̂t was
insufficient for the testee to answer in time and φt = 1, (ii) in
case τ̂t− τt > ε , the setting was more than sufficiently long,
and φt = −1, and (iii) τt ∈ [τ̂t − ε, τ̂t + ε] which corresponds
to a just right setting and φt = 0.

Our learning algorithm is around the following strategy:
Once we observe that τ̂ is too small to allow for solving
the item, it is highly probable that all time limits τ̃ > τ̂
would also be too small, and belief in their correctness can
be updated. A similar argument holds vice versa for time
limits more than sufficiently long. The feedback is therefore
used as a directional signal that triggers the update process.
In this paper we develop the mathematical framework for
computer-based adaptive speed tests and devise an efficient
algorithm. We provide a theoretical analysis and report on
empirical results using artificial and real-world data.

2. RELATED WORK
Missura & Gärtner [3] consider the problem of dynamic dif-
ficulty adjustment as a game between a master and a player
that is played in rounds t = 1, 2, · · · , where the master pre-
dicts the difficulty setting for the next round based on the
player feedback. The authors introduce an algorithm that
represents the set of admissible difficulty settings as a finite
discrete set K endowed with a partial ordering. For each of
the difficulty levels k ∈ K, the algorithm maintains a posi-
tive number representing belief in k being just right. At each
round, the prediction allows to update the maximal amount
of belief after feedback has been received. In contrast to
[3], we use a continuous framework and do not rely on a
predefined discrete set admissible settings, but instead find
appropriate settings adaptively on the fly.
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Csáji and Weyer [1] investigate the problem of estimating
a constant based on noisy measurements of a binary sen-
sor with adjustable threshold. That is, of a constant θ∗ ∈ R
disturbed by additive, i.i.d. noise Nt, only measurements in-
dicating whether the θ∗+Nt exceeds an adjustable threshold
θt are available for t = 1, 2, · · · . Under mild assumptions on
the distribution of Nt, a strongly consistent estimator is de-
rived, i.e. a method for choosing the thresholds θt such that
θt → θ∗ almost surely for any starting value θ0. In contrast
to [1], we do not make any assumptions on the distribution
of the value to be estimated or on its stationarity.

In the field of psychometrics, only a few adaptive speed tests
have been designed. For the assessment of concentration
ability, Goldhammer & Moosbrugger [4] propose the Frank-
furt Adaptive Concentration Test II (FACT-II), which con-
ceptualizes concentration as the ability to respond to stimuli
in the presence of distractors. After administration of item
t, exposure time of the item t+ 1 is adjusted until a liminal
exposure time is reached that just allows the testee to solve
the task. Starting with a fixed initial exposure time θ1, up-
dating is performed multiplicatively depending on whether
a correct response is given in time or not. Tests using both
accuracy and response times are used to assess efficiency of
cognitive processes for instance in the measurement of com-
ponents of reading abilities [5].

3. CAT-FRAMEWORK FOR SPEED TESTS
We consider a computerised adaptive test where a sequence
of items of homogeneous difficulty is presented to the tes-
tee and response times are recorded. This scenario encom-
passes adaptive speeded tests such as FACT2 [4] as well as
tests targetting efficiency of congitive processes (e.g. [5]).
In the former, response times are limited by an adaptation
mechanism and relate directly to the trait being assessed.
In the latter case, response times are merely observed and
used to analyse testee efficiency. Here, testees might take a
long time to think and then score perfectly, leading to un-
desirable ceiling effects, as observed by [5]. Imposing a time
limit may increase testing efficiency and also increase vari-
ation in item correctness, leading to a higher data quality.
We additionally show that our algorithm can be configured
to realize a user-defined probability for a timely response.

3.1 Methodology
We consider admissable response times in an interval T =
[a, b]. We assume that at each position of the testing se-
quence, there exists a lower bound on the testee’s response
time which we consider the just right setting τt ∈ T . This is
the minimum sustainable response time enabling the testee
to solve the item; we assume that it relates to an underly-
ing trait but is independent of the actual item, as the item
bank consists of items of constant difficulty. The goal of
the adaptation is to iteratively adjust the time limit until
the just right setting is reached. To this end, the algorithm
maintains a belief distribution Bt : [a, b]→ (0,∞) on T that
is used for accumulating knowledge about the correctness of
previously estimated time limits. Correctness of the predic-
tions is assessed after administering each item by feedback
φt, which is based on the relation of the testee’s response
time τt and the predicted time limit τ̂t: We have φt = −1
if τ̂t < τt, that is, the item is solved within the time limit,

φt = 1 if the testee runs out of time (τ̂t > τt), and φt = 0 if
the item is solved (exactly) at the time limit (τ̂t = τt ± ε).

Here, ε > 0 is used to decide whether the τt is close enough
to τ̂t to consider τ̂t a correct prediction. This is necessary be-
cause response times underly random fluctuations and thus
the just right time limit remains hidden to the algorithm.
Adaptation and prediction is done using the belief function
and two preassigned parameters β ∈ (0, 1) and δ ∈ (0, 1) as
follows: Belief is initialized to be a strictly positive constant
on T .∗ The time limit for administering item t is computed
as the value τ̂t that splits the area under Bt in two parts

Pt(τ̂t) :=
∫ τ̂t
a
Bt(x)dx and Qt(τ̂t) :=

∫ b
τ̂t
Bt(x)dx, such that

Pt : Qt = δ : 1− δ. Assuming normalized belief, this can be
achieved by determining τ̂t that satisfies Pt = δ.

It is easy to see that Bt being non-negative by assumption,
the mapping τ̂t 7→ Pt(τ̂t) is strictly increasing and thus bi-

jective, so τ̂t is uniquely determined if only
∫ b
a
Bt(x)dx 6= 0,

which because as B1 6= 0 and β 6= 0, all Bt 6= 0 due to the
updating formula given below. After the testee attempts
to solve the item given time limit τ̂t, the algorithm receives
feedback φt indicating whether the time limit was (i) too
long and φt = −1, or (ii) too short and φt = +1. Because
of transitivity, the algorithm may infer that (i) the time
was more than sufficiently long or (ii) any shorter time limit
would also have been insufficient for the testee. If the testee
responded ε-close to the time limit and φt = 0, no update
is necessary because current belief produced a correct pre-
diction. Otherwise, the belief in all settings (i) longer or (ii)
shorter, respectively, is lowered by the updating step, which
is carried out by multiplying the respective belief values by
the learning rate β:

Bt+1(x) =

{
βBt(x), if (i) and x ≥ τ̂T or (ii) and x ≤ τ̂t
Bt(x), else.

The parameter β thus controls how much weight is given
to information from the current observation; the closer β is
to zero, the faster the adaptation. If β is close to 1, the
predictions will show less variation. Thus assumptions on
the rate of change of the true time limit and the length of
the item sequence can be used to guide the choice of β. We
give a theoretical analysis yielding bounds on the difference
of successive predictions by our algorithm in Theorem 1.

3.2 Computational Aspects
Each feedback step leads to the updating of either the inter-
val [a, τ̂t] or the interval [τ̂t, b] by multiplying the values of
Bt by β. Consequently, for all t, the function Bt belongs to
the space of non-negative step functions on [a, b]. This al-
lows for efficient storage, manipulation and prediction based
on an interval subdivision scheme. Starting with T = [a, b],
we divide the interval containing the current prediction τ̂t
at τ̂t and update the belief values to the left or right of τ̂t
depending on the feedback φt by multiplying with β ∈ (0, 1).
Formally, we write Bt as a sum

Bt =

Nt∑
i=1

y
(t)
i χ

I
(t)
i

∗The initial belief function B1 can also be tailored to incor-
porate prior knowledge about where to expect τ1.
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for some N ∈ N, where y
(t)
i ≥ 0 is the value Bt takes on the

ith interval given by I
(t)
i = [x

(t)
i−1, x

(t)
i ) for i = 1, · · · , Nt − 1

and I
(t)
Nt

= [xNt−1, xNt ]. The interval endpoints are defined
by a partition

a = x
(t)
0 < x

(t)
1 < x

(t)
2 < · · · < x

(t)
Nt

= b

of [a, b]. By i∗t we denote the index of the interval containing
τ̂t. If φt = 1, we set

Bt+1 =

i∗t−1∑
i=1

βyiχI(t)i

+ βyi∗t χ[xi∗t −1,τ̂t)

+ yi∗t χ[τ̂t,xi∗t
) +

Nt∑
i=i∗t+1

yiχI(t)i

,

(1)

if φt = −1, belief at t+1 is defined analogously, that is, nodes

x
(t+1)
· are as above, but the weights with indexes greater or

equal than i∗t are multiplied by β. Finally, if φt = 0 no up-
date is necessary and Bt+1 = Bt. The belief function can
be stored and updated efficiently by storing the endpoints

x
(t)
1 , · · · , x(t)Nt−1 and function values y1, · · · , yN . Theorem 1

bounds the minimal and maximal difference between succes-
sive estimates of the algorithm.

Theorem 1. Let (τ̂t)
N
t=1 be a sequence of estimations of

the CAST algorithm with parameters β and δ. Then for
t = 1, · · · , N − 1 it holds that

δ(1− δ)(1− β)

maxx∈[a,b]Bt(x)
B ≤ |τ̂t+1 − τ̂t| ≤

δ(1− δ)(1− β)

minx∈[a,b]Bt(x)
B,

where B =
∫ b
a
Bt(x)dx.

Note that the bounds are invariant under rescaling of the be-
lief function, but depend on the parameter β that controls
learning rate: If β is small, then new experience is given
more weight and the lower bound on step size is greater
than its analogue for β ≈ 1 which gives less weight to new
information. The dependance on δ can be interpreted as
follows: The more δ deviates from 0.5, the more will inital
time limits be biased towards a or b resp. and also adapta-
tion to the observed time limit will be slower. Therefore, δ
can be regarded a parameter controlling difficulty bias. Our
experiments demonstrate that by varying δ, a wide range of
difficulty settings can be realized. We verify this claim in
the next Section.

4. EMPIRICAL RESULTS
4.1 Artificial Data
To showcase the adaptivity of our approach, we simulate
near-realistic scenarios to create settings that reflect be-
haviour observed in adaptive psychological speed tests or
computer games. We compare the empirical performance of
CAST to state-of-the-art baselines POSM [3], Csáji-Weyer-
Iteration (CWI) [1], and the algorithm used by FACT-II [4].

Throughout this suite of experiments, we use T = [0, 1].
To allow for a fair comparison, the set of difficulty settings
for POSM consists of N equidistantly sampled points in T ,
where n is the number of time steps used. This choice guar-
antees that the number of subdivisions made by CAST is less
than or equal to the number of settings available to POSM.

Figure 1: Top: Artificial response times. Bottom:
Results for constant (left) and drift (right) scenarios.

Thus, all approaches have access to the same amount of re-
sources. We use optimal parameters for CAST and POSM
chosen by model selection.

We study the behavior of the algorithms in constant and
dynamic scenarios: In the first setting, the ground-truth τ
remains constant. We sample the constants from a uniform
distribution on T . In the second setting, we simulate learn-
ing and tiredness effects of testees. The true parameter τ
thus underlies drifts and the resulting distribution is not
stationary. In both settings, simulated response times are
additionally disturbed by white noise. Figure 1 (top row)
shows sample observations for the two scenarios. We report
on average deviations of 1,000 repetitions with randomly
generated τ .

Figure 1 (bottom, left) shows the results for the constant
setting. All algorithms need some time to adapt to the noisy
τ with FACT showing severe problems in the estimation
process and finally oscillating between two estimations that
are both far away from the simulated ground-truth. The
best adaptation is achieved by CAST in terms of speed as
well as overall performance. CWI converges to a comparable
estimator at the end of the sequence but the adaptation
process is not as fast. POSM performs only slightly worse
than CAST. The visual differences are reflected in Table 1
that summarizes the results.

Figure 1 (bottom, right) shows the results for the dynamic
scenario containing drift. Again FACT is significantly out-
performed by the competitors. CWI describes a U-shaped
curve and proves not appropriate for dynamic scenarios due
to the strict assumptions on the data generating distribu-
tion. By contrast, CAST converges quickly to the initial
plateau after about 20 responses and looses accuracy when
the drift begins to dominate the scenario. POSM takes again
more time to adapt to the data but shows a slightly im-
proved performance for intermediate items which also leads
to the smallest difference in Table 1. However, note that
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Table 1: Sum of squared deviations of Figure 1

CAST POSM FACT CWI

constant 1.8752 2.0427 14.5896 2.9801
drift 2.6661 2.4396 24.5116 3.4407

we tailored the discrete POSM to the continuous scenario
to obtain a fair comparison in terms of computational re-
sources. In real world settings, the optimal discretization of
POSM is not obvious and often intractable. CAST can thus
be seen as the best off-the-shelf approach although POSM
achieved slightly better scores in the dynamic scenario.

4.2 Reading Skills
In this section we evaluate our algorithm in an experiment
using real world data from a computerized test of phonolog-
ical representation by Richter et al. [5]. Testees listen to an
auditorial reference stimulus in form of a pseudo word. The
presentation is immediately followed by a displayed pseudo
word on the screen. The testee’s task is to decide whether
the displayed word is phonologically identical to the audi-
tory one. No time limit is enforced.

The data consists of response times of 528 children, between
five and 11 years old, assessed during a test comprising of
n = 64 items. We simulate the effects of incorporating a
time limit by our algorithm as follows: After preprocessing
by removing extreme response times (>2500ms) and com-
pensating the strong linear relationship between number of
syllables and mean response time (R2 = .83) to level item
difficulty, the linearly transformed response times are be-
tween -932.34 and 2267 ms. We use our algorithm to predict
expected response time for each participant on the interval
[−1000, 2500].

Note that without time limits, ceiling effects in accuracy may
be observed [5] while too tight limits on response time can
easily lead to frustrated participants. We focus on the pro-
portion of items each participant would not have answered
in time for different values of β and δ. The goal is to pre-
dict for each participant time limits on each item, such that
a non-zero chance of solving the respective item is realized.
We compute predictions τ̂i; i = 1, · · · , 64 for each participant
and analyse the proportion P of items not solved within the
predicted time limit and compare the results with the pro-
portion achieved by using percentiles of the testee’s response
times. We use ε = 10ms.

Figure 2 (top, left) shows the distributions of P across par-
ticipants for β = 0.65 and 0.05 ≤ δ ≤ 0.95. The figure
indicates that proportions P between 20% and 65% can be
robustly realized by using different values of difficulty bias δ.
By contrast, the proportions realized by a percentile-based
approach in Figure 2 (top, right) span a broader range but
contain much variance across the participants, showing that
our adaptive approach leads to a more homogeneous experi-
ence across testees. For our algorithm, dispersion measured
by range is at roughly 20 percentage points across all δ while
for percentiles, ranges between 20 and 70 percentage points
are observed.

Figure 2: Results for the reading skill experiment.

Figure 2 (bottom) shows mean proportions P of testees not
responding in time on the z-axis while the color corresponds
to the standard deviation at every point. The figure shows
that a low dispersion and a wide range of proportions can be
set with our algorithm also when the β parameter is varied;
mean proportions are stable for all but extreme values of
both parameters. In sum, our algorithm effectively controls
the adaptation in both difficulty bias and adaptation rate.

5. CONCLUSION
We introduced a novel technique for computer-based adap-
tive speed tests. In contrast to existing methods, our ap-
proach is devised from a mathematically sound framework
and maintains belief distributions on compact intervals to
represent estimates of the unknown parameter. In addition,
our approach is purely data-driven and does not rely on
assumptions on the distribution of the true parameter. Em-
pirically, we showed the effectiveness of our adaptive speed
test on artificial and real world scenarios.
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ABSTRACT 

A huge amount of log data accumulates automatically during 

computer-based educational assessments that can be analyzed for 

diagnostic or educational purposes using data mining techniques. 

In this paper, we describe our work of mining students’ complex 

problem solving interactions when tackling previously unknown 

and dynamically changing situations. 

Based on log data analyses, we discovered several problem 

solving strategies and examined relationships of these strategies 

and test outcomes. We applied clustering algorithms to 

discriminate between students with different levels of proficiency 

in problem solving. We identified four groups of students: two 

clusters represent successful problem solvers who differ in their 

level of efficiency, one group of inefficient students might need 

further practice to be able to solve these kinds of tasks, and finally 

we found a mixed-strategy group of students. Students in this last 

group were dynamically developing their problem solving strategy 

and in parallel, the ratio of correct responses increased from task 

to task during assessment. In sum, our findings help to advance 

research on cognitive processes; we support educational 

researchers in better understanding complex problem solving 

behavior and identify levels of problem solving proficiency. 

Keywords 

Complex problem solving, clustering, MicroDYN, test-taking 

behavior. 

1. INTRODUCTION 
Computer-based assessment allows new ways of investigating 

processes involved in complex problem solving (CPS) ([14]) 

when students solve real-life problems and the solution cannot be 

obtained by merely applying preexisting knowledge. To give an 

example: imagine you bought a new smartphone and would like to 

install a new application on it, but you have never used this kind 

of device before and do not want to read the manual. In this case, 

you cannot rely on previous knowledge and have to find out how 

the phone works by interacting with the device. After the 

exploration of the phone, you have a mental representation about 

how it works and can use your acquired knowledge to reach 

certain goals (e.g., to install an application). This kind of situation 

represents a complex problem where participants have to interact 

with task environments “that are dynamic (i.e., change as a 

function of user’s intervention and/or as a function of time) and in 

which some, if not all, of the environment’s regularities can only 

be revealed by successful exploration and integration of the 

information gained in that process” [2].  

As the interactions between test-taker and this kind of problem 

situations (i.e., tasks) are essential for solving the CPS tasks, the 

CPS competency can only be measured in computerized 

environments. Due to computer-based test delivery, the test-

takers’ interactions with the tasks are automatically saved during 

the assessment. These large amounts of information pertaining to 

trace data constitute the basis for further analyses of participants’ 

CPS behavior.  

Based on the log data accumulated during the CPS assessment, we 

propose an identification of groups of students showing similar 

behavior in CPS assessment and identification of various CPS 

strategies with a clustering algorithm. Furthermore, we aim at 

examining relationships between the found CPS strategy and test 

outcomes which help us discriminate between students with 

different proficiency levels in problem solving. 

2. RELATED WORK 
CPS is a strong predictor of academic [13] and occupational 

achievement [3]. CPS has recently received considerable public 

interest, as CPS competency was tested in the Programme for 

International Student Assessment (PISA), a large-scale study of 

educational achievement assessing abilities of approximately half 

a million students in over 70 countries [10].  

In CPS, three main processes can be distinguished: rule 

identification, rule knowledge acquisition and rule knowledge 

application [9]. In this paper, we aim at investigating CPS 

strategies in the rule identification phase.  

In the case of data mining, empirical research has focused on 

investigating problem solving behavior with data mining 

algorithms (e.g. [1], [4], and [12]). All of these studies involved 

students facing other types of problem solving situations (like 

spreadsheets, IMMEX environment). To our knowledge no 

research based on data mining has yet investigated dynamic CPS 

strategies, as applied in this paper.  
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From the perspective of method, the closest study to ours was 

presented by [1]. It used predefined variables describing 

participants’ problem solving behavior (like time duration, 

“maximum number of meters that were opened” [1]) and applied 

K-means to identify groups of students. Other relevant behavior 

analysis research often applies sequential pattern finding 

algorithms to search for sequences of actions (e.g. [4]), but the 

interpretation of clustered action sequences in the field of CPS 

strategy is challenging. For this reason, we propose to utilize 

predefined features which characterize individual CPS behavior 

per task to help discover students’ CPS strategies.  

3. METHODS 

3.1 Sample 
393 German students attending grades 10 to 12 participated in this 

study (age: M=17.07, SD=1.12; 60% female, 1% did not report 

on gender). Participation was voluntary (see [11]). 

3.2 Instrument 
Tasks based on the MicroDYN approach [6] were used in this 

study to measure CPS. MicroDYN tasks are based on linear 

structural equations, in which up to three input and output 

variables are related. Participants’ tasks while dealing with 

MicroDYN can be best described by means of the sample task 

“Handball” depicted in Figure 1.  

  

Figure 1 Sample task from the test. 

In this task, different kinds of training (Training A, Training B 

and Training C) serve as input variables and different team 

characteristics (motivation, power of throw, and exhaustion) serve 

as output variables. Participants have to find out how the different 

kinds of training affect the team characteristics in order to reach a 

given goal state. While working on this task, participants are 

confronted with three different phases. First, participants freely 

explore the task by implementing adequate strategies to find out 

how input and output variables are related (rule identification 

phase). Therefore, participants manipulate the sliders (cf. Figure 

1; below Training A, B and C) in order to change the value of the 

training (from – – to ++), click on “Apply” and try to retrace 

changes in the output variables according to their actions. Second, 

participants are asked to draw a causal diagram between input and 

output variables to visualize relations between training types and 

team characteristics (knowledge acquisition phase). Third, 

participants have to apply the retrieved knowledge in order to 

reach given target goals in the output variables within four steps 

(knowledge application phase). 

3.3 Data collection 
Data collection took place on several days between March and 

April 2011. The CPS test contained eight interactive tasks. For the 

present survey, three tasks were selected representing different 

difficulty levels. The test was administered on the school 

computers. In groups of maximum 16, students worked on 

MicroDYN for about 45 minutes.  

3.4 Dataset 
As outlined, log file data of the rule identification phase were 

analyzed in this study to identify various CPS strategies. Based on 

[6], one of the relevant CPS strategies by which relations between 

variables are identified is “vary-one-thing-at-a-time” (VOTAT), 

whereby only one input variable is manipulated and the others are 

kept constant [13]. However, VOTAT was examined as a 

dichotomous variable at task-level by [5], while we investigated 

the strategy continuous variable to get detailed information about 

action level activities. We integrated further action-level features 

(see Table 1) to offer additional information about individual 

activities and time information for diagnostic purposes [7]. 

Consequently we extracted features (see Table 1) for each student 

to characterize his or her individual CPS behavior. Table 1 

contains the pairs of extracted features with respective 

interpretation.  

Table 1. Extracted features and interpretations 

Features Interpretation 

Number of 

executions 

The frequency of using the apply 

button in the rule identification phase 

Ratio of rounds with 

one input variable 

No. of executions in which only one 

input variable was manipulated, 

divided by the total no. of executions 

Ratio of zero rounds 

The frequency of executions in which 

all sliders are set on 0 divided by the 

total number of executions 

Ratio of repeated 

executions 

Number of executions which were 

previously applied to the task, divided 

by the total no. of executions 

Exploration time 
Time given in seconds spent in the 

rule identification phase 

3.5 Method of Analysis  
The method of analysis used in this paper is X-means algorithm 

(with Euclidean distance) implemented in the WEKA tool [8] to 

detect patterns of (unlabeled) CPS behavior data. The data set 

contains 393 feature vectors that describe students’ activities 

during test-taking. Each feature vector has 15 attributes, the 

introduced five process measures (see Table 1) built for all three 

complex tasks. 

4. RESULTS AND DISCUSSION 

4.1 Investigating CPS behavior with process 

measures 
The CPS behavior of the students is illustrated in Table 2. It 

contains the average values of each feature. Data provided in 

Table 2 indicates that the number of executions (ttask1-task2=8.09 

and ttask2-task3=4.43, p<.01), the exploration time (ttask1-task2=9.21 
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and ttask2-task3=7.37, p<.01) and the ratio of repeated executions 

(ttask1-task2=2.97 and ttask2-task3=3.24, p<.01) considerably decreased 

during the test-taking. In line with this finding, the ratio of rounds 

with one input variable increases significantly (ttask1-task2= -7.03 

and ttask2-task3=-5.25, p<.01). This tendency confirms that students 

enhanced their CPS competency by practicing while working on 

the test. 

Table 2. Mean value of each feature 

Features Task 1 Task 2 Task 3 Total 

Number of executions 11.67  08.04 07.03 08.96 

Ratio of repeated 

executions 
00.32  00.28 00.25 00.28 

Rounds with one input 

variable 
00.65  00.75 00.81 00.74 

Ratio of zero rounds 00.07  00.06  00.06 00.07 

Exploration time  72.55  58.81  51.15  60.83  

 

It is apparent that students accomplished tasks in an increasingly 

effective way and they more and more preferred the VOTAT 

strategy even though the CPS situations became more challenging 

as the complexity of tasks increased (the number of involved 

variables and the connectivity between input and output 

variables).  

4.2 Clustering results 
We identified four groups of participants which are characterized 

by cluster centroids (see Table 3). The members of the first 

subgroup (27.41 % of the whole sample) prove to be the most 

active problem solvers in this sample; they have the highest 

number of executions. Participants in Cluster 2 seem to be the 

most passive problem solvers as they have the lowest number of 

executions and they spent the least amount of time on solving the 

problems. The members of the third cluster are not as active as 

students in Cluster 1, but they take the longest to decide about the 

connections of input and output variables. Cluster 4 members 

required about the average time to solve the tasks, but used a 

lower number of executions than Cluster 1 and 3 members. 

However, the most striking difference is that the students in 

Cluster 4 used the lowest number of repeated executions.  

To gain a deeper insight into the four cluster characteristics, we 

created Table 4 to represent the ratio of correct answers in 

knowledge acquisition on all tasks among clusters. The ratio of 

the correct solutions in Cluster 1 and 2 is about 90%, so these 

clusters represent problem solvers who correctly solved the tasks. 

But Cluster 3 and Cluster 4 members proved to be significantly 

less efficient than participants in Cluster 1 and 2. 

Based on the ratio of correct responses and process measure 

values, we identified four groups of students, represented in the 

four clusters: (1) goal oriented VOTAT-strategy problem solvers, 

(2) less efficient VOTAT-strategy problem solvers, (3) non-

VOTAT strategy users and (4) mixed-strategy users. Goal oriented 

problem solvers (see Cluster 2) would seem to require only a low 

number of executions for testing their hypothesis about the 

influence of factors on more dependent variables, change mostly 

one aspect of the system (VOTAT strategy), repeat only a few 

executions and need little time to solve the tasks successfully. 

Less efficient problem solvers (see Cluster 1) are test-takers who 

also mostly varied one factor while others were held constant 

(VOTAT strategy), but used a much higher number of executions 

(almost three times as many) and required more exploration time 

for identifying correct rules than goal oriented VOTAT-strategy 

users.  

Table 3. Cluster centroids of the X-means clustering analysis 

Features 
Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Ratio of students 27.41% 19.80% 37.56% 15.23% 

Task 1 

No. of executions 22.38 6.72 11.55 7.47 

Repeated executions .63 .18 .34 .12 

Rounds with one 

input variable 
.72 .86 .37 .34 

Ratio of zero rounds .08 .04 .13 .05 

Exploration time  81.76 60.60 82.45 75.35 

Task 2 

No. of executions 13.97 4.84 8.84 5.14 

Repeated executions .56 .15 .31 .09 

Rounds with one 

input variable 
.82 .95 .38 .62 

Ratio of zero rounds .07 .02 .16 .01 

Exploration time  63.13 49.18 70.63 59.72 

Task 3 

No. of executions 11.46 4.43 8.28 4.33 

Repeated executions .53 .13 .27 .06 

Rounds with one 

input variable 
.89 .97 .46 .75 

Ratio of zero rounds .08 .01 .16 .01 

Exploration time  52.72 42.47 64.82 51.22 

 

Non-VOTAT strategy users (Cluster 3) varied multiple aspects at 

once (the ratio of correct responses is only .51 in contrast to .90 in 

Cluster 1 and .92 in Cluster 2) and used a significantly higher 

number of zero rounds than VOTAT-strategy problem solvers 

although these tasks did not require zero rounds and they needed 

the most time to explore the system. 

The fourth group of students dynamically developed their CPS 

strategy, e.g. the ratio of one input variable in a round increases 

from 0.34 to 0.75. However in contrast with this the exploration 

time (from 75.35 to 51.22 seconds) and ratio of repeated rounds 

significantly decreased. The ratio of correct responses 

correspondingly increased from task to task (as can be seen in 

Table 4), so the students became more effective during the 

educational assessment. 

In sum, the group of high-achievers using VOTAT strategy can be 

split into two categories: goal oriented and less efficient VOTAT-

strategy problem solvers. Although these students found the 

connections between input and output variables, they 

demonstrated different CPS behaviors, which can only be detected 

by investigating process related test-taking data. 
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Table 4. Ratio of correct responses  

Groups of students Task 1 Task 2 Task 3 Total 

Cluster 1 .86 .89 .94 .90 

Cluster 2 .92 .90 .95 .92 

Cluster 3 .56 .42 .54 .51 

Cluster 4 .45 .55 .68 .56 

 

Furthermore, based on the introduced process measures we made 

a distinction between non-VOTAT strategy users and mixed-

strategy users. The mixed-strategy problem solvers’ group was 

learning from the tasks and changed/improved their CPS strategy 

during the test taking. For this reason, they need more time with 

the same test material to improve their CPS competency. But 

students using non-VOTAT-strategy were not learning from the 

test, so they need other type of instructional intervention. 

These findings help to advance the research on CPS processes; we 

thus support educational researchers in better understanding CPS 

behavior and identifying levels of CPS proficiency. In addition 

our study helps to detect different types of instructional 

interventions to improve students’ individual CPS competencies. 

5. FUTURE WORK 
As an important next step, we need to verify our results taking 

additional data into account. This is a rather straight-forward step 

that can be split into looking at additional test results for the same 

set of tasks and afterwards trying to find similar results looking at 

other CPS tasks. In parallel, we want to examine the literature on 

CPS strategies. To our knowledge, the groups we have identified 

are not described elsewhere. Generally, VOTAT and non-VOTAT 

strategies are distinguished but not analyzed any further, for 

instance, by integrating process data. 

We are currently collaborating with item and test developers 

working on complex problem solving. Our findings can help them 

improve their tasks and gain a deeper understanding of how 

students interact with the tasks. Finally, our results can be used to 

go beyond dichotomous grading of CPS items. We can try to help 

students following an inefficient path and use certain 

interventions to put them back on track.    
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ABSTRACT 
We investigated predictors of shallow and deep learning for 192 

college students with high vs. low prior knowledge in a game-like 

intelligent tutoring system, OperationARA that has an eText, 

multiple-choice tests, case-based reasoning, and adaptive tutorial 

conversations.  Students are expected to learn about 11 topics of 

research methodology across three modules that target factual 

information, application of reasoning to specific cases, and 

question generation. Our approach blends evidence-centered 

design (ECD) and educational data mining (EDM) methods to 

discover the best predictors of deep and shallow level learning for 

students of varying aptitudes within this game. Theoretically- 

grounded constructs (e.g., time-on-task, generation, 

discrimination) were found to be significant predictors of deep vs. 

shallow knowledge acquisition.  

Keywords  
Intelligent Tutoring Systems, evidence-centered design, learning, 

reasoning 

 

 1.  INTRODUCTION 

One major goal of computer-based learning sciences is to predict  

learning from behaviors and events in technology-based 

environments. Accomplishing this goal requires a mix of two 

schools of thought.  First, evidence-centered design (ECD; [10]) 

proposes an accurate linking between theoretically-grounded 

constructs and observable measures. Second, educational data 

mining (EDM; [2]) suggests appropriate statistical modeling to 

discover phenomenon occurring in educational settings. The 

current investigation attempts to link these two important schools  

of thought while investigating learning within an Intelligent 

Tutoring System (ITS). Specifically, in line with evidence-

centered design, well-researched cognitive constructs are 

investigated as predictors of learning at a fine-grained level. 

Educational data mining techniques make it possible to discover 

unexpected patterns on large scale data that may have nested 

factors, such as different students, instructors and classrooms.  

 

 

 

 

 

 

 

 

 

The current study uses these techniques to investigate 

theoretically-grounded constructs (e.g. time-on-task, generation, 

and discrimination) as predictors of deep vs. shallow level 

learning for students with high vs. low prior-knowledge levels in 

an ITS known as Operation ARA. 

1.1 Operation ARA 
Millis and colleagues [9] created Operation ARA (previously 

known as OperationARIES!) with the hopes of increasing 

students’ knowledge of research methodology in an environment 

that is adaptive to students’ prior-knowledge levels and that is 

dynamic and engaging. Both game features and pedagogical 

techniques are incorporated in Operation ARA. However, the 

focus of the current study is on the pedagogical features occurring 

across three distinct modules: teaching students the basic factual 

information (Cadet Training), application of knowledge (Proving 

Ground), and question generation (Active Duty).  

Across these three modules, students engage in different learning 

activities while learning 11 topics of research methodology (e.g. 

causation vs. correlation, random assignment). In the Cadet 

Training Module, students learn the basic didactic information 

about the topics via an E-text, multiple-choice questions and 

natural language tutorial conversations between the human 

student and two artificial agents. In the Proving Ground module, 

the student must apply the information learned in the Cadet 

Training module by identifying flaws in research cases with the 

help of agents and a hint list that includes a list of potential flaws. 

An example flaw is “the dependent variable is not valid”, or 

“correlation was confused with causation”. Finally, in the Active 

Duty module, learners actively generate questions about an 

abstract of a research case and judge the validity of the answer. 

Thousands of measures are collected across the learning activities 

embedded within the three modules. This investigation 

incorporates pedagogical principles in the learning sciences to 

choose the measures that may have the most meaningful 

relationships with shallow and deep learning for college students 

that vary in prior-knowledge about research methods.  

1.2   Well-Researched Cognitive Constructs 

Cognitive psychologists have identified several performance 

metrics as well as cognitive and discourse constructs that predict 

learning for students in complex learning environments 

[11,14,15]. Shallow learning includes comprehension of explicit 

information whereas deep learning requires a mental model about 

the topics that can be applied to reasoning about cases. Separate 

 

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 229



www.manaraa.com

constructs may correlate with deep vs. shallow learning at varying 

depths of processing. Evidence-centered design assumes that each 

of these hypothetical constructs is carefully aligned with the 

measures, events, and behaviors that are collected throughout the 

learning experience. The approach is to identify a small number of 

general constructs with theoretical underpinnings that are good 

candidates for predicting learning at the different depths of 

conceptual processing. The three constructs explored here are 

time-on-task, generation, and discrimination. These constructs are 

expected to have different weightings across topics, items, and 

students, which can be discovered with data mining techniques.   

The time a student spends on any particular academic activity is 

referred to as time-on-task. Multiple empirical investigations 

substantiate a positive relationship between time-on-task and 

learning [4,14]. Varying degrees of time may be needed 

depending on the learner’s prior-knowledge corresponding to the 

novelty of the information and the depth of processing on a 

shallow to deep-level continuum [5,13]. Taraban and colleagues 

[14] substantiate the positive relationship between time and task 

and learning, but also suggest that sensitive measures are required 

to discover the fine-grained relationships between time-on-task 

and learning.  

Generation can be defined as the amount of words produced by 

students in their self-explanations, questions, and ideas articulated 

during learning. Beneficial effects of generation over passively 

reading have been reported in empirical investigations to increase 

deep learning [3,15]. The similarity theory [7], as well as the 

semantic associative memory (SAM) model [12], explains the 

generation effect by postulating a network of semantic 

associations that get activated during learning, with concepts 

activating semantically similar concepts in the network. The 

active generation of information both facilitates and is facilitated 

by the conceptual similarity of material, but sometimes at the 

expense of discriminating important distinctions and contrasts. 

Moreover, generation of information increases with greater 

organization of material based on prior knowledge [8] and greater 

depth of processing [5].   

Discrimination can be described as separating the signal from the 

noise, or identifying a correct answer when provided with 

multiple alternatives. Students can obtain a deep-level 

conceptualization of difficult concepts through tasks that require 

them to discriminate between multiple alternatives [1,15] that 

require subtle distinctions. The theoretical underpinnings of this 

construct have been captured in the SAM model [12] as well as 

other models in traditional verbal learning and memory paradigms 

that focus on the distinctiveness versus similarity of information 

[7]. Hunt and McDaniel [7] suggest that distinctive items are 

more likely to be remembered in tasks that rely on recognition 

(corresponding to shallow knowledge) rather than recall of 

information (corresponding to deep-level knowledge), whereas 

similarity enhances performance in tasks that emphasize recall 

over recognition. However, the conceptual organization of the 

content must be specified for accurate predictions of performance 

in these memory paradigms.  

The goal of the current investigation is to discover measures 

within the rich environment of Operation ARA representing all 3 

of these time-honored constructs that predict shallow vs. deep 

learning considering the student’s level of prior-knowledge and 

the topics studied across the three modules of Operation ARA. 

2.  METHODOLOGY 

Participants included 462 students enrolled across 12 sections of 

research methods courses with 11 different instructors of an 

undergraduate Psychology course at Northern Illinois University. 

Students were expected to complete the game as part of the course 

curriculum, but they were not required to sign informed consents 

in compliance with the Institutional Review Board. Unfortunately, 

232 participants were dropped because either they did not 

complete the consent form or had missing pretests or posttests.  

The data was further screened and revealed 38 participants to have 

extremely fast response times on either the pretest or the posttests. 

These participants were also excluded. The final number of 

participants was N = 192 across 11 classrooms and 9 instructors.  

The study used a pretest-intervention-posttest design in which all 

students interacted with all of the modules of Operation ARA. 

The college students first completed one version of the assessment 

as a pretest. Next, the students interacted with the three modules 

of Operation ARA (i.e. Cadet Training, Proving Ground, and 

Active Duty). After completing the interaction, students 

completed the posttest.  

2.3 Measures 
2.3.1 Theoretically Grounded Constructs 
Measures were calculated on a by-topic basis for each of the 

cognitive constructs (i.e. time-on-task, discrimination, and 

generation) within each of the three modules (i.e. Cadet Training, 

Proving Ground, and Active Duty). For all measures of time on-

task, the square root of the overall metric was computed in order 

to achieve a normal distribution and accommodate diminishing 

returns from a gamma distribution with a long positive tail in the 

distribution. In the Cadet Training module, the measure for time-

on-task was the square root of the time spent reading the E-text 

within the chapter. The measures for time-on-task in the Proving 

Ground and Active Duty modules were the square root of the total 

time spent per case for each module, respectively.  

Discrimination was calculated for each module on a by-topic basis 

based on signal detection theory which compares correct answers 

from distractor information. In the Cadet Training module, 

discrimination was measured by performance on the multiple-

choice questions within each chapter. In the Proving Ground and 

Active Duty modules, discrimination was scored by computing 

the proportional number of hits (correctly identified flaws) minus 

the proportional number of false alarms (incorrectly identified 

flaws).  

Generation was calculated as the number of words produced by 

the student. Generation in the Training module was the overall 

number of words articulated by the student within each tutorial 

conversation per chapter. In the Proving Ground and Active Duty 

modules, the construct was represented by the total number of 

words generated by the student while articulating flaws or 

generating questions.    

2.3.2 Assessment of Learning on a Topic Level 

There were two versions of the pre- and post-test assessments 

(version A and version B), which were counterbalanced across 

students. Both versions included a total of 22 multiple-choice 

questions. There were two questions assigned to each topic, 

including a definition and applied question. The definitional 

questions were used as a measure of shallow learning, whereas the 

applied questions were a measure of deep learning. The fact that  

there were only two test items per topic would not provide a very 
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sensitive measure. Therefore, the topics were clustered to gain a 

more reliable picture of the relationship between learning gains 

across the 11 topics. The topics were clustered in a previous study 

[6] based on learnability [(Posttest- Pretest)/ (1-Pretest)]/2 by 

using Multi-dimensional Scaling (ASCAL algorithm) that 

segregated topics into two groups (True Experiment vs. 

Sampling). The “True Experiment” cluster includes topics such as 

control groups and random assignment whereas the “Sampling” 

cluster includes topics such as representative samples and subject 

bias. Two topics were excluded because they did not fit into either 

cluster. In the current study, by using these two clusters, the 11 

observations per participants were reduced to 2 groups.  

After establishing the topic clusters, a proportional learning gains 

formula [(Posttest- Pretest)/ (1-Pretest)] was used to calculate 

learning for shallow and deep items to account for prior 

knowledge. For shallow and deep-learning gains, the proportional 

learning gains were also calculated independently for each topic 

cluster resulting in 4 PLG scores for each participant. Extreme 

negative values (PLG < -1) were removed from the data on an 

item level, which reduced the total number of items from 768 to 

743 across the 192 participants.  

3.   ANALYSES AND RESULTS 
Before performing any analyses, the measures were transformed 

using the Winsorizing method to ensure no outliers would skew 

the data. This method ensures that all outliers beyond 3 standard 

deviations above or below the mean of the z-score of the given 

measure are transformed to reflect endpoint scores. Next, two 

median splits were performed. The first separated the students into 

two groups based on prior-knowledge (i.e. high vs. low) for 

shallow learning gains. The second separated students into high 

and low-prior-knowledge for deep level learning gains. Therefore, 

the one participant could potentially be in a high-prior knowledge 

group for shallow learning and in the low- prior knowledge group 

for deep-level learning. This means that the four groups did not 

have an equal number of subjects as one subject could be in 

multiple groups, but rather the goal was to seek group 

equivalence. The final groups included: (Group 1) low prior-

knowledge and shallow learning (N = 141 with 188 units of 

analyses), (Group 2) high prior-knowledge and shallow learning 

(N = 141 and 188 units of analyses), (Group 3) low prior-

knowledge and deep learning (N = 141, 187 units of analyses), 

(Group 4), high prior-knowledge and deep learning (N = 126, 176 

units of analyses). 

Separate analyses were conducted for each of the 4 groups in the 

following stages. First, Pearson correlations were computed 

between the cognitive constructs and the PLG. Although this 

violates the assumption of independence of observations in 

correlation, these correlations are simply used as a guide. Next, a 

series of linear mixed-effect regression models were used to test 

models that included the highly significant correlates (r >|.2|) and 

also that accounted for the nested factors of participant, 

classroom, and instructor. The full models included the significant 

correlates as fixed factors and the random factors of participant, 

classroom, instructor as well as test form to account for counter-

balancing test forms. The best fit models were then validated 

using 50 iterations of 4-fold cross-validation on the linear mixed 

fixed-random effects modeling using the R package “lme4” 

version 1.1-6 that was just released in 2014. Several of the 

random factors (i.e. participant, instructor, classroom) were not 

included in the cross-validation because equal distributions were 

not maintained across the training and test folds with the current 

dataset. A generalization proportion is also reported for each 

model. This is the proportion of the training-fold explained 

variance that generalizes to the test fold. These analyses were 

performed for each of the four groups (i.e. low knowledge and 

shallow learning, high knowledge and shallow learning, low 

knowledge and deep learning, and high knowledge and deep 

learning).  

3.1  Low Knowledge & Shallow Learning 

All of the potential predictors (the cognitive constructs for each 

module) were correlated with the shallow proportional learning 

gains (PLG) for students with low prior-knowledge. The analyses 

revealed a significant correlation between the discrimination 

metric in the Active Duty Module (referred to as ADdisc) with the 

PLG (r (189) = .24, p <.001). 

The full model of ADdisc (i.e. discrimination in the Active Duty 

module) as a fixed factor with the 4 random factors of participant, 

classroom, instructor, and test was significantly different from the 

null model including only the random factors (X2 (1) = 10.81, 

 p <.001). The ADdisc accounted for about 5.2% of the variance 

above the random effects (R2 =.052). The relationship between 

discrimination in the Active Duty module and PLG was positive 

in nature (β =.24, p <.001). This means that greater discrimination 

identifying flaws in the Active Duty module correlates with higher 

shallow proportional learning gains. The 4-fold cross validation of 

the mixed model including ADDisc as a fixed factor and test form 

as a random factor revealed a training set accounting for 6.2% of 

the variance and a test set accounting for 5.4% of the variance 

(R2=.062 and R2=.054, respectively). The generalization 

proportion was .86.  

3.2  High Knowledge & Shallow Learning 
The correlational analyses revealed strong correlations between 

Topic group (i.e. True Experiment vs. Sampling) and the number 

of words generated in the Proving Ground Module (referred to as 

PGwords) each significantly correlated with the shallow-level 

proportional learning gains (r(188)=.23, r(188)=.21, respectively). 

The linear mixed-effects model with Topic group (i.e. 

Experimental vs. Sampling) and PGWords (generation in the 

Proving ground module) as fixed factors with the 4 random 

factors of participant, topic, and test was significantly different 

from the null model (X2(2) = 16.67, p <.001) with the overall 

model accounting for 9% of the variance. Specifically, Topic 

Group accounted for about 5% of the variance (R2 = .047) and 

PGWords accounted for 4% of the variance (R2 = .039). Both the 

Topic Group and the words generated in the Proving Ground 

module had a positive relationship with proportional learning 

gains (β = .2, p <.01, β = .19, p <.01, respectively). The 4-fold 

cross validation of the full model including Topic Group and 

PGWords as fixed factors and test form as a random factor 

revealed a training set accounting for 10.5% of the variance and a 

test set accounting for 7.9% of the variance (R2= .105 and R2= 

.079, respectively) with a generalization proportion of .75.  

3.3  Low Knowledge & Deep Learning 
The Pearson correlations revealed a strong correlation between 

the discrimination metric in the Proving Ground module (referred 

to as PGDisc) as well as the time spent in the Active Duty module 

(referred to as ADTime) with the PLG (r =-.23, r =.24, 

respectively). 
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The mixed-fixed random effects model with PGDisc and ADTime 

as fixed effects and the 4 random effects was significantly 

different from the null model(X2(2) = 16.99, p <.001). The overall 

model accounted for about 8.5% of the variance (R2 =.085) above 

the null model that included only the random factors with PGDisc 

accounting for 5.4% of the variance and ADTime accounting for 

3.2% of the variance (R2=.054, R2=.032, respectively). 

Specifically, discrimination in the Proving Ground module was 

negatively correlated with learning whereas the time spent in the 

Active Duty module was positively correlated with learning  

(β = -.18, p <.05; β =.18, p <.05, respectively). The 4-fold cross 

validation of the full model including PGDisc and ADTime as 

fixed factors and test form as a random factor revealed a training 

set accounting for 9.2% of the variance and a test set accounting 

for 7.4% of the variance (R2= .092 and R2= .074, respectively) 

with a generalization proportion of .81. 

3.4 High Knowledge & Deep Learning 
Pearson correlations were performed between each of the 

constructs of interest and the proportional learning gains for the 

applied or deep questions. Unfortunately, no strong significant 

correlates were discovered. Therefore, the rest of the analyses 

were not conducted as the researchers concluded that a predictive 

model for deep-level learning for high-prior knowledge students 

could not be discovered from these data. 
 

4.  CONCLUSIONS 

The investigation revealed significant models for three of the four 

groups of high versus low prior-knowledge for shallow versus 

deep learning. Specifically, discrimination in the Active Duty 

module (i.e. the question generation module) was the most 

predictive measure of shallow learning for students with low 

prior-knowledge. Word generation in the Proving Ground Module 

and sampling-oriented topics were positively correlated with 

shallow learning gains for high prior-knowledge students. The 

predictive model for students with low prior-knowledge suggested 

a negative relationship between discrimination in the Proving 

Ground module and deep-level learning gains as well as a positive 

relationship between the time spent in the Active Duty module 

(where students generate questions) and deep-level learning. Each 

of the models makes sense within the theoretical frameworks of 

the cognitive constructs used as predictors although they were not 

predicted a priori but rather discovered through educational data 

mining methods. Unfortunately, no predictors were found for high 

prior-knowledge students and deep-level learning. Perhaps good 

students with high-prior knowledge will achieve deep learning 

gains regardless of the tutorial experience.  

There are limitations in this study. There could be a greater 

number of observations per prior-knowledge and deep versus 

shallow groups. There is also the possibility of other measures 

being better predictors of deep versus shallow level learning. A 

current investigation is underway to test multiple measures per 

construct and thereby determine the best predictors of deep vs. 

shallow level learning. Although there were limitations to this 

study, the overall results support the approach of blending 

evidence-centered design and educational data mining to conduct 

fine-grained investigations of student interactions within an 

Intelligent Tutoring System. Both are needed to identify when a 

particular learning principle will be effective for a particular topic 

and type of student.   
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ABSTRACT 

We present a machine learning model that uses particular 

attributes of individual questions asked by teachers and students 

to predict two properties of classroom discourse that have 

previously been linked to improved student achievement. These 

properties, uptake and authenticity, have previously been studied 

by using trained observers to live-code classroom instruction. As a 

first-step in automating the coding of classroom discourse, we 

model question properties based on the features of individual 

questions, without any information about the context or domain. 

We then compare the machine-coded results to two referents: 

human-coded individual questions and “gold standard” codes 

from existing data.  The performance achieved by the models is as 

good as human experts on the comparable task of coding 

individual questions out of context. Yet ultimately, this study 

highlights the need to draw on contextualizing information in 

order to most completely identify question properties associated 

with individual questions. 

Keywords 

Classroom Discourse, Machine Learning, Authenticity, Uptake  

1. INTRODUCTION 
A particular style of classroom discourse, known as dialogic 

instruction, has been found to improve student achievement [1, 

10, 11].  Dialogic instruction involves fewer teacher questions and 

more conversational turns as teachers and students alike 

contribute their ideas to a discussion. One way in which dialogic 

instruction leads to improved learning is by increasing student 

engagement in classroom instruction [2].  Moreover, when 

teachers focus on provoking student thought and analysis, and 

postpone evaluation during question and answer sessions by 

engaging in dialogic instruction, levels of student effort are more 

evenly distributed among students [7]. In the first major 

quantitative study of dialogic instruction, Nystrand and colleagues 

observed discourse practices in 8th and 9th grade classrooms over 

two years [9, 11]. Nystrand et al.’s coding approach focused on 

the nature of question events, which include the discourse context 

preceding and following a given question. Five properties of  

question events were coded: authenticity, uptake, level of 

evaluation, cognitive level, and question source.  Nystrand and 

Gamoran reported that among these variables, authenticity and 

uptake are the most important properties affecting student 

achievment [1, 3, 10]. 

Within this context of dialogic instruction, authenticity is defined 

as a question for which the asker does not have a pre-scripted 

answer, i.e. open-ended questions. Such questions, particularly 

when asked by the teacher, create a context for students to 

contribute and develop their understanding to an evolving 

discussion. For example, “What was your reaction to the end of 

the story?” is an authentic question which leads to open-ended 

discussion, whereas questions such as “What was the father's 

name?” are not authentic. 

Uptake in the context of dialogic instruction occurs when one asks 

a question about something that another person has said 

previously. Uptake of student ideas by the teacher therefore 

emphasizes the importance of student contributions. In previous 

work, these indicators were judged considering the question in 

context as opposed to just the individual question. Indeed, the 

very definition of uptake suggests that it is not possible to detect it 

from an isolated question, though this assumption and the 

corresponding assumption for authenticity have never been 

empirically tested. 

In previous research, these variables were “live coded” by 

classroom observers who also recorded the question as an index of 

the discourse context preceding and following a given question 

event. Coding of question events, as opposed to isolated 

questions, are ultimately determined by teacher responses to 

students. In contrast, we attempt to predict the question event 

features of uptake and authenticity from the isolated question 

using machine learning techniques. Our work addresses a 

previously untested theoretical question of whether it is possible 

to recover these variables from the question, since the question is 

only loosely coupled to the event.  

Olney et al. proposed a method to classify questions based on 

part-of-speech tagging, cascaded finite state transducers, and 

simple disambiguation rules [12]. They used 16 question 

categories which were defined in previous works on question 

classification  [4, 5].  This classifier was manually designed using 

expert linguistic knowledge (a rule based system). We believed 

that this classifier, though designed for a slightly different 

purpose, used features that might be highly relevant to identifying 

uptake and authenticity, because we believed that different kinds 

of questions might lead to different levels of uptake and 

authenticity. For example, we hypothesize that yes/no questions 

are less likely to lead to extended discussion containing uptake 

and authenticity than causal questions about why an event 

occurred or why someone decided to take a certain course of 

action. 

Based on the definition of uptake and authenticity, we expected to 

achieve a reasonable performance by using the same features as 

predictors as Olney et al. The study reported here shows that the 

performance of a machine learning approach based on features 

previously used in question classification is as accurate as expert 

humans on the task of classifying authenticity and uptake in 

isolated questions. 

2. METHOD 
Our long-term research goal is to develop cutting-edge classifiers 

in order to identify dialogic questions properties important to 

effective classroom discourse.  In working towards this goal, in 
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the present study we address two research questions: (a) How well 

do machine classifiers perform relative to trained human raters in 

coding individual questions without supporting contextual 

information? and (b) Do property codes ascertained from 

individual questions, either by human or machine, correspond 

well to fully contextualized codes (i.e., the “gold standard”)? 

To address these questions, we utilize existing data from a study 

of classroom instruction where fully contextualized question 

property codes had previously been generated [6, 7].  In addition, 

in order to answer the first research question, we collected new 

human ratings, using only the information available to the 

machine learning algorithm, i.e., the question out of context.   

This study represents the first empirical investigation of dialogic 

question properties at the level of individual questions. 

2.1 Dataset 

2.1.1 Gold Standard Data 
The present study relies on the Partnership for Literacy Study data 

(Partnership), a study of professional development, instruction, 

and literacy outcomes in middle school. In Partnership study, 120 

classrooms in 23 schools were observed twice in the fall and twice 

in the spring. 

Observational data from Partnership classrooms were coded using 

CLASS 4.24, a computer-based data collection system [8]. 

Coding reliability studies using CLASS indicate that raters agree 

on question properties approximately 80% of the time, with 

observation-level inter-rater correlations averaging approximately 

.95 [10].  Importantly, the original Partnership codes were based 

on the full set of contextualizing information, including preceding 

discourse and classroom events.  

In all, the Partnership data consist of 29,673 teacher and student 

questions coded using CLASS during question and answer 

sessions. In the present study, after removing partially incomplete 

observations where one or more of the question codes were 

missing, we utilized a subset of 25,711 questions as our training 

data, a subset of which is excluded from training and used as the 

“gold standard” for evaluation purposes. 

2.1.2 Individual Question Coding 
As a baseline for evaluation of our models, we asked four human 

raters who were experts in classroom discourse to code the 

questions of separate sample instances selected from the gold 

standard data (one sample for authenticity and another for uptake). 

The sample sets contained 100 questions exhibiting each category 

of the question property and a separate 100 not exhibiting that 

property. For example, the uptake set contained 100 questions 

originally rated as non-uptake and 100 as uptake.  

All the questions in the samples were represented by plain text 

and randomly ordered so that human judgments were based on 

individual questions without any information about the context. 

The questions for both authenticity and uptake were rated using a 

binary (Yes/No) scale. 

This task was designed to investigate the performance of human 

experts on rating the questions, using the same information that 

we use to build our classifier model with. We also calculated the 

agreement among human raters to address the difficulty of the 

task of rating questions in isolation. The performance of machine 

coding was compared to both the original live-coded data (coding 

in context) and the subset of data re-coded by human experts 

(coding in isolation). 

2.2 Machine Learning 
As mentioned earlier, we applied machine learning using the 

features based on previous work on question classification. The 

feature set consisted of 30 attributes including part of speech tags 

and sets of keywords. Most of the attributes are binary 

representing the presence/absence of certain keywords or part of 

speech in the question, for example ‘NEG’ is true if there is a 

negation keyword in the question or false otherwise. However, for 

some of the attributes we take into account the position of the 

keyword in the question by defining four values: middle, 

beginning, end, and none, in which the first three values show the 

position of the keyword if present in the question.  For example, if 

a question consisted of four words, e.g. “word1 word2 word3 

word4” the position of “word1” and “word4” are captured as 

beginning and end respectively. “word2” and “word3” are both 

captured as middle. Moreover, if we only had two words in the 

question, we consider first one as beginning and the other as end.  

Binary attributes 

In our feature set we defined binary attributes to represent the 

presence of particular words in the questions, regardless of 

position.  These words are defined in sets in Olney et al.; therefore 

we define the attributes as true if any member of the set is present 

in the sentence. Causal consequent words, for example, were 

defined by a set of words including “outcomes,” “results,” 

“effects,” etc. Similarly, procedural words included “plan,” 

“scheme,” “design,” etc. The rest of binary attributes included 

feature specification, negation, meta-communication, 

metacognition, comparison, goal orientation, judgmental, 

definition, enablement, interpretation, example, quantification, 

causal antecedent, and disjunction which are also defined as sets 

of keywords related to them. We also defined some attributes 

representing certain words such as “happen,” “no,” and “yes.” 

More complete descriptions of these features and their validation 

for question classification can be found in [12]. We used the 

source code from a simplified version of the question classifier 

released as part of the open-source GnuTutor project [13]. 

Other attributes  

As mentioned above, for some of the attributes we defined values 

to represent the presence and position of certain words and part of 

speech tags. These attributes included part of speech tags such as 

determiner, noun, pronoun, adjective, adverb, and verb along with 

word lists:  Do/Have (e.g. “don’t,” “having,” and etc.), be (am, 

are, is, etc.), modal (would, might, etc.), and certain words such as 

“What,” “How,” and “Why.” More complete descriptions and 

justifications of these features for question classification can be 

found at the references above. By including features for positional 

information we hoped to approximate the regular expression 

patterns of the Olney question classifier. However instead of 

directly using the patterns discovered previously, we decided to 

allow new approximate patterns to be discovered during the 

machine learning process. Although there might be a 

correspondence between previous work on question categorization 

and the constructs of authenticity and uptake, a 1-to-1 

correspondence assumption appeared to be unwarranted. 

The training data was selected from the “live-coded” data set 

(Partnership) to form a set of coded questions with uniform 

distribution of the authenticity and uptake variables. In the case of 

authenticity, the original distribution of data was close to uniform. 

New sampling to make the distribution completely uniform (base 

rate of 50%) yielded a set of 25,464 questions. 
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Uptake originally was defined by three values: test, authentic and 

no uptake; however we reduced the uptake to a binary scale of 

uptake and no-uptake. The original test uptake values were taken 

as no-uptake in the new scale. The argument for collapsing test 

uptake and no uptake is based on the observation that they have 

indistinguishable impact on student achievement.  Collapsing test 

and no uptake and normalizing to a uniform distribution yielded a 

total of 9,579 instances with an even distribution of uptake and 

no-uptake. The magnitude of this reduction relative to the set of 

authentic questions reflects the large number of instances that 

were originally coded as no-uptake. 

These selected instances from the original “live coded” data were 

then separately used as gold standards to train the two classifiers 

for predicting uptake and authenticity on isolated questions. The 

subset of instances given to the expert judges was excluded from 

training data and was used to test the models. We used WEKA 

[14] to train and test J48 decision tree classifiers to predict 

authenticity and uptake. 

3. RESULTS & DISCUSSION 
We evaluate our models’ performance by comparing the 

performance to the expert re-coded sample as our baseline (coding 

in isolation), using the gold standard data as the reference (coding 

in context). Thus the baseline performance was measured by 

evaluating the performance of four experts on the task the 

machine classifiers faced: coding questions in isolation.  

Cohen’s kappa was used as a metric to assess reliability between 

two raters and between the computer and the rater. Results 

showed low agreement among human raters on the task, which 

suggests that in most cases human raters could not make strong 

judgments based only on the features of individual questions in 

isolation. The minimum kappa among human raters for 

authenticity was 0.18; however for other pairs the kappa ranged 

from 0.3-0.5 with a maximum of 0.55 and an average of 0.4. 

Similarly, the average inter-rater reliability for Uptake was 0.42, 

with a minimum of 0.31 and maximum of 0.51 kappa.  

The overall low agreement among human raters illustrated the 

difficulty of making judgments based only on the individual 

questions as opposed to having information about the context and 

other properties of the classroom discourse around each question.  

The machine learning model was trained on the gold standard data 

that were rated by Partnership observers. We built J48 decision 

tree models and tested the models on the same samples that were 

given to human raters—which were excluded from our traning 

data—and compared the performance of the model with experts in 

terms of kappa and recognition rate (Table 1). 

Table 1. Kappa statistics and recognition rate of human raters 

and machine leaning model compared to Gold Standard 

ratings for authenticity (A) and uptake (U). 

- 
Kappa 

Recognition 

Rate 

A U A U 

R1 0.13 0.22 56% 61% 

R2 0.17 0.25 58% 62% 

R3 0.25 0.30 62% 65% 

R4 0.10 0.23 55% 61% 

Model 0.34 0.46 67% 73% 

As seen in Table 1, the highest performance of human raters on 

predicting authenticity yielded an accuracy of 62% and 0.25 

kappa. The performance of the model on predicting authenticity 

was better than human experts with 67% accuracy and 0.34 kappa. 

Authenticity was better judged in context, which is why human 

raters (coding in isolation) showed lower performance and 

agreement than the original raters (coding in context) of ~80%.  

By outperforming human raters on this task, our model’s 

performance on authenticity implies that the features used in 

training are as predictive as could be considering the lack of 

contextual information. The performance of our model on uptake 

was markedly better than human experts. The highest 

performance for a human rater is an accuracy of 65% and 0.30 

kappa. The performance of the model on predicting uptake is 73% 

accuracy and 0.46 kappa. A question with uptake, by definition, 

refers to a previous discourse contribution. However it appears 

that features of individual questions are indirectly marking uptake, 

because our feature set has suitability for predicting uptake in the 

absence of context. We also measure the overall performance of 

the model on the whole gold standard data using 10-fold cross 

validation. Table 2 shows the overall performance of the models. 

Table 2. Overall performance of models on gold standard data 

using 10-fold cross validation 

Models Kappa Accuracy 

Authenticity 0.28 64% 

Uptake 0.24 62% 

    

The overall performance of the authenticity model on the gold 

standard data was close to performance on the sample data while 

the uptake model performed with a lower accuracy; however the 

results are still close to human raters coding questions in isolation 

which supports the reasonable performance of our models on this 

task. 

To take a closer look at the models, we ran Correlation-based 

Feature Subset Selection (CFS) on our feature sets. CFS considers 

the individual predictive ability of each feature along with the 

degree of redundancy between them to evaluate the worth of a 

subset of attributes. The results showed that the highest ranked 

attributes used in predicting authenticity were: Judgmental 

keywords, WH words, Enablement keywords, and “what.”  

Similar analysis on the decision tree for uptake yielded the 

following most useful attributes: negation keywords, Judgmental 

keywords, and “why.” The importance of such features for 

predicting uptake can be inferred from the definition.  

Although the CFS analysis identified Judgmental, Negation, and 

Enablement keywords as the most predictive keyword sets, the 

CFS analysis was unable to identify the actual keywords used 

because these keywords had been replaced by the labels 

corresponding to the keyword sets.  To illustrate the actual words 

that were coded as these features, for each set of keywords we 

calculated the frequency of these words in the data set and 

measured the distribution of each word as a proportion of the 

frequency of all the words in the keyword set. 

The distribution of Judgmental keywords showed that “think” 

(.83), “should” (.06), and “find” (.05) accounted for 94% of the 

total Judgmental keywords seen in the data set.  Other keywords 

individually contributed less that 1%.   
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Similar analysis showed that the most frequent Enablement 

keyword was “need(ed)” (0.81) while the other enablement 

keywords were less frequent, e.g. “helpful,” (0.05), and “in order 

to,” (0.05).  Furthermore, “not(n’t)” (0.95), was the most frequent 

negation word and other negation words such as “never” and 

“neither” contributed less than 1%.  

The following questions, for example, were extracted from our 

dataset, to illustrate the use of mentioned keywords in the actual 

questions: 

Questions with authenticity: 

“Do you think enterprising people always need to be 

audacious?” 

“Did you find it helpful?” 

“Do you think it needed to go on the next ten lines?” 

Questions with uptake: 

“Why do you think he wants to help the little boy?” 

“You think he can't get help, Can you expand on that?” 

“Like if I make a connection to my life and not to all three of them 

do you think that that might help?” 

Considering the size of our training data, these results suggest the 

coverage of our feature set in classifying questions out of context. 

Moreover, these features, as used in the models, are consistent 

with the theoretical definitions of authenticity and uptake. 

4. CONCLUSION 
We examined the performance of machine learning models 

compared to human experts in predicting authenticity and uptake 

on a random set of isolated questions sampled from a previous 

classroom study. The key aspect of our approach is that we did 

not use any contextual information regarding the discourse moves 

in the model, yet we showed that the models perform as well as 

human experts under the same restrictions. 

The original coders (coding in context) achieved approximately 

80% agreement, but in the current study the expert re-coders 

(coding in isolation) achieved only 60% with the original coders. 

This suggests that, on a coding task with equally probable 

categories, a roughly 20% gap in agreement could be attributed to 

missing contextual information.  A surprising finding is that 

isolated questions provide sufficient cues to correctly identify 

many authentic questions and questions with uptake. Based on 

this finding it may be the case that authenticity and uptake can be 

redefined in terms of an adequate window size of context before 

and after the question. In future studies, we anticipate 

incorporating both additional preceding context and following 

context in determining authenticity and uptake codes. 

.   
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ABSTRACT
Ill-defined domains such as writing and design pose chal-
lenges for automatic assessment and feedback. There is lit-
tle agreement about the standards for assessing student work
nor are there clear domain principles that can be used for
automatic feedback and guidance. While researchers have
shown some success with automatic guidance through a-
priori rules and weak-theory structuring these methods are
not guaranteed widespread acceptance nor is it clear that
the lessons will transfer out of the tutoring context into real-
world practice. In this paper we report on data mining work
designed to empirically validate a-priori rules with an ex-
ploratory dataset in the domain of argument diagramming
and scientific writing. We show that it is possible to iden-
tify diagram rules that correlate with student performance
but that direct correlations can often run counter to expert
assumptions and thus require deeper analysis.

Keywords
Empirical Validity, Argument Diagramming, Ill-Defined Do-
mains, Writing, Assessment, Intelligent Tutoring Systems

1. INTRODUCTION
Ill-defined domains such as writing and design pose key chal-
lenges for automatic assessment and feedback. Solvers of ill-
defined problems must reify implicit or open-textured con-
cepts or solution criteria to make problems solvable and then
justify those decisions [8, 9]. Consequently, ill-defined prob-
lems lack widely-accepted domain theories or principles that
can be used to provide automatic assessment and feedback.
Moreover it is not always clear that automatic advice can
generalize to a wider domain or transfer out of the study
context into the real world. Our present goal is to identify
empirically valid rules that both correlate with subsequent
performance on the real-world tasks that are the target of
instruction and can be used for guidance and assessment.

Prior researchers have advanced a number of techniques for
guidance in ill-defined domains such as peer review and
microworlds [9]. Researchers have also developed success-
ful systems which guide students via optional rules or con-
straints [12, 10], a method known as weak-theory scaffolding
[9]. This type of scaffolding can include use of constraints to
bound otherwise open student solutions [15], or use of struc-
tured graphical representations combined with on-demand
feedback as in Belvedere [14] and LARGO [12, 11].

LARGO, for example is a graph-based tutoring system for
legal argumentation. Students use the system to read and
annotate oral argument transcripts from the U.S. Supreme
Court. As students read the transcript they identify cru-
cial passages in the text containing legal tests, hypothetical
cases, or logical relationships and represent them as elements
in a graph with textual summaries. They are guided in this
analysis via a-priori graph rules that detect violations of the
argument model. While systems of this type have shown suc-
cess, particularly with lower-performing students, no broad
systematic attempt has yet been made to demonstrate the
empirical validity of these graphical structures or rules. Va-
lidity is essential, especially in ill-defined domains, where
the utility of the models have been assumed but where we
cannot always be sure that a given violation of the model is
a student error and not a judicial prerogative. Demonstrat-
ing empirical validity of the argument models would support
their use both pragmatically, by helping to persuade skepti-
cal domain experts that they are effective, and functionally,
by providing us with an empirical confidence measure that
can be used to evaluate or weight their implementation.

We have previously evaluated the individual predictiveness
of the rules used in LARGO and found that while some could
be used to classify students by performance few of rules were
strongly predictive [7]. This assessment, however, is quali-
fied by the fact that the rules were used to give advice to the
students as they worked. Thus the students flagged by the
rules in the analysis either received the advice and ignored
it or did not ask. Moreover the performance measures used
were comprehension tests and not the production of novel
arguments. Some prior researchers (e.g. [2, 1]) have dis-
cussed the relationship between student-produced argument
diagrams and written essays. Those analyses, however, are
purely qualitative. In more recent work we examined the
relationship between basic features of student argument di-
agrams, such as order and size, and found that they could
be used to predict students’ overall grades [6]. The features
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Figure 1: A segment of a student-produced LASAD diagram showing a hypothesis node (lower right) and
two conflicting citation nodes with a comparison arc between them.

chosen, however, do not always lend themselves to robust
feedback and the grades chosen incorporate a number of cri-
teria beyond performance at argument.

In the present work we focus solely on an exploratory dataset
where advice was not given and planning diagrams in which
students plan novel arguments using a domain-specific ar-
gument model and the LASAD diagramming toolkit [3].
Students in this study were not provided with advice nor
were they annotating an existing text. LASAD supports
advice through an optional JESS-based system called the
AFEngine [13, 3] which we are using in present studies. As
part of this work we have shown that it is possible to reli-
ably grade student-produced argument diagrams and essays,
and that the expert-assigned diagram grades can be used to
predict essay performance [4]. We have also shown that it
is possible to make automatic predictions of student essay
grades via regression models [5]. In the present paper we
focus on individual rule evaluation.

2. METHODS
Data for this study was collected in a course on Psychologi-
cal Research Methods in Fall 2011 at the University of Pitts-
burgh (see: [4]). Students in this course are taught study
design, analysis, and ethics. The course is divided into lab
sections. As part of the course students are required to con-
duct two empirical research projects including hypothesis
formation, data collection, analysis, and writeup. Each lab
jointly identifies a research topic and collaborates in data
collection. The remaining aspects of planning, analysis, and
writeup, are completed independently.

For the purposes of the study we augmented the traditional
assignment with a graphical planning step. Once the stu-
dents had completed the study design and data collection
they were now required to plan their arguments graphi-
cally using the LASAD diagramming toolkit [3]. LASAD
is an online tool for argument diagramming that allows for

customized ontologies, peer collaboration, and annotation.
The students were given a customized ontology with special-
ized nodes representing hypothesis statements, citations, and
claims, and arcs representing supporting, opposing, and un-
defined relationships as well as comparisons between items.

Part of a representative student diagram is shown in Figure
1. The diagram shows a single hypothesis node (#25) at the
lower right-hand corner. This node is supported by a cita-
tion node located on the left-hand side of the diagram (#8)
and opposed by citation node (#6) at the top. These two ci-
tations are, in turn, connected to one-another by a compari-
son arc that states both analogies or similarities between the
nodes and distinctions or differences. This structure forms
a paired counterargument with comparison. Students were
instructed to use it to express conflicting citations and to
explain the source of the disagreement.

The diagrams and essays collected in the course were graded
using a parallel rubric focused on the clarity, quality, per-
suasiveness, and other aspects of the argument. Grading
was carried out by an experienced TA and reliability was
tested in a separate inter-grader agreement study (see [4]).
In that study we found that 5 of the 14 criteria were reliable
and we focus on them below. The criteria chosen focus on:
the quality of the research question (RQ-Quality); whether
or not the hypothesis can be tested (Hyp-Testable); whether
the author explained why the cited works relate to their ar-
gument (Cite-Reasons); and whether or not the hypothesis
was open or untested (Hyp-Open). The final one measured
the overall quality of the argument presented (Arg-Quality).

As part of this study we identified a set of 77 unique graph
features for analysis. 34 of these were simple features such as
the order and size of the diagram, the number of nodes and
arcs of each type, and the amount of text in each node. Some
of these were previously evaluated with legal arguments and
found to be informative [6]. We also identified 43 com-
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t.Type ∈ {“Hypothesis′′, “Claim′′}

a.Type = “Citation′′

b.Type = “Citation′′

c.Type = “Comparison′′


Figure 2: R07: Uncompared Opposition A simple
augmented graph grammar rule that detects uncom-
pared counterarguments. The rule shows a two cita-
tion nodes (a, & b) that have opposing relationships
with a shared hypothesis or claim node (t) and do
not have a comparison arc (c) drawn between them.
The arcs S and O represent recursive supporting
and opposing paths.

plex features that were designed to identify pedagogically-
relevant subgraphs such as the paired counterarguments dis-
cussed above, unfounded hypotheses, and incorrect appli-
cations of individual arcs. These complex features were
encoded as Augmented Graph Grammars and were evalu-
ated using the AGG Engine [4]. Augmented Graph Gram-
mars are a rule formalism that supports complex field con-
straints such as text criteria and multiple sub-fields as well
as comparisons between nodes. The features were identified
by domain experts based upon examination of previously-
collected diagram and essay data and a-priori assumptions
about the structure of good and poor data.

One such rule is shown in Figure 2. This rule detects R07:
Uncompared Opposition. This occurs when two citation nodes,
a & b, disagree about a shared hypothesis or claim node t
with one opposing it and the other supporting and the user
has not drawn a comparison arc between them to explain the
disagreement. Students were trained to represent opposing
citations with distinct nodes and then to explain that dis-
agreement via a comparison arc. This rule tracks violations
of that guidance and would not match the subgraph shown
in Figure 1 which has a comparison arc.

For each diagram we collected a frequency count for the in-
dividual features and performed a series of pairwise compar-
isons mapping the observed frequencies to the paired essay
grades. The comparisons were made using three candidate
distributions: raw count, logarithmic, and binary. For anal-
ysis purposes the essay grades were normalized to a range of
(0−1). The statistical comparisons were made using Spear-
man’s ρ, a nonparametric measure of correlation in the range
(−1 ≤ ρ ≤ 1) with −1 indicating a strong monotonically de-
creasing relationship and 1 a strong increasing one. ρ was
chosen as it is robust in the face of nonlinear relationships.

3. RESULTS
We collected a total of 132 original diagrams and 125 es-
say introduction drafts from the course. After dealing with

dropouts and incomplete assignments we obtained 105 unique
diagram-essay pairs 31 of which were authored by individu-
als with the remaining 74 were authored by a team of 2-3.
Of the features tested we found that eight of the simple
features had statistically- or marginally-significant correla-
tions between one or more of the grades and that all of the
grades were significantly correlated with at least one sim-
ple feature. The weakest such correlation was between the
Order or the number of nodes in the diagram (ln |Gn|) and
the grade Cite-Reasons (log: ρ = 0.162, p < 0.098). This
is consistent with our expectations given the work in [6].
The strongest such correlation was between the presence of
a hypothesis node (Elt Hypothesis) and the testability of the
hypothesis (Hyp-Testable) (bin: ρ = 0.383, p < 0.001).

We found that 19 of the complex features were correlated
with at least one of the grades and again all the questions
were related to at least one feature. Here the weakest cor-
relation was between the absence of a hypothesis node and
Cite-Reasons (bin: ρ = −0.166, p < 0.09). The strongest
correlation was between the amount of uncompared opposi-
tion (See Fig 2), that is the number of opposing citations
without a comparison arc, and the grade for the openness of
the hypothesis (Hyp-Open) (log: ρ = 0.396, p < 0.001).

Of these correlations some, such as the correlation between
the presence of a hypothesis and the testability mentioned
above, validate our a-priori assumptions. Hypothesis nodes
are central to the entire argument and the empirical re-
sults validate their importance. We also found that the
number of paired counterarguments, conflicting supporting
and opposing nodes of the type shown in Figure 1, was
positively correlated with the openness of the Hyp-Open
((raw)ρ = 0.323, p < 0.001). This was consistent with the
instructions given to the students about how disagreements
were to be presented and thus these results are promis-
ing. Moreover, we found that the presence of hypothe-
sis nodes with no connection to a citation (undefined un-
grounded hypothesis is negatively correlated with both Cite-
Reasons (log: ρ = −0.226, p < 0.02), and Arg-Quality (log:
ρ = −0.219; p < 0.025). This too reflects the need to ground
the discussion in the appropriate literature.

While these results were positive a number of other signif-
icant correlations did not validate our assumptions. One
notable example was the positive correlation between the
uncompared opposition and Hyp-Open discussed above. We
also found that the presence of unopposed hypotheses pos-
itively correlated with Hyp-Testable (log: ρ = 0.196, p <
0.045), and that the number of unfounded claims, claim
nodes not connected to a citation, was positively correlated
with Hyp-Testable (log: ρ = 0.225, p < 0.021).

4. ANALYSIS & CONCLUSIONS
Our goal in this research was to test the individual empiri-
cal validity of our a-priori diagram rules and to demonstrate
the utility of empirical validation for ill-defined domains. To
that end we collected a set of planning diagrams in a Re-
search Methods course paired with graded argumentative
essays. Unlike prior studies these diagrams were collected
in an exploratory system where no automated advice was
given to the students, and the argumentative essays were
both novel, and graded independently with a focus on spe-

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 239



www.manaraa.com

cific features of the arguments and their gestalt quality. In
general, we found that some but not all of the features were
significantly correlated with subsequent grades. Those cor-
relations, however, were not always consistent with the a-
priori assumptions that motivated their construction.

These counter-intuitive results are difficult to explain and
highlight the central challenge of data-driven rule validation.
The Paired Counterarguments, for example, are a positive
diagram structure. Students were instructed to use them
to indicate disagreement and, by extension, the openness
of the hypothesis and research question. The rule defining
them, however, is less precise than the rule defining uncom-
pared opposition shown in Figure 2. Paired counterargu-
ments omit any test for the comparison arc c. Thus all
subgraphs detected by the latter rule will also be detected
by the former. Given that the students were explicitly in-
structed to explain any opposing citations we expected that
the latter rule would be strongly negative while the former
would have a weak correlation at best. The fact that this
was not the case suggests that either the students violated
the instructions consistently or that the data is otherwise
skewed, or that the rules are insufficiently precise to capture
our a-priori assumptions.

We plan to address these limitations in future work by con-
ducting a more detailed analysis of the existing data and by
testing conditional correlations. In the case of uncompared
opposition, for example, the author must have paired coun-
terarguments in order to have the option of drawing a com-
parison arc. Thus it may be more informative to evaluate
the impact of the uncompared opposition on graphs where
paired counterarguments are found. This form of condition-
ing may address the generality of the rules but may require
a larger dataset for us to draw robust conclusions. We also
plan to test this approach on other related datasets that are
presently being collected and to examine the alignment be-
tween the diagrams and essays. While the two elements were
produced and graded separately, we anticipate that a more
detailed tagging process should identify direct mappings be-
tween the diagram components and the essay structures.
These mappings, if found, should enable us to perform a
more direct evaluation of the role that individual structural
elements play in the subsequent essay quality.
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ABSTRACT 

This study investigates variations in how users exert agency and 

control over their choice patterns within the game-based ITS, 

iSTART-2, and how these individual differences relate to 

performance. Seventy-six college students interacted freely with 

iSTART-2 for approximately 2 hours. The current work captures 

and classifies variations in students’ behavior patterns using three 

novel statistical techniques. Random walk analyses, Euclidean 

distances, and Entropy measures indicated that students who 

interacted exhibiting more controlled and systematic patterns 

demonstrated higher quality strategy performance compared to 

students who interacted with the system in more disordered 

fashions. These results highlight the potential for dynamical 

analyses as stealth assessments indicative of students’ degree of 

agency within adaptive learning environments.  
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1. INTRODUCTION 

Adaptive environments often incorporate various elements (e.g., 

customization, games) that promote user control as a means to 

enhance motivation, performance, and learning outcomes [1-2].  

When users take control and exert influence (e.g., through 

choices) over their situation or environment, they are said to have 

a strong feeling of agency [3]. Agency has been shown to be a 

critical component of students’ engagement and subsequent 

learning of academic material. Indeed, it is a widely accepted 

belief in the classroom that giving students control promotes their 

motivation and subsequent learning [4].  

Many game-based learning environments are designed to further 

enhance users’ feeling of agency. Games allow individuals to 

exert influence over the learning environment by leveraging the 

mechanics and features found in popular, non-educational video 

games [11]. For instance, well-designed games frequently present 

players with interesting choices, leading to increased engagement 

and persistence [5]. These games also frequently allow players to 

customize the visual appearance of the features (e.g., player’s 

avatar in World of Warcraft), which has been associated with 

increased immersion and intention to replay a game [6]. By 

adding these elements of agency throughout game-based systems, 

researchers attempt to increase engagement and enjoyment, and 

indirectly improve learning outcomes [7]. 

Despite these theoretical and design considerations, research 

suggests that individuals vary in their ability to exert control over 

their environment [8]. These behavioral variations, however, are 

often hard to capture. One proposed way to measure individual 

differences in controlled behavior is through the use of dynamical 

analysis techniques. These methodologies focus on the fine-

grained and complex behaviors that emerge over time. Dynamical 

methodologies focus on time as the critical variable, thus offering 

scientists a unique means of classifying variation in students’ 

behavior patterns when they are given agency within an adaptive 

system. These methodologies have previously been used to 

investigate nuanced and fine-grained behavior patterns within 

various adaptive systems [10].  

The work presented here builds upon previous research by 

employing three novel dynamical methodologies to act as a stealth 

measure of how variations in behavioral patterns emerge when 

students are presented with high levels of control (i.e., many 

choices) within a game-based environment. Although this level of 

control should lead to high levels of perceived agency for 

students, some may struggle to exert control over such an open 

environment. In this study, we examine how students interact with 

the game-based system iSTART-2, in concert with subsequent 

learning outcomes associated with those behavior patterns. 

The Interactive Strategy Training for Active Reading and 

Thinking-2 (iSTART-2) system was designed to improve 

students’ reading comprehension by providing them with strategy 

instruction [11]. More specifically, the iSTART-2 system trains 

students to use self-explanation strategies while reading 

challenging science texts. This system has been shown to improve 

students’ reading comprehension ability [11].   

iSTART-2 utilizes a game-based environment that was 

specifically designed to increase students’ engagement and 

persistence, factors that have been shown to positively affect 

learning [11].  
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Figure 1. Screen shot of iSTART-2 Selection Menu 

 

The iSTART-2 system consists of two phases: training and 

practice. Within the training phase, students are introduced to and 

provided examples of self-explanation strategies. After training, 

students are transitioned to the practice phase when they are free 

to interact with the game-based interface embedded within the 

system (see Figure 1).  

There are four types of game-based features within iSTART-2. 

Generative practice games require students to write self-

explanations in response to target sentences in science texts. 

Identification mini-games provide example self-explanations and 

ask students to indicate which previously learned strategy was 

used to generate the self-explanation. Personalizable features 

allow students to customize the color and appearance of the 

system interface. Achievement screens offer students a summary 

of their performance levels within the system. In the current study, 

students were free to interact with these features in any way they 

saw fit. 

The current study uses three novel statistical techniques—random 

walks, Euclidean distances, and Entropy scores—to categorize 

nuances in students’ choice patterns that emerge while they 

engage within the iSTART-2 interface. Using these 

methodologies, we investigated students’ choice patterns and the 

impact of variations in those patterns on learning outcomes (i.e., 

self-explanation quality) within the context of iSTART-2. 

2. METHOD 

Participants in the current study included 76 college students who 

were from a large university campus in the Southwest United 

States. The students were, on average, 18 years of age, with a 

mean reported grade level of college freshman. Of the 76 students, 

58% were male, 55% were Caucasian, 22% were Asian, 7% were 

African-American, 10% were Hispanic, and 6% reported other 

nationalities.  

Students in this study completed one 3-hour session that consisted 

of a pretest, strategy training, game-based practice within 

iSTART-2, and a posttest. During the pretest, students answered a 

battery of questions to assess their prior attitudes and motivation. 

During training, students watched a series of videos that instructed 

them on various self-explanation strategies and their applications. 

After training, students were transitioned into the game-based 

practice portion of the experiment. In this section, students were 

exposed to the game-based menu within iSTART-2 (see Figure 1) 

where they were allowed to interact freely within the system 

interface. Finally, at posttest, students completed a battery of 

questionnaires similar to those in the pretest.   

 

2.1 Measures 
2.1.1 Strategy performance 
During game-based practice, students’ generated self-explanation 

quality was measured using the iSTART-2 algorithm, which 

assigns scores that range from 0 (poor) to 3 (good). This algorithm 

incorporates both latent semantic analysis (LSA) [12] and word-

based measures and has been shown to be reliable and comparable 

to expert human raters across a variety of texts [for more 

information see 13].  

2.1.2 System Interaction Choices 
Within the iSTART-2 system, students can chose to interact with 

a variety of features that fall into one of the four types of game-

based feature categories: generative practice games, identification 

mini-games, personalizable features, and achievement screens. 

All interactions within iSTART-2 were logged by the system and 

then categorized as one of these four types. Tracking students’ 

choices with these four distinct categories of features allows us to 

investigate patterns in students’ choices across and within each 

type of interaction.  

3. QUANTITATIVE METHODS 

To examine variations in students’ behavior patterns within 

iSTART-2, random walks, Euclidean distances and Entropy 

analyses were conducted to investigate how variations in students’ 

choice patterns impact learning outcomes (i.e., self-explanation 

quality) within the context of iSTART-2. The following section 

provides a description and explanation of random walks, 

Euclidean distance, and Entropy analyses. 

Random walks are mathematical tools that provide visualization 

of patterns that manifest within categorical data across time [14]. 

In the current study, we used random walks to visualize and 

capture the fluctuations within students’ interaction patterns with 

iSTART-2 by examining the sequential order of students’ 

interactions with the four types of game-based features (i.e., 

generative practice games, identification mini-games, 

personalizable features, and achievement screens). Each of these 

game-based features was given an assignment along an orthogonal 

vector in an X, Y scatter plot. These assignments are as follows: 

generative practice games (-1,0), identification mini-games (0,1), 

personalizable features (1,0), and achievement screens (0,-1). It is 

important to note that these vector locations are random and not 

associated with any qualitative value. This methodology has 

previously been used to trace students’ interaction patterns within 

the game-based ITS, iSTART-ME [10].  

To generate a unique walk for each student, we placed an 

imaginary particle at the origin (0,0). Then, every time the student 

chose to interact with a game-based feature, the particle moved in 

a manner consistent with the vector assignment. The use of these 

vectors allows us to assign a movement to students’ choices 

within the system. The combination of these movements yields a 

continual pattern or “walk” for each student’s interactions within 

iSTART-2.  
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Figure 2. Actual random walk for one participant 

 

Figure 2 is an actual walk from the current study. This walk is a 

visualization of one student’s interactions within the system. The 

trajectory of the walk suggests that this student interacted more 

frequently with the identification mini-games. Within these 

random walks, there are fluctuations and nuances that may inform 

how controlled students’ choice patterns were. To understand how 

students’ patterns changed, distance time series were constructed 

for each student by calculating a measure of Euclidean distance. 

This calculation was measured from the origin (coordinates 0,0) to 

each step (see equation 1). Within this equation, y represents the 

particle’s place on the y-axis, x represents the particle’s place on 

the x-axis, and i represents the ith step within each student’s walk: 

              

            √       
         

                              (1) 

 

Euclidean distance was calculated for each step in a student’s 

walk, which produced a distance time series. These distance time 

series can then be used to reflect the degree to which students 

controlled their pattern of choices. That is, if students showed a 

systematic pattern in their walk, the distance time series would 

have reflected this controlled pattern through coordinated steps.  

Students’ propensity to engage with the system in an ordered 

fashion was calculated using Entropy [15]. Entropy is a statistical 

analysis that has previously been used across a variety of domains 

as a way to measure random, controlled, and ordered processes 

[16]. Hence, within the current study, Entropy provides a measure 

of how students’ choice patterns reflected controlled versus 

ordered processes.  

Entropy was calculated using the distance time series produced 

from students’ random walks and Euclidean distances (see 

equation 2). Within Equation 2, P(xi) represents the probability of 

a given state.  This means that the Entropy for student X is the 

inverse of the sum of products calculated by multiplying the 

probability of each achieved state by the natural log of the 

probability of that state.  

 (    ∑                

 

   

                    

The Entropy formula in Equation 2, captures the amount of order 

(or disorder) present in a specific time series. Within the context 

of the current study, a low Entropy score suggests highly 

organized choice patterns, whereas high Entropy suggests 

disorganized choice patterns.   

4. RESULTS 

4.1 Entropy 

This study examined how students’ patterns of interactions with 

game-based features influenced the quality of their generated self-

explanation quality. To characterize how students interacted with 

the system, Entropy was calculated using Euclidean distances 

generated from each student’s unique random walk. These 

Entropy scores suggested that students varied considerably from 

controlled to disordered (range =1.32 to 2.32, M=1.83, SD=0.24; 

skewness = -.22; kurtosis = -1).  

4.2 Interaction Choices 
To examine the relation between Entropy scores (i.e., measure of 

order or disorder) and students’ frequency of interaction choices, 

we calculated Pearson correlations. Students’ Entropy scores were 

not significantly related to their frequency of interactions with 

generative practice games (r=-.14, p=.23), identification mini-

games (r=.05, p=.65), personalizable features (r=.03, p=.77), or 

achievement screen views (r=.09, p=.43). Thus, patterns in 

students’ choices were not related to any specific feature within 

iSTART-2.  

4.3 Learning and System Performance 

Outcomes 

To examine the effects of agency on performance during practice, 

a median split was performed on students’ Entropy scores to 

profile students according to their patterns of interactions. This 

median split resulted in the creation of two groups: ordered 

students (M=1.6, SD=.15) and disordered students (M=2.0, 

SD=.11). Differences between the ordered and disordered 

students’ self-explanation quality during practice were examined 

using a one-way ANOVA. This analysis revealed that ordered 

students generated higher quality self-explanations (M=1.8, 

SD=.55), compare to disordered students (M=1.6, SD=.44), 

F(1,74)=4.78, p=.03, 2=.101.  

A similar one-way ANOVA was used to examine differences 

between ordered and disordered students’ game performance 

within iSART-2. These results revealed that ordered students also 

earned significantly more trophies (M=1.4, SD=.22) while playing 

the practice games than disordered students (M=.6, SD=.09), 

F(1,74)= 9.17, p=.003, 2=.11. Together, results from both 

ANOVA analyses indicate that students who engaged in a more 

ordered behavior pattern showed significantly better game 

performance relative to students who engaged in a disordered 

behavior pattern. 

5. DISCUSSION 

Researchers have argued that enhancing feelings of agency by 

introducing choice influences students’ engagement and 

ultimately impacts learning outcomes [4]. However, students vary 

in their ability to effectively control and regulate their behaviors 

when presented with this freedom [9]. This variability is often 

missed when researchers use static measures (e.g., self-reports) 

                                                                 
1 Similar trends are found using Entropy as a continuous variable 

to predict self-explanation quality during practice.  

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 243



www.manaraa.com

 

 

alone. Dynamical analyses offer one way to capture variances in 

students’ ability to control their behaviors when they are 

presented with additional opportunities to exert agency.  

The current study made use of three novel dynamical 

methodologies by employing random walks, Euclidean distances, 

and Entropy analyses in an attempt to capture each student’s 

unique interaction pattern within iSTART-2. The current analysis 

is one of the first to use Entropy as a means to provide a stealth 

assessment of students’ patterns of interactions within a tutoring 

environment. These scores reveal trends across time that are 

suggestive of the degree to which students exerted agency within 

the iSTART-2 system.  

Findings from the current analyses fall in line with previous work 

that has shown that students’ ability to regulate and control their 

learning behaviors has a positive impact on learning outcomes [9]. 

Students who acted in a more controlled fashion generated higher 

quality self-explanations during practice. Interestingly, students’ 

controlled patterns of interactions were not related to any specific 

game-based feature. This indicates that it is not about what 

students choose to do, but how they choose to do it. Thus, 

students’ ability to effectively control their behaviors when 

presented with a considerable amount of choice seems to be 

important for immediate learning outcomes. This is especially 

important within game-based environments where students are 

often given considerable control over their learning trajectories 

[10]. Students who exhibit controlled behaviors are likely to be 

experiencing and benefitting from strong feelings of agency, as 

intended by the design of these learning environments. 
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ABSTRACT 

Learning progressions (LPs) are a recent educational theory 

pertaining to student modeling. LPs argue that students with equal 

test scores may nonetheless have different conceptualizations of 

the material, with varying degrees of maturity. However, there is 

little empirical validation for LPs. To this end, we mapped two 

physics LPs (one predefined, one described in the paper) onto the 

answer choices of a popular conceptual physics test (the Force 

Concept Inventory; FCI). We then assessed 444 high school 

physics students using a pretest-posttest design. Students with 

more mature incorrect answers on the pretest performed better on 

the posttest than their less mature counterparts. We discuss 

implications for theorists and practitioners in learner modeling.  

Keywords 

Learning Progressions, Learner Models, FCI, Intelligent Tutoring 

Systems 

1. INTRODUCTION 
Students arrive at a learning session with a wide variety of 

backgrounds, skills, knowledge, and abilities. These individual 

differences imply that each person cannot be expected to learn the 

same way and at the same speed as another [3]. A set of learner 

characteristics which impact learning is referred to as a learner 

model. A learner model allows instruction to be tailored to each 

individual student with the goal of maximizing learning for that 

student. As a student progresses through a learning session, her 

learner model is updated based on the quality of her contributions. 

One novel approach to learner modeling relies on a research 

framework called Learning Progressions (LPs), developed 

recently by the science education research community as a way to 

increase adaptivity in traditional instruction. LPs have been 

defined as “descriptions of the successively more sophisticated 

ways of thinking about an idea that follow one another as students 

learn” [12, 13]. LPs provide a promising means to organize and 

align content, instruction, and assessment strategies to give 

students the opportunity to develop deep and integrated 

understanding of concepts. LPs can be viewed as incrementally 

more sophisticated ways to think about an idea that emerge  

 

 

 

 

 

naturally while students move toward expert-level understanding 

of the idea [4]. LPs define qualitatively different levels of 

understanding of big ideas. The levels can be sequentially related 

or the relation could be more complex. For instance, topic A may 

develop the ideas from a less sophisticated topic B but also 

connect to other topics. LPs are organized in levels of 

understandings which reflect major milestones in learners’ 

journey towards mastery. The lower level, called the Lower 

Anchor, represents naïve thinking typically associated with 

novices. The top level, called the Upper Anchor, represents the 

mastery/expert level of understanding.  

Each student’s LP level can presumably be determined from the 

quality of her contributions, just as with a generic learner model. 

Traditional assessment typically treats all wrong answers as 

equally wrong. An LP framework, in contrast, would argue that 

not all wrong answers are equivalent, and that two answers, while 

both incorrect, may reflect vastly different milestones on the path 

to mastery. Thus, students with similar assessment scores may still 

have vastly different understandings of the topic. In this case, the 

LP theory would expect a student at a higher LP level would 

reach mastery faster than the student at a lower LP level. Despite 

an increase in the popularity of learning progressions, there is 

surprisingly scant empirical evidence to support these claims [16]. 

In this paper, we describe a new LP (i.e., relative LP levels of 

various responses) for two physics topics (Force & Motion, 

Newton’s 3rd Law) on a popular physics assessment tool, the 

Force Concept Inventory (FCI). Each incorrect answer choice was 

classified as a higher LP level answer or lower LP level answer. 

Using pretest and posttest FCI scores collected from 444 high 

school physics students, we also report a preliminary investigation 

into the efficacy of these FCI LP maps. A learning progression 

framework would predict that students with generally ‘better’ 

incorrect answers on a given pretest topic would be closer to 

mastery than those with ‘worse’ incorrect answers, and this would 

be reflected by higher posttest scores for those closer to mastery. 

If this is the case, it would provide data-driven (or bottom-up) 

support of our conceptually-driven (top-down) LP map. 

2. MATERIALS 

2.1 Force Concept Inventory 
The Force Concept Inventory (FCI) is a 30-item multiple-choice 

"test" designed to assess students’ understanding of the most basic 

concepts in Newtonian mechanics [7]. The FCI presents students 

with various situations and asks them to choose between 

Newtonian explanations for the phenomena, versus common-

sense alternatives [8]. The FCI has been widely used to measure 

learning in introductory physics courses. For example, Hake [6] in 

combination with Coletta and Phillips [2] used the FCI to measure 
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learning in 73 university and college introductory physics classes. 

Its popularity among researchers was a major motivation for 

developing an LP map for the FCI as part of our DeepTutor 

project whose aim is to develop the first intelligent tutoring 

system based on learning progressions [15]. Another attraction 

was that the FCI was designed to identify known misconceptions 

that students often possess [8]. The vast majority of these “lures” 

can easily be classified and incorporated into an LP framework.  

2.2 Developing LPs 
The FCI covers multiple concepts in Newtonian mechanics, 

including Free Fall Near Earth, Circular Motion, and Newton’s 3rd 

Law. The predominant concept, however, is Force & Motion. The 

Force & Motion LP used for this paper was identical to the one 

developed by Alonzo and Steedle [1]. The higher levels were 

defined so as to meet national standards for 8th grade students. 

The 8th grade Force & Motion standards are applicable to the high 

school standards and match the top level of understanding 

expressed in the FCI. The lower levels were then populated by 

compiling student’s ideas about Force & Motion reported in the 

literature. These ideas were then ordered by relative difficulty. 

The LP was then iteratively revised based on data collected from 

physics novices. 

Although the FCI is predominantly focused on Force & Motion, it 

does address other Newtonian concepts, such as Newton’s 3rd 

Law, which are not mapped by Alonzo and Steedle [1]. Hence, a 

Newton’s 3rd Law Learning Progression was developed with the 

direction of two physics professors. The method used to develop 

this LP was based on Alonzo and Steedle’s [1] process described 

above.  

First, we defined the top level of the hypothetical Newton’s Third 

Law LP as the knowledge needed to articulate and apply 

Newton’s Third Law. The knowledge of Newton’s Third Law 

specified by the top level of our LP matches that specified for 

grade levels 9-12 in the National Science Education Standards 

[11]. The lower levels were student’s ideas about Newton’s Third 

Law reported in the literature [e.g., 9, 10, 17] and ordering these 

ideas based on suggestions from the literature and/or the intuitions 

of two physics professors regarding the relative difficulty.  

Next, we collected responses from 30 paid workers from Amazon 

Mechanical Turk, each of whom answered 22 open-ended 

Newton’s 3rd Law questions. The responses were coded according 

to the LP, and refinements to the LP were made as necessary to 

accommodate student’s responses. Table 1 presents the revised LP 

for Newton’s Third Law.  

A team of two physics professors and two authors of this paper 

collaborated to map each of five answer choices from each of nine 

FCI questions according to the LPs. The LP map is shown in 

Table 2. Five of the questions corresponded to the Force & 

Motion topic, and four addressed Newton’s 3rd Law. These 

questions were specifically selected for this analysis for two 

reasons. First, each question and answer choice was related only 

to one specific topic. Second, the incorrect answer choices 

exhibited a distinct and unambiguous separation in quality of 

comprehension according to the physics professors.  

 

Table 1. Newton’s 3rd Law LP 

5 

The student understands that all forces arise out of an 

interaction between two objects and that these forces are 

equal in magnitude and opposite in direction. 

4 

The student identifies equal force pairs, but indicates that 

both forces act on the same object. (For the example of a 

book at rest on a table, the downward gravitational force 

exerted by the earth on the book and the upward normal 

force exerted by the table on the book are identified as an 

action-reaction pair.) 

3 
The student uses the effects of a force as an indication of 

the relative magnitudes of the forces in an interaction. 

2.5 
The student indicates that the forces are equal because of 

the properties of the objects involved. 

2 

The student indicates that the forces in a force pair do not 

have equal magnitude because the objects are dissimilar in 

some property (e.g., bigger, stronger, faster). 

1 
The student believes that inanimate/passive objects cannot 

exert a force. 

0 
No statement about relevant interaction forces or Newton’s 

3rd Law 

 

 

 

Table 2. LP map for upper and lower levels  

 Newton's Third Law Question and Answer maps 

 N3L1 N3L2 N3L3 N3L4  

Upper a, d b, c b, c d  

Lower b, c d, e d, e a, b, c  

      

 Force & Motion Question and Answer maps 

 FM1 FM2 FM3 FM4 FM5 

Upper a, d c, e d a, b a, b 

Lower c, e b, d a, b, e c, d d, e 

note: We have removed the actual question numbers to avoid 

making the FCI answer key public knowledge. Please contact one 

of the authors for the actual FCI question numbers. 

 

2.3 Data Collection 
We administered the FCI to 444 students at three public and two 

private high schools in the mid-south region, across six teachers 

and 26 classrooms. The students completed the FCI twice, once at 

the beginning of the semester (pretest) and once at the end 

(posttest). Between those two time periods, each classroom 

covered topics relevant to the FCI, though individual course 

content varied. Students completed the FCI via provided scantron 

sheets, which were then collated and processed. The results of the 

scantron sheets were then compared to direct markings on the 

actual FCI test in the case of blank or unidentifiable scantron 

responses. There were five students with perfect scores on the five 

Force & Motion questions and 19 students with perfect scores on 
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the four Newton’s Third Law questions. These students were not 

included in the respective analyses below. 

3. RESULTS 
Prior student knowledge was assessed using the initial 

administration of the FCI (pretest). The mean proportion score of 

the FCI pretest was 0.26, with a standard deviation of 0.15 (see 

Table 3). Six students recorded the minimum observed score 

(1/30), whereas one student attained a perfect score (30/30). A 

one-sample t-test indicated the mean pretest score was higher than 

chance (0.2), t(443) = 7.57, p< .001, though only slightly. Low 

prior knowledge was ideal for our purposes, of course, providing 

a large sample of incorrect answers.  

 

Table 3. FCI Pre-Post descriptives by school 

Course N Pre M (SD) Post M (SD) d 

Public 1 (Pu1) 116 0.20 (0.10) 0.22 (0.11) 0.13 

Private 1 (Pr1) 25 0.19 (0.09) 0.29 (0.10) 1.03 

Public 2 (Pu2) 94 0.27 (0.14) 0.42 (0.16) 0.94 

Private 2 (Pr2) 128 0.33 (0.20) 0.47 (0.22) 0.68 

Public 3 (Pu3) 81 0.21 (0.10) 0.29 (0.13) 0.74 

Total 444 0.26 (0.15) 0.35 (0.19) 0.55 

 

After assigning student answer choices to the corresponding LP 

levels described above, we compared the posttest performance of 

students with more incorrect answers corresponding to the upper 

level of the LP map on the pretest with students who had more 

incorrect answers corresponding to the lower level. For example, 

a student with one upper level answer and three lower level 

answers would be assigned to the lower level group (irrespective 

of number of answers correct). To be conservative, students with 

an equal number of upper and lower level answers were assigned 

to the lower level.  

The comparison of posttest scores, including descriptive statistics, 

independent samples t-tests, and Cohen’s d, is displayed in Table 

4. Across both topics, students in the upper level had higher 

posttest scores than students in the lower level. Additionally, the 

findings were associated with small to medium effect sizes. 

Although this provides initial support for the LP hypothesis, it is 

possible that these differences in posttest scores are actually being 

driven by prior knowledge (i.e., pretest scores). Accordingly, an 

analysis of covariance (ANCOVA) was used, with pretest scores 

as a covariate to control for prior knowledge. Even when taking 

pretest scores into account, there were still differences in overall 

posttest scores between the upper and lower levels for the Force & 

Motion LP, F(1, 418) = 12.78, p < .001, ηp
2 = .03. Differences on 

overall posttest scores between the upper and lower levels for the 

Newton’s 3rd Law LP were marginally significant, F(1, 405) = 

2.92, p = .088, ηp
2 = .01. The marginal significance is likely due 

to the fact that the five Force & Motion questions are more 

relevant to the rest of the FCI than the four Newton’s 3rd Law 

questions. 

 

Table 4. Posttest descriptives for lower vs. upper level 

 Lower Level Upper Level   

Topic N M (SD) N M (SD) t d 

N3L 115 0.30 (0.17) 310 0.35 (0.18) 2.50 0.28* 

FM 131 0.30 (0.15) 308 0.37 (0.19) 3.70 0.40* 

* p =< .01;    N3L = Newton’s 3rd Law;   FM = Force & Motion 

 

4. DISCUSSION 
In this paper, we presented a method used to develop a novel 

Newton’s 3rd Law Learning Progression. This LP as well as a 

previously developed Force & Motion LP were then mapped onto 

a popular physics assessment tool, the Force Concept Inventory. 

FCI pretest and posttest scores were collected from over 400 high 

school physics students. Unlike traditional assessment, an LP-

based student model assumes that not all wrong answers are 

equally wrong. Hence, we predicted that students whose incorrect 

pretest answer choices corresponded to a relatively lower LP level 

would be further away from mastery, and this would then be 

reflected in students’ posttest scores. The results provided support 

for this claim, and are also among the earliest evidence-based 

support for learning progressions in general.  

It should also be noted that the FCI LP map was able to predict 

overall (30-item) posttest scores based only on incorrect pretest 

answers of, at most, five questions. The results were also agnostic 

to instruction type and quality. Relatively stronger effects were 

observed with the Force & Motion topic than with Newton’s 3rd 

Law. This is likely due to the fact that many other FCI questions 

draw on Force & Motion comprehension, whereas none of the 

other twenty-six FCI questions apply to Newton’s 3rd Law outside 

of the four discussed in this paper.  

As this is a preliminary report, there are of course many 

limitations. To begin, the FCI is perhaps not an ideal tool to 

investigate learning progressions. It was not specifically 

developed with learning progressions in mind, and the answer 

choices for most questions do not represent all possible LP levels. 

For example, all 20 answer choices for the Newton’s 3rd Law 

topic only represented three out of the possible six LP levels. 

Also, many FCI questions contain answer choices which apply to 

topics not directly related to the topic addressed by the question 

(though again, none of these questions were included in this 

paper). Despite these flaws, however, the FCI is popular, and 

many researchers may be able to apply a learning progressions 

framework to future or even past FCI datasets [14].  

Also, the analyses included in this brief report are relatively 

simple and not comprehensive. As such, although the findings 

provide support for the learning progressions hypothesis, much 

more evidence is needed to fully validate our Force & Motion and 

Newton’s 3rd Law LPs.  

Given the limitations of the FCI mentioned previously, there is 

also a market for a comprehensive physics assessment which 

features answers at a variety of LP levels for each question. For 

example, a question with the correct answer at LP level 4 and all 

four incorrect answers at LP level 1 offers nothing to the student 

model for students with incorrect answers.  
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Another next step is to incorporate learning progressions into the 

learner models of Intelligent Tutoring Systems (ITS; [15]). One of 

the multiple advantages of ITSs over traditional classroom 

instruction is the capacity to adaptively tailor instruction to meet 

the needs of each and every learner [18, 5]. These systems can 

then be scaled up to teach many users at once. This would allow 

for a more thorough investigation into learning progressions, 

including experimental evidence as to whether adaptive 

instruction is beneficial for students at different LP levels. 

Furthermore, advances in natural language processing may allow 

us to detect LP differences in the text of student contributions. 

This could perhaps eliminate the need for a pretest for ITSs.  

Finally, we encourage physics education researchers to consider 

incorporating learning progressions into their learner models. To 

that end, we are currently preparing a manuscript which will 

report the full LP map for all 30 FCI questions. 
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ABSTRACT
Many tutors offer students reference material or tips that
they can access as needed. We have logged data about stu-
dent use of references with Deep Thought logic tutor which
to understand why and how references are used. We find ev-
idence that students use these references in systematic ways
that change over the course of the tutor, and can be predic-
tive of rule application errors. We can use this information
to increase our understanding of which concepts students
find similar, what times during the tutor students feel the
need to use references. Our goal is to eventually incorporate
data-driven feedback based on when and how the references
are accessed.

1. INTRODUCTION
Tooltips are messages that show up when a user hovers over
a GUI element for a small amount of time. It is usually a
small box with text that explains what the GUI element does
[4]. In educational systems, these messages can contain hints
or reference material that are intended to aid the student.
Alonso at el. used tooltips to explain semantic relationships
in a UML tutor [1]; the authors noted that students often
used these tips for verification. White et al expanded upon
the concept of tooltips by making them tangible within a
augmented reality environment [6].

We want to further explore how these tooltips and refer-
ence material are used by students and how they affect
student performance to create more effective interventions
based on previously-collected student reference usage. We
are inspired to add feedback and interventions based on this
reference-data by the results of adding next-step hints gen-
erated from previously collected student solution-data by
Stamper et al [5]. The Deep Thought logic tutor [3] pro-
vides students with logic axiom references when students
hover over axiom icons within the tutor. We added logging
to these hover reference actions to understand how student
use of these references affect tutor performance.

We hypothesize that we will find differences in student per-
formance metrics, such as error rate, based on their axiom-
reference usage. We also expect that the way the references
are used will change as students progress through the tutor.

We find that usage of references before a tutor action cor-
responded with a larger error rate on that action. We also
find that as students progress through the tutor and as the
problems increase in difficulty, they tend to use the refer-
ences more often. Finally, we observe axioms that are ref-
erenced in succession indicating the rules students associate
with each other and the changes in rule association as stu-
dents progress through the tutor. These observations point
towards trends in the collected reference data that provide
better understanding of student actions and will allow us to
create new, potentially better, interventions.

2. METHODS
We collect our data from the Deep Thought propositional
logic tutor [3]. Each problem in Deep Thought provides
the student with a set of premises and a conclusion, and
asks students to prove the conclusion by applying logical
axioms to the premises (see Figure 1). These logical axioms
are separated into three groups based on domain concept,
delineated with different colors in the tutor: logical infer-
ence rules (red), logical replacement rules (blue), and logical
equivalence operations (green).

Figure 1: Example screenshot of the Deep Thought
tutor.

For example, in Figure 1, a student starts with premises
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A → (B ∧ C); A ∨ D; ¬D ∧ E at the top of the proof
window, and conclusion B at the bottom. The student per-
forms SIMP (¬D ∧ E), applying simplification (SIMP) to
the premise ¬D ∧ E and derives ¬D. This leads to the
resulting-state of A → (B ∧ C); A ∨D; ¬D ∧ E; ¬D.

Errors are actions performed by students that are illegal op-
erations of rule-application, or illegal operations of the tutor.
For example: If the student were to apply simplification to
premise A ∨D in the above example, the system would log
this interaction as a rule-application error, as simplification
is not a valid rule that can be used on a disjoint expression.

2.1 Logical Axiom Reference
By default, axiom references show up when a student hov-
ers over the GUI element (button) representing the logical
axiom for two seconds with the mouse pointer. References
are given as an overlay pop-up window next to the corre-
sponding axiom button, displaying the axiom name, a vi-
sual representation of the axiom pre- and post-conditions
with operands and geometric shapes as variables, and valid
direction of axiom application (one-way implication or two-
way equivalence). Examples of these references for the ax-
ioms HS, MP, and MT are provided in Figure 2, and Figure
1 shows how these look in the main window for simplification
(SIMP).

Figure 2: Hover-hints are given as an overlay pop-
up window next to the corresponding axiom button,
displaying the axiom name, a visual representation
of the axiom pre- and post-conditions with operands
and geometric shapes as variables

2.2 Data Preparation
Each row of data logged in Deep Thought represents an
action performed by a student. Every reference is recorded
as a separate action. For the purpose of this study, the data
was pre-processed so that each transaction has a reference
sequence of rules that were referenced prior to it. If there
are no references preceding an action, an empty list and the
corresponding 0 is recorded. In the following example (table
1, the references on row 3 and 4 are compressed down onto
row 5 and the hover on row 7 is placed with the following
action on row 8.

To perform analysis to understand whether hovers are cor-
related to student performance and errors, the number of
hovers in a list and the error of the following action are cor-
related and tallied. Due to the desire to understand whether
or not the number of rules hovered over has an impact, and
not the impact of the number of hover instances, the hover
lists and the corresponding count are then updated to only

Table 1: Reference sequences are constructed from
each reference made before performing an action.

User Ref Rule Ref-Seq # refs User Rule
a1 N HS [] 0 a1 HS
a1 N CD [] 0 a1 CD
a1 Y DS- [DS, MP] 2 a1 MT
a1 Y MP- [] 0 b1 DS
a1 N MT [CD] 1 b1 HS
b1 N DS
b1 Y CD-
b1 N HS

include unique rule instances. Due to only including num-
ber of unique rules hovered over, the number of hovers value
only ranges from 0 to 19 as there are only 19 rules.

A zero in the error column indicates a valid action while the
code 1, 3 and 6 indicate rule-application errors. As shown
in the following example, the error values for all the oc-
currences for each number of hovers is tallied according to
whether it indicated an error or not. For example, for the
number of hovers of value 1, there are three occurrences; one
occurrence has an error code of 0 while two have error codes
of 1 and 3. The two with the error codes of 1 and 3 are
tallied under the # of errors column and the 0 is tallied in
the number of non-errors (see table 2.)

Table 2: Preparation of sequence size vs. errors
Ref lists #Refs Err #Refs Err Other
[] 0 0 0 1 1
[DS, MP] 2 1 1 2 1
[] 0 1 2 1 0
[CD] 1 3 3 0 2
[MT,HS,CD] 3 0
[ASSOC] 1 0
[MT,MT,DS] 3 0
[ABS] 1 1

3. RESULTS
Deep Thought was assigned as a mandatory assignment in a
philosophy deductive logic course. Six ordered levels of prob-
lems were assigned for full completion of the tutor, with each
level comprising of 2–3 problems related to specific logical
rules or proof problem-solving concepts as dictated by the
course curriculum. Completion of an entire level of problems
is required for assignment credit. Deep Thought is run as
an on-line web applet, with students allowed to work unob-
served through the problem sets at their own pace through-
out the semester. There are a total of 47 students who were
logged as using the system for the class; students who have
no log data as a result of an early course drop, or students
who did not attempt the assignment are removed from the
data set. Three students were removed from the data, as
these students altered default system preferences in order to
have the hover-hints show up after 0 seconds of hovering,
which caused problems with data collection; the normal set-
ting is 2 seconds. This results in a total of 44 students used
in this data set.

To explore the connection between the use of references and
rule application errors we calculated the error rate for differ-
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Figure 3: Graph representation of the bigrams of rule reference sequences. The edge thickness is weighted
by the strength of the connection, with edges only drawn if the bigram is greater than 20%. Note how the
references are generally contained within rule categories.

ing numbers of reference use. We tallied the errors and other
interactions, the error rate is calculated for each number of
references as follows,

ErrorRate =
NumOfRefs

NumOfRefs + OtherInteractions
. (1)

The data is then binned by the number of rules within a
string of consecutive hovers (0, 1, 2, 3–4, 5–19). The 0 bin
is chosen to capture where references aren’t used at all. The
1 bin is chosen to catch the behavior of having an action
in mind, using the hover-reference as verification, and the
2 bin is chosen to catch the behavior of confusion between
two rules. The 3–4 bin is chosen to catch the student with
slightly more confusion, traversing rules based on spacial
proximity. The >5 bin is chosen to capture referencing be-
havior that extended over the previous buckets. The results
are presented in Table 3.

Table 3: Error rate after a number of references.

Hovers Errors Interactions Error Rate

0 1201 22907 5.24%
1 104 889 11.70%
2 30 181 16.57%

3–4 14 132 10.61%
5–19 32 173 18.50%

To explore evidence of systematic reference behaviors, we
analyze reference sequences as bigrams [2]. The sequences
were used to generate counts of pair of rules referenced in
secession which were then used as an adjacency matrix where
the percentages represent edge weights (Figure 3). Edges are
only drawn for bigrams greater than 20%.

In order to explore differences in how the references are used
as students progress through the tutor, we generated the
bigrams for all rules separated along conceptual shifts in
the tutor (every two levels). We present all rules with a
bigram greater than 20% during levels 1–2 in the first column
of Table 4, the next two columns represent the change in

bigram association from one level to the next (+ indicates
that the rule is now past the 20% threshold, while - indicates
that it is no longer above the threshold.)

Table 4: Rules and their associations over the course
of the tutor.

Rule 1–2 3–4 5–6

ADD CONJ, DS, MT -DS, -MT
CD CONJ, HS
CONJ HS, SIMP +ADD, +CD,

-HS, -SIMP
-ADD

DS ADD, MP, SIMP -ADD -MP
HS CD, SIMP -SIMP
MP DS, MT
MT ADD, MP +DS
SIMP CONJ, DS +HS

DEM DN, TRANS -DN
DN DEM, HS, -HS, +IMPL
EQUIV COM, IMPL,
IMPL EQUIV, TRANS
TRANS DEM, EQUIV, IMPL -IMPL

To analyze the use of references through the duration of
the tutor, the interactions are broken up by tutor level and
split into whether they were actions taken after the use of
references or were actions without prior referencing. Table
5 shows the results of this analysis across the six assigned
levels.

Table 5: Use of references before actions increases
as student progress through the tutor.

1 2 3 4 5 6

Actions 8256 2771 5110 5098 4424 2493
w/o ref 7862 2655 4779 4756 4082 2260
w/ ref 394 116 331 342 342 233

Percent 4.77% 4.19% 6.48% 6.71% 7.73% 9.35%
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4. DISCUSSION
From Table 3 we find that usage of references before a tutor
action corresponds with a larger error rate on that action.
While this indicates that references alone do not seem to
help students that reference perform better than those that
don’t reference, it does indicate that students that reference
are more likely to make an error so the start of a reference
sequence could be an effective place for an intervention. The
number of errors after a single reference was lower than that
after 2 or >5 references which could indicate that those that
are using references for verification might be less likely to
make an error than those that want to reference multiple
rules. Investigation into the types of errors students made
after two references revealed that 17 out of 30 errors con-
tained only three of the 19 rules (DS, MP, SIMP,) this could
indicate an area of confusion. The 3–4 bin has an unexpect-
edly lower error rate which could be because the students are
thoroughly checking between the rules where their confusion
lies instead of hastily taking a decision earlier. The bigram
analysis supports this extrapolation because it shows that
for any particular rule there are only a few strong connec-
tions, so students that reference 3–4 rules might be hovering
over all the closely associated rules.

Figure 3 represents the bigrams of reference sequences with
significant edge weights where the chance that any student
would reference the second rule immediately after referenc-
ing the first is over 20%. The resulting graph and its clusters
directly correspond to the three rule categories available in
the tutor; this indicates that students tend to systematically
reference rules within these groups (rather than randomly
ask for references.) There are two reasons as to why they
are hovering on rules in the shown order. One could be
that they realize that the rules are related and are referenc-
ing them to learn the differences. Another possible reason
could be that they are referencing rules in geographic prox-
imity and the rules happen to be related since the tutor
was designed to have related rules in one geographic area.
The second explanation would indicate that the placement
of references in a tutor is important to their utilization.

Table 4 provides evidence that students change which rules
they frequently seek references for together over the course
of the tutor. For example in Problems 1–2, after getting a
reference on ADD the student is likely to seek reference on
CONJ, DS, and MT; however in later levels the student is
likely to only seek reference on CONJ. This shows some de-
gree of learning, as the DS and MT rules are not very related
to the ADD rule. The additions of rule associations can also
be an indication of learning as the students are making ad-
ditional connections as they progress. The rule associations
shown are a promising location for new interventions where
if the students are found hovering between unrelated rules,
they can be shown a more effective hint that allows them to
learn more about the references to clear the confusion.

We also found that as students progress through the tutor,
and the problems increase in difficulty, they tend to use the
references more often (Table 5). The students in the first
two levels only consult the references between 4–5% of the
time before choosing an action. This compares to students
in the later levels using the references before 8–9% of their
actions. The increase in levels 5 and 6 could be because

the students must use a larger number of axioms to solve
these problems, but the increase in levels 3 and 4 indicates
that as the levels get more difficult, students feel the need
to reference more before taking an action. The decrease
for level 2 can be explained by the fact that the increase
in difficulty between 1 and 2 is less steep than the increase
between the other levels. From these observations, it can be
extrapolated that an increase in the percentage of actions
taken after referencing indicates that students feel a sense
of higher difficulty which can also be useful information in
making effective interventions.

5. CONCLUSIONS AND FUTURE WORK
We have found that usage of references before a tutor ac-
tion corresponded with a larger error rate on that action,
and as students progress through the tutor, they tend to
use references more often with increased problem difficulty.
Using this information we can aid students working through
the tutor by using reference usage as an indicator for possi-
ble didactic intervention; offering feedback when the system
determines a student having difficulty in tutor by their be-
havior with references.

We have also observed which axioms students tend to seek
references for at the same time, revealing some changes in
rule association as students become more familiar with the
tutor. Using this information coupled with existing knowl-
edge of problem parameters, we can determine which con-
cepts students demonstrate difficulty understanding in the
context of a particular problem, and provide feedback for
those students accordingly.
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ABSTRACT
Natural language tutoring systems generate significant data
during their tutoring sessions, which is often not used to
inform real-time, persistent student models. The current
research explores the feasibility of mapping concept-focused
tutoring sessions to knowledge components, by breaking ses-
sions down into features that are integrated into a session
score. Three classes of tutoring conversation features were
studied: semantic match of student contributions to domain
content, tutor support (e.g., hints and prompts), and stu-
dent verbosity (i.e., word counts). Analysis of the relative
importance of these features and the ability of these features
to predict later task performance on similar topics was con-
ducted. Reinforcing prior work, semantic match scores were
a key predictor for later test performance. Tutor help fea-
tures (hints, prompts) were also useful secondary predictors.
Unlike some related work, verbosity was a key predictor even
after accounting for the semantic match.

Keywords
Student Modeling, Natural Language Processing, Educa-
tional Data Mining, Trialogs

1. INTRODUCTION
Adaptive, natural-language intelligent tutoring systems (ITS)
have been a research goal since the early days of AI. The cur-
rent research focuses on natural language conversation fea-
tures from tutoring sessions instead of more explicit methods

∗Corresponding Author

such as multiple choice questions. In this work, we associate
each natural language tutoring conversation with a knowl-
edge component, then score the session. This approach can
be used in a pure natural language tutoring system to build
a persistent, component-based student model that resembles
those more commonly found in problem-based tutors. Ef-
fectively, tutoring conversations can provide a quasi “stealth
assessment” [12] where the intelligent tutor assesses perfor-
mance without breaking out from the tutoring session.

This study looks at the relative importance of tutoring ses-
sion features and models a reasonable set of regression weights
that could be used to inform an efficient, useful, and in-
terpretable real-time student model. Focus was placed on
preparing this model to transfer across domains. This is be-
cause the model is ultimately intended for a new tutoring
system focusing on natural language tutoring for Algebra I,
but it is being trained on data for a system focusing on re-
search methodology. Additionally, a long-term goal of this
model is to use it inside a generic persistent student model
for AutoTutor-style tutoring [4], which is one major frame-
work for conversational tutoring.

2. BACKGROUND AND RELATED WORK
Forbes-Riley and Litman [2] compared multivariate regres-
sion models to determine the relative usefulness of hundreds
of features from sessions of the ITSPOKE system, a nat-
ural language ITS for physics. A variety of features were
evaluated, which were categorized as either shallow features
(e.g., student verbosity), semantic features (e.g., concept
keywords/# of words), pragmatic features specific to IT-
SPOKE (e.g., number of goals to retry), discourse structure
specific to ITSPOKE (e.g., depth), or local context for di-
alog acts (e.g., bigram speech act pairs). On holdout test
data sets, models with semantic features consistently out-
performed any model without these features, with R2 val-
ues ranging from 0.338 to 0.524 depending on the data sets
used. So then, semantic features appear to be the most
pivotal. Pragmatic features, discourse structure, and local
context all showed some evidence of usefulness for training,
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and on some test conditions, but none had the consistency
of semantic features. Shallow features were not effective
and were dropped when fitting regressions using all features.
Follow-up research based on corpora from both ITSPOKE
and BEETLE II, an ITS for electronic circuit analysis, also
found meaningful correlations with posttest scores based on
the number of semantically-relevant patterns (e.g., stemmed
keywords) expressed by the student [9].

While the work with ITSPOKE indicated a potential for
overfitting when basing models on tutoring behavior (e.g.,
ITSPOKE pragmatics) [2], later research on problem-based
ITS indicates that pragmatic features may still be valuable.
A study on continuous Bayesian knowledge tracing found
that calculating partial credit for each problem based on
the number of hints and bottom-out answers improved esti-
mates of student performance, even though penalty weights
for hints and other support were ad-hoc [13]. This research
noted that greater numbers of hints correlated negatively
with later performance. Since high-performing students are
less likely to need hints, this is somewhat intuitive.

Overall, this review of the literature found that semantic
features are essential predictive features and support (e.g.,
hints) may also be valuable. Verbosity during a session (e.g.,
average words per statement) was also considered as pos-
sibly useful, based on earlier analysis of AutoTutor data.
Prior to the analysis, it was anticipated that higher seman-
tic match scores would correlate positively with later perfor-
mance, while support would correlate negatively with per-
formance. Higher verbosity was expected to be associated
with better performance, but was not necessarily expected
to add value beyond the semantic match.

3. DATA SAMPLE AND FEATURES
This study analyzed a corpus of data collected from the Op-
eration ARA (Acquiring Research Acumen), which is Pear-
son Education’s commercial version of the desktop tutor Op-
eration ARIES (Acquiring Research Investigative and Eval-
uative Skills) [10]. Both ARA and ARIES use natural lan-
guage conversations based on the AutoTutor conversational
framework. Operation ARA tutors research methodology
using multiple methods, including three-way conversations
between a human student and two or more artificial agents
(e.g., trialogs). Operation ARA has three phrases (Training,
Proving Ground, and Active Duty) and 11 chapters. These
phases were preceded by a pretest (2 per chapter, 22 items
total) and followed by a posttest (also 2 per chapter, 22
items total). Each chapter focuses on a particular concept
related to research methodology (e.g., correlation vs. causa-
tion). Only sessions from the Training phase were used as
inputs, since these dialogs are most representative of gen-
erative natural language tutoring (i.e., where the student
attempts to explain concepts).

A set of 192 students across 11 classrooms and 9 instructors
was analyzed in the current study. These subjects were from
a pool of 462 students from 12 class sections in an under-
graduate Psychology course at Northern Illinois University.
Unfortunately, many students were excluded due to lack of
required consent forms (190), missing pre/post tests (42),
or unreasonably fast response times on pre/post tests (38).
The latter group answered test questions in under 5 seconds,

corresponding to a reading speed of over 10 words/second,
far faster than is reasonable to read and methodically select
an answer.

Pretest results were considered as a predictive feature, to
determine the relative effectiveness of the tutoring conver-
sation features against a traditional assessment. The final
posttest results were treated as performance outcomes. Two
chapters were excluded from the reported analysis because
post-test results correlated poorly with pre-test results, rais-
ing some uncertainty over item equivalence. This may just
be due to by-topic differences, as observed in an earlier data
set collected with ARIES [3]. A follow-up analysis including
these chapters found no overall change to model fit or con-
clusions: one topic raised fit, the other reduced it slightly.

Four features were extracted from each session: the average
semantic match score during a session (i.e., average quality
of student responses), the verbosity, and two “help” features
(the number of hints and of prompts). For human state-
ments answering a tutor or computer student question, the
semantic match score and verbosity (number of words) were
extracted. AutoTutor calculates and logs these semantic
match scores as the session unfolds, using Latent Seman-
tic Analysis [7, 4]. The average semantic match (S) and
average verbosity (V ) for student contributions was calcu-
lated. Statements were only included in this average if an
open-ended response would be expected. As a substitute for
average verbosity, a logarithm for verbosity was also calcu-
lated (ln(1+V )). This transform captures the inherent non-
linearity of verbosity: a single word is qualitatively different
than a blank response, but a single word onto a 100-word
statement is seldom important.

Computer agents’ statements were classified by their type,
such as a hint or prompt. For each session, multiple hints
(H) and multiple prompts (P ) may exist. While the se-
mantic match and verbosity of student statements partially
influence the ITS to produce these speech acts, the specific
rule sets and depth of content for tutoring also influences
these values. Effectively, these capture the interaction of
student input with the author’s expert model for when feed-
back was needed.

Finally, while not a dialog feature, a student model needs
to establish the relative importance of more recent dialog
sessions as compared to earlier sessions. Since tutoring in-
creases the student’s understanding, knowledge levels are in-
herently non-stationary and have a certain degree of (hope-
fully positive) drift. The magnitude of this drift will deter-
mine the optimal update rate (λu) for weighting more recent
sessions. For this study, an exponential moving average was
applied (e.g., Xt = λ ∗ xt + (1 − λ) ∗Xt−1, where X1 = x1)
[1]. In a simulated exploration, update rates between 0.4
to 0.8 had higher average model fits, with λu = 0.5 being
representative. While this update rate is not claimed to be
optimal, it was a reasonable starting point. This exponen-
tial moving average smoothed and summed each feature into
a single feature score for a given concept (i.e., chapter).

4. DATA MINING AND MODELING
The analysis presented here had main goals: 1) Determine
which tutoring discourse features contribute unique predic-
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tive value and 2) Determine the relative importance of these
factors for predicting later test performance. Across the
192 students and 9 chapters analyzed, 1067 student-chapter
combinations had at least one tutoring session during the
Training phase and were used as the sample. The majority
of pairs had only one ((656) or two (333) sessions, with a
handful having three (75) or four (3). To note, since lower-
performing students received more tutoring sessions, this
data may over-represent lower-performing students. With
that said, the number of tutoring sessions was not corre-
lated with posttest scores for each chapter.

First, correlations were calculated between the posttest and
time-averaged predictors. Next, three regression models were
fitted to predict posttest outcomes: pretest only, the full set
of tutoring session features, and all features plus the pretest.
These were performed using 10-fold cross validation and on
the full data set using Weka [6]. Then, the LMG (Lindeman,
Merenda, & Gold) method for relative importance of linear
regressors [8] was applied, as implemented in the R relimpo
package [5]. LMG calculates the average R2 contributed by
each factor (e.g., the variance explained) across all order-
ings and combinations of regressors. Relative importance
regressions often produce regression weights that generalize
to new data. A second set of relative importance Pratt re-
gression coefficients was also calculated [11]. Pratt weights
are standardized coefficients (i.e., Beta weights) multiplied
by the correlation between the predictor and outcome (i.e.,
β ∗ ri,out).

5. RESULTS
The correlations between factors followed the expected pat-
terns. Table 5 shows Pearson correlations between the posttest
results and predictors. The pretest (Pre), postest (Post),
semantic match (S), and verbosity (ln(1 + V )) all have
highly-significant, positive correlations with each other rang-
ing from weak to moderate. Hints (H) and prompts (P )
correlate positively with each other, but negatively with the
other variables. The logarithm of verbosity had much higher
correlations with other variables than raw verbosity. For
example, raw verbosity correlated 0.05 (p=0.08) with the
posttest, compared to 0.17 (p<0.001) for the logarithmic
transform.

Table 1: Posttest and Predictor Correlations
Post Pre S H P ln(1+V)

Post 0.14c 0.14c -0.04 -0.08a 0.17c

Pre 0.14c 0.06a -0.04 -0.06a 0.08b

S 0.14c 0.06a -0.62c -0.69c 0.55c

H -0.04 -0.04 -0.62c 0.58c -0.31c

P -0.08a -0.06a -0.69c 0.58c -0.43c

ln(1+V) 0.17c 0.08b 0.55c -0.31c -0.43c -
ap<0.05; bp<0.01; cp<0.001

5.1 Linear Weights
All features (pretest, semantic score, hints, prompts, and
verbosity) improved the linear model during 10-fold cross
validation and on the full data set. Three key models are
shown in Table 2: pretest only, all tutoring features, and the
combined set of predictors (pretest and tutoring). The low
variance explained by the pretest demonstrates the noise in
the data, since pretest values often account for the majority

of the explained variance [2]. In this data set, dialog features
are significantly more predictive than the pretest alone.

Table 2: Variance Explained by Linear Regressions
Predictor Set R2 (Training) R2 (Cross Val.)

Pretest Only 0.020 0.017
Tutoring Only 0.037 0.028
Combined 0.054 0.043

While the overall variance explained is modest, very lim-
ited data was available for each combination of student and
chapter. Most pairs contain only a single session and the av-
erage session had 2.4 student contributions. To look at the
added value for additional sessions, the data was split into
two subsets: single-session (NS = 1) and multiple-sessions
on a chapter (NS > 1). Table 3 shows the model fits for
this split. Discourse features were more predictive when
multiple sessions were available. The combined model with
two or more tutoring sessions outperforms any other model,
and accounts for 8% of training variance and 5.7% for cross-
validation. 81% of the NS > 1 subset have two sessions, so
even adding one additional session captures 1.4% to 2.6% of
the remaining component variance.

Table 3: Impact of the Number of Sessions on
Variance Explained

Predictor Set R2 (Training) R2 (Cross Val.)

Pretest Only (NS = 1) 0.027 0.022
Pretest Only (NS > 1) 0.012 0.005
Tutoring Only(NS = 1) 0.028 0.018
Tutoring Only(NS > 1) 0.072 0.053
Combined (NS = 1) 0.052 0.038
Combined (NS > 1) 0.080 0.057

The remainder of the analysis focuses on the tutoring fea-
tures only. While pretests have predictive value, they are
content-specific and are unlikely to be transferable to a new
domain. Table 4 shows three sets of relative importance
weights for each feature: LMG (contribution to R2), Pratt
(standardized, meaningfully-signed coefficients), and a set
of interpretable unstandardized weights generated by trans-
forming the Pratt weights. LMG and Pratt weights were
similar in relative magnitude, with the exception that the
Pratt weights are signed. Verbosity and semantic match
scores dominate in both cases, with the influence of hints
and prompts almost an order of magnitude lower. With
that said, hints and prompts are still significant predictors
and improve the model fit.

Table 4: Relative Importance Weights
Predictor LMG Pratt Interpretable

Semantic 0.0124 0.0183 1.00
Hints 0.0019 -0.0024 -0.078
Prompts 0.0022 -0.0026 -0.013
ln(1+V) 0.0208 0.0242 0.28

R2 0.037 0.037 0.031

Interpretable weights were generated in a two-step process.
First, each Pratt weight was divided by the sample standard
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deviation for that variable. Second, all of these weights were
divided by the semantic match score weight. These resulting
weights retain the majority of the predictive value on the
training data, so long as predictions are clipped to fit in [0,1].
Rescaling the weights until the intercept is zero tended to
offer a higher fit than other scalings. This occurred when
the semantic match coefficient was close to 1, as displayed
in the above weights (1.045 for the 9-chapter set and almost
exactly 1 when the an additional chapter was considered).
As such, it appears that the semantic match score acts like a
de-facto intercept value. This model was used to predict the
sum of student posttest scores across their included chapters
(i.e., any chapter with a tutoring session). The Pearson
correlation between the sum of each student’s posttest scores
and the sum of predicted knowledge levels was fairly strong
(R2=0.388, p<0.001, N=192).

6. CONCLUSIONS AND FUTURE WORK
The logarithm of verbosity and the semantic match score
were the primary predictors, performing better than even
the pretest items. The high importance of verbosity was
somewhat surprising, given prior work which found little
value for surface features [2]. The difference may have been
caused by this study focusing on the average verbosity on a
particular concept, rather than overall word counts. Addi-
tionally, the logarithmic transform improved verbosity from
a fairly weak correlate to a powerful one. Support such as
hints and prompts was also predictive, and negatively re-
lated to later performance on the posttest. This weaker im-
portance is probably caused by causation from poor seman-
tic match (poor answers make hints more likely) and learning
due to hints (learning from hints offsets worse knowledge).

The model explained significant variance in the overall posttest
score (R2=0.39), but modest variance for each component.
Given that most components had only one short tutoring
session (about 2.4 student contributions) to predict a pair
of posttest multiple choice questions, this is fairly promis-
ing. Using only a handful of student utterances, this model
outperformed balanced pretest items for predicting posttest
component performance. Since even a single additional ses-
sion significantly increased the variance explained, more ses-
sions per concept should improve predictions. Additionally,
the Proving Ground and Active Duty phases add noise be-
tween the Training phase and posttest.

With that said, these results are drawn from tutoring di-
alogs on a single domain with a fairly small number of top-
ics. Follow-up research will test the model on a new domain
(Algebra I), with larger numbers of tutoring sessions per con-
cept. This evaluation will occur during the next year, and
should provide useful information about the transferability
of this tutoring session scoring model to a new domain. Fu-
ture studies will focus on the effectiveness and limitations
of a student model for classifying student performance, once
pilot and evaluation data have been collected.
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ABSTRACT
Recently, Massive Open Online Courses (MOOCs) have
garnered a high level of interest in the media. With
larger and larger numbers of students participating in
each course, finding useful and informative threads in
increasingly crowded course discussion forums becomes a
challenging issue for students. In this work, we address
this thread overload problem by taking advantage of an
adaptive feature-based matrix factorization framework to
make thread recommendations. A key component of
our approach is a feature space design that effectively
characterizes student behaviors in the forum in order to
match threads and users. This effort includes content
level modeling, social peer connections, and other forum
activities. The results from our experiment conducted
on one MOOC course show promise that our thread
recommendation method has potential to direct students to
threads they might be interested in.

Keywords
Thread Recommendation, Massive Open Online Courses,
Matrix Factorization

1. INTRODUCTION
Massive Open Online Courses (MOOCs) have rapidly moved
into a place of prominence in the media in recent years.
MOOC platforms, such as Coursera1 and EdX2, are faced
with course registration and participation in the hundreds
of thousands, and potentially have even larger student
populations. A novel component of online learning courses
is the use of interactive discussion forums where instructors
and students can ask questions, discuss ideas, provide help
to or even socialize with other students. As class sizes grow,
the number of threads per course forum increases rapidly.
Consequently, it becomes more difficult for students to find
what they are looking for or truly interested in.

1https://www.coursera.org/
2https://www.edx.org/

One solution to this problem would be to give each student
a short list of threads that we believe would interest them.
If a forum system could automatically detect user interests
to generate personalized thread recommendations, it would
make it much faster and more convenient for students to
find the threads they want to participate in. Additionally,
this would decrease the amount of time that new questions
go unanswered by directing appropriate users there. A
student’s potential interest in a thread is largely determined
by the match between the student’s preferences and the
content focus of the thread.

In this work, we propose a model for thread recommendation
in MOOC discussion forums that addresses issues caused by
massive thread volumes and help students to answer their
fellow students’ questions more quickly. To do this, first
we use content level indicators of threads students have
participated in to capture their preferences over threads,
which helps to do latent matching between threads and
students’ interests; then we design an adaptive time window
matrix factorization model to take students’ behavior in
the current time window and predict their behavior in the
following time window; finally, we conduct experiments on
one Coursera3 course, and demonstrate that our model gives
significantly improved performance over several baselines.
Quantitative analysis, including exploration of differing
window sizes, is provided to validate our approach.

2. RELATED WORK
Considerable prior research on MOOCs has focused on
concerns related to activities in MOOCs apart from dis-
cussion, such as watching videos, peer grading [11], and
dropout [6]. Previous work in a variety of other contexts [2]
explores student activities in discussion forums. In that
work, the underlying hypothesis is that participation in
learning-related activities such as discussing and sharing,
could have a positive influence on knowledge gain [3]. Neo-
Piagetian theory on collaborative learning suggests that
discussion provides opportunities to experience cognitive
conflict, which potentially produces learning [10]. In a
classroom setting, Wood et al. [14] explored how learner and
tutor interaction influence learning outcomes, which further
argues for a relationship between participation in discussion
and students’ learning. Thus, discussion participation is
an important activity to support as it is another source of
knowledge and learning within a MOOC.

3https://www.coursera.org/
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In terms of the context of MOOCs, where the interaction
with or guidance from instructors are limited, and dropout
in these massively enrolled environments is very high, it
becomes more necessary to improve the participation and
engagement of students in the course [9]. One direct
indication of students’ commitment in MOOCs is their
activities in the discussion forum. Those discussion threads
focus on questions and confusion about lectures, including
clarification requests about assignments or exams. Other
times they are off-topic or just socializing [7]. Finding an
earlier thread that answers one’s questions or applies to one’s
interests among such a large set of threads is challenging.
This becomes even worse for students who created threads
seeking help since their potential helpers may simply
not find them [13]. Thus, thread recommendation (i.e.,
the production of a short list of potentially interesting
threads) has great potential for increasing the value and
approachability of MOOC discussion forums.

Existing work in question recommendation mainly focuses
on online discussion forums such as Yahoo! Answers [12].
For instance, the work by Hu et al. [8] introduced a
user modeling method that estimates the interests and
professional areas of each user in order to generate a suitable
user set to answer a given question. However, MOOC
discussion forums frequently lack the rich information that
generic online forums have, such as user reputation (which
would be important here because threads of a highly reputed
person is more likely to attract others’ attentions) [1].
Besides, students in a MOOC forum differ from common
users of more typical types of web forums, since their length
of participation is typically only around eight weeks in
the forum and most students choose to drop out as time
proceeds [15]. Thus, research is needed to determine how
best to take advantage of expertise in MOOC forums so
that the thread recommendation problem is solvable. To
the best knowledge of the authors, this is the first work on
thread recommendation in MOOC forums.

3. THREAD RECOMMENDATION
We introduce the adaptive feature-based matrix factoriza-
tion (MF) framework that we use to recommend threads
to students in this section. To begin with, we describe
the adaptive MF framework, then we explain how we
incorporate content level modeling, social peer connection
and other contextual information into our framework.

3.1 Adaptive Matrix Factorization
Classical matrix factorization (MF) [5] could address the
thread recommendation problem efficiently. MF constructs
a reduced representation that mediates some feature based
representation of users and threads. That representation can
then be used to match users with appropriate threads. How-
ever, different from traditional product recommendation,
for MOOC thread recommendation one important property
is that each time a student logs into the forum, they are
more likely to participate in threads that were posted more
recently. New threads are more likely to be relevant to
the current subject in the course while old threads may be
irrelevant to them. Taking advantage of both the MOOC
property and state-of-art matrix factorization framework,
we propose an adaptive matrix factorization model. We

illustrate how we design this adaptive model in two steps
as follows.

In the first step, we give a detailed formulation of the feature
based matrix factorization. Formally, suppose we have three
feature sets G, M , and N called global features, student
features and thread features, respectively. α, β, and γ are
the extracted feature values. α is for global features, β
is for student features, and γ stands for thread features.
Then, for each record user, thread, and participation or not
indicator, < u, t, ru,t >, the predicted score r̂u,t is defined
as follows (pu and qt are latent vectors associated with users
and threads):

r̂u,t = µ+ (
∑

g∈G γgbg +
∑

m∈M αmb
u
m +

∑
n∈N βnb

t
n)

+
∑

m∈M αmpm
T ∑

n∈N βnqn
(1)

The global features are used to incorporate information
which is related to all students and threads, i.e. tendencies
that hold for the entire forum. Meanwhile, student features
and thread features can capture the information related only
to specific students or threads. When the indicators of
student and thread are the only student and thread features
without any other global features, this feature-based matrix
factorization model naturally degenerates to classical matrix
factorization. This matrix factorization framework gives us
the ability to incorporate as many features as desired.

In the second step, we elaborate how we adapt the basic
framework into the adaptive model. Firstly, we define a
time window of size ∆ that moves along the course weeks.
In order to recommend threads to students in week w, our
feature-based matrix factorization will be trained only on
the data between time w−∆ and w− 1. If w ≤ ∆, only the
data between week 1 and week w−1 is utilized. Additionally,
the candidates for recommendation are only active threads,
which are threads that were posted or received at least one
reply during the time window. Since the time window slides
across the course period, the performance of our model can
be evaluated by averaging the performances of each week.

3.2 Contextual Modeling
In this section, we present several contextual aspects that
we incorporate into the adaptive feature-based matrix
factorization framework.

Content Level Modeling: We assume that students’
preferences over threads are approximately equivalent to
their preferences for the contents of those threads. To
exploit the content of the thread to do the latent matching
between threads and the interests of students, we represent
the content of the thread as a bag-of-words [16]. Thus,
we can transform the problem into whether the student is
interested in the words or topics in the thread, rather than
the thread itself. Intuitively, a thread question t consists
of a set of words W (t) out of the entire word set Z. This
content level modeling is formulated as follows:

r̂u,t = bias+ pu
T (qt +

∑
w∈W (t) φw

|W (t)| ) (2)

bias is some constant representing generalized possible
biases and |W (t)| is the number of word contained in thread
t. φw captures the influence of word w on students.
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Figure 1: Why do we need a thread recommendation system in MOOCs? For students, it is hard to find
which threads among thousands they want to participate. Our designed Thread Recommender System, can
fully leverage these features and provide accurate recommendations.

Social Peer Connections: Students who interact fre-
quently in the forum share similar engagement conditions
and similar learning interests toward the course. Here, we
use the connections between a student and their close peers
S(u) to capture peers’ influence on students. We define the
close peers as the top students who have the most interaction
occurrences with student u based on replies. This peer
influence could be characterized as follows. (ϕv models the
influence ability of the student v as a peer on other students.)

r̃u,t = bias+ (pu +

∑
v∈S(u) ϕv√
|S(u)|

)T qt (3)

Forum Activity Modeling: For student related features,
the number of different threads students participated in
before the current week (Thread Count) shows their
historical participation level, while the number of posts
made in the previous week (Previous Count) is recorded
to reflect their recent activity level. Cohort representing
when this student registered for the course can be treated
as a proxy for the level of motivation(i.e. early course
registration indicates initiative motivation). The number
of replies and comments Reply Number is counted as
a thread feature. Thread Length representing the total
number of words appearing in the thread is also computed.

4. EXPERIMENTS
In this section, we introduce the dataset, experiment setup
and baselines. Then we discuss our experimental results
along with the adaptive window size exploration.

4.1 Experiment Setup
We conducted our experiments on one Coursera course,
‘Learn to Program: The Fundamentals’, shortened to
‘Python Course’. It has 3590 active students who have
at least one post in the forum and 3079 threads across
around eight weeks, based on which we performed the time
window evaluation. For each thread, we have its replies and
comments; threads’ contents and students’ registration time
are also available. Mean Average Precision (MAP) [4] is our
evaluation metric. Specifically, we use MAP@1, MAP@3,
and MAP@5 to evaluate the performance. Our analysis is
limited to only behaviors within the discussion forums.

To make our analysis clear and concise, we define some
notation here. Content level modeling is denoted as C ;
we denote social peer connections as P ; the student related
features are S, and thread related features as T. Specially,
we use All to denote the integration of all aspects of the
features. We empirically set the size of the time window
as 2 weeks. That is, when we predict the preferences of
students over threads in week 2, only the data in week 1 is
used to train the model; likewise, to make the prediction in
week 5, the forum history in week 4 is used.

Baselines used in this work include Popularity (PPL)
which conducts thread recommendations based on thread
popularity, Directly Content Match (DCM) which
recommends threads based on how similar the content of the
thread is to the post history of the student, and Classical
Matrix Factorization (MF) that maps students and
threads into the same latent space without contextual
information. Our proposed Adaptive Matrix Factoriza-
tion (AMF) utilizes the rich contextual information via
encoding different information into its feature space. We use
the notation AMF-{All} to describe a model using all types
of features. AMF-{C} means that only content features are
used in the AMF model.

4.2 Recommendation Performance
In this section, we present the recommendation results from
one MOOC. Based on the results of different models shown
in Table 1, we could observe that the DCM is the worst
among all models. The performance of the MF model is at
least 0.02 higher than the PPL model regarding to MAP@1,
MAP@3 and MAP@5. The series of AMF models, which
contain each aspect of our designed four aspect features, has
better performance over PPL and MF. This demonstrates
that each type of feature makes an important contribution in
capturing the latent matching between interest of students
and the topics involved in threads. One notable point is
that the Student Forum Activity Modeling feature set is
better than any of the other single feature dimensions. Fully
combining all types of features makes the best model, which
indicates that the four types of features capture different
aspects of modeling of the latent matching between students
and threads.
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Method MAP@1 MAP@3 MAP@5

PPL 0.154 0.254 0.307
DCM 0.092 0.198 0.172
MF 0.171 0.280 0.332

AMF-{C} 0.177 0.282 0.340
AMF-{P} 0.178 0.286 0.340
AMF-{S} 0.183 0.290 0.341
AMF-{T} 0.174 0.280 0.334

AMF-{All} 0.198 0.323 0.376

Table 1: Average Results on Python Course
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Figure 2: Window Size Exploration

4.3 Window Size Exploration
One important parameter in our adaptive MF model is the
window size. We explained that we chose two weeks as
the proper time window size. In this section, we describe
how we tune this parameter and how the recommendation
performance changes as window size increases. We only test
how the performance of the best model AMF-{All} changes
as window size changes. The results of the MAP changing
curve is presented in Figure 2. We can observe that AMF-
{All}’s performance is always decreasing as the window size
increases. This makes sense because when students log into
the forum system, they are more likely to pay attention to
recent threads. In conclusion, students’ activities in very
recent weeks are more predictive of their participation in
the later week. The smaller the window size, the better the
thread recommendation performance.

5. CONCLUSION AND FUTURE WORK
In this work, we created a thread recommendation system
for MOOC discussion forums in order to improve the learn-
ing experience of students. For this purpose, we proposed
an adaptive matrix factorization framework to capture the
affinity of students for threads; then we integrated content-
level modeling, social peer connections, as well as measures
of students’ overall forum activities into that framework.
Experiments conducted on the MOOC dataset show that our
proposed model significantly outperforms several baselines.
In the future, we plan to conduct some deployed studies in
active MOOCs to validate our framework.
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ABSTRACT 
With the advent of ubiquitous web, programming is no longer a sole 
prerogative of computer science schools. Scripting languages are 
taught to wider audiences and programming has become a flag post 
of any technology related program. As more and more students are 
exposed to coding, it is no longer a trade of the select few. As a 
result, students who would not opt for a coding class a decade ago 
are in a position of having to learn a rather difficult subject. The 
problem of assisting students in learning programming has been 
explored in several intelligent tutoring systems. The key component 
of such systems is a student model that keeps track of student 
progress. In turn, the foundation of a student model is a domain 
model – a vocabulary of skills (or concepts) that structures the  
representation of student knowledge. Building domain models for 
programming is known as a complicated task. In this paper we 
explore automated approaches for extracting domain models for 
learning programming languages and modeling student knowledge 
in the process of solving programming exercises. We evaluate the 
validity of this approach using large volume of student code 
submission data from a MOOC on introductory Java programming.   

Keywords 

Big Data, MOOC, Student Modeling, Automated Domain Model 
Construction. 
1. INTRODUCTION 
Today, information and computer technology is all around us. 
Programming is not an art accessible to the few and taught at select 
computer science schools anymore. Scripting and programming 
languages are taught to wider student audiences and programming 
courses have become a flag post of any technology related program. 
As more and more students are taking on programming, it becomes 
a universal skill, a necessity for every student studying increasingly 
computerized technology. As a result, the distribution of talent in 
programming classes shifts from the mathematically gifted to the 
overall population mean.  

There have long existed a number of educational systems that have 
served the purpose of teaching students an abundance of 
programming languages and since then have greatly advanced the 
field of online learning. LISPTUTOR – a system teaching students a 

language of LISP – was the precursor of the modern intelligent 
tutoring systems [1] and SQL-tutor – a constraint-based system that 
instructed students who learned SQL [6], to name just a few. 

A classical educational system always has a user model – an integral 
component responsible for keeping track of student progress. The 
core of a student model is a vocabulary of skills (concepts) that 
structure the representation of student knowledge. Conceptualizing a 
set of skills is a hard task in and of itself. However, programming is 
an inherently structured domain. The basis of a programming 
language is the grammar that imposes a structure on any code that 
compiles. 

There were several attempts to exploit the inherent structure of the 
programming language with respect to student modeling tasks. For 
example, authors of [7] used a parsed concept map of C and Java to 
perform cross-adaptation of the content while [11] and [4] used the 
concept structure of parameterized questions for C and Java to 
provide within-domain adaptive navigation support.  

Until now, to the best of our knowledge, there were no attempts to 
utilize an auto-parsed structure of the code as a substitute for a 
conceptualization of the knowledge model. The benefits of such 
automation with respect to programming are many. First of all, it is 
inherently transferrable to any programming or scripting language: 
one just has to have a parser for that language. Second, given the 
parsed concepts, student modeling can be done on the fly. Third, 
with recent popularity of massive open online courses, there are 
volumes of data potentially available to experiment. 

The challenge of this approach is that, besides relative easiness of 
extraction, when programs start to get more complex so grows the 
volume of concepts parsed and the signal becomes noisier. 
Additionally, identifying programming constructs essential for 
passing a particular test is not trivial. And finally, high accuracy of 
such models can ensure help is given to a student while selecting the 
next problem, while a model’s capacity to aid students during 
problem solving requires a different form of validation. 

In this paper, we report on our investigation of automatically 
generated user models for the assignment-grading system deployed 
in a set of introductory programming classes. The data intensity of 
the code submission stream makes the task of knowledge modeling 
truly a “big data” problem. Results of our retrospective analysis 
demonstrate that the models created automatically can successfully 
support students during problem solving activity. 

2. DATA 
To explain our idea and a set of explored user modeling approaches, 
it is important to start with a description of data that we had at our 
disposal and how the data was processed for our studies. Our data 
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came from three introductory programming courses organized by 
the University of Helsinki; two local courses held during Fall 2012 
and Fall 2013, and a MOOC held during Spring 2013. Although the 
MOOC course lasted 12 weeks in total (see [9] for details of an 
instance offered in 2012), we included only the first six weeks in the 
analysis to be able to compare the results directly with the 
introductory programming courses.  

The courses emphasized students’ personal effort and constant 
practice. New topics were always accompanied by a set of 
programming exercises where the first tasks provided clear 
guidelines that outlined both the required program structure and 
required functionality, and latter ones were open-ended, giving 
students more freedom on the application design. During the six 
weeks, the students worked on over 100 exercises that were further 
split into a total of some 170 tasks. All exercises were done using an 
industry-strength IDE with a plugin that provided textual on-
demand feedback that had been encoded into the tasks, records 
students’ progress, and allowed students to submit their solutions for 
grading directly from within the IDE [10]. 

Table 1. Overall student population statistics. 

Course N. students 
(M/F) 

Age: Avg./ 
Med./Max. 

N. snapshots: 
all/median 

Fall 2012: Introduction 
to Programming 185(121/64) 18/22/65 204460 / 1131 

Fall 2013: Introduction 
to Programming 207(147/60) 18/22/57 263574 / 1126 

Spring 2013: MOOC 
on Programming1 683(492/60) 13/23/75 842356 / 876 

 

Due to this unique problem-solving approach and careful data 
archiving, each of the three courses produced a unique picture of 
student behavior. For each exercise and for each student, the system 
stored a relatively large sequence of code snapshots that were taken 
on save, compile and run -events, each representing a complete or 
incomplete attempt to solve the programming problem. Moreover, 
since each snapshot was tested on a set of tests designed for the 
corresponding exercise, information on tests that passed and failed 
was available. This data provides an excellent start for exploring 
various approaches to student modeling. 

Student population statistics are given in Table 1. Each in-class 
version of the course had about one half of the MOOC’s attendance. 
All three courses were mostly taken by male students (more so in 
the case of the MOOC). Age distribution was roughly the same. 
Around 40% of the students were CS major (in-class courses) and 
around half of the students had previous programming experience 
(MOOC). In terms of student activity (the number of snapshots) 
student medians were quite close for the two in-class course, and for 
the MOOC this number is lower due to the dropout rates. 

3. APPROACH 
We investigated an automated approach to creating concept models 
and student modeling for the domain of introductory Java 
programming. Our approach was based on two principal ideas: (1) 
modeling knowledge behind every program submission using the 

                                                                    
1 We only include data on the students that answered the survey 

inherent structure of the programming language and (2) automatic 
testing of program correctness using a set of tests. In brief, we 
considered every program submitted or saved as a solution of a 
programming exercise as an application of a range of concepts that 
were present in the submitted code. Once this program passed one 
or more tests, we considered it as a successful application of these 
concepts in an absolute sense or relative to the earlier submission. In 
the specific case explored in the paper, concept extraction from the 
body of submitted program was done by our concept extraction tool 
“Java Parser” [3] while the correctness of the submitted student 
code was determined by the system infrastructure introduced above. 
Thus, the main body of the paper is focused not on the tools, but on 
using the large body of collected data to explore the plausibility of 
the approach - the correctness of the student model itself and its 
usefulness in assisting students while they work on the code. 

3.1 Data Preprocessing 
For our analysis we preprocessed the raw student submissions. First 
the code was compiled and run against the suite of tests recording 
which tests passed. Each snapshot was also analyzed using 
JavaParser [3]. The extracted concepts were recorded both as an 
exhaustive list of all concepts in the snapshot and as a difference 
from the previous snapshot accounting for additions and removals 
(initial snapshot copied in full). An additional data-thinning 
procedure removed all snapshots that had an empty list of concept 
changes to filter out insignificant changes to the code. 

3.2 Hypotheses 
First, it is possible to model student knowledge acquisition (models 
can detect learning). Second, only a subset of code constructs is 
important for solving a particular problem. Third, constructed 
models are useful beyond modeling student knowledge acquisition 
and can be used as a basis for creating a recommendation 
component to help students with the code. 

4. MODELS 
We chose a set of models that are widely used in the field of student 
modeling. We first set the modeling lower boundary with the Null 
model (the majority class model). The next model of our choice was 
the Rasch model (1PL IRT) [5]. Although the Rasch model does not 
capture learning by definition, it is frequently used in psychometrics 
and would set a baseline for us. The model is given in Eq. (1). Here, 
Pr denotes probability of student i to correctly solve problem j. 
Inverse.logit is the sigmoid function, θi is the student proficiency 
parameter, and βj is the item complexity parameter. Since the result 
of compiling and running a problem is a binary mask of passed and 
failed tests, we treated the problem-test tuples as unique items. We 
broke each student transaction from the data into n, where n is the 
number of tests submission is checked against. Passed tests would 
yield a result of 1, failed a result of 0. Student and concept data were 
copied across the broken transactions accordingly. We fit Rasch 
model using mixed effect regression, treating both student and item 
complexity parameters as random factors. 

)(log.),|1Pr(Pr iiitinverseijYij βθβθ +===  Eq. (1) 

Prij = Pr(Yij =1|θ,β,δ,γ ) = inverse. logit(θi +βi + (δkj +γ kj
k
∑ tikj ))

 
Eq. (2) 

To actually model student learning we would use a variant Additive 
Factors Model (AFM) [2]. In addition to the parameters in Rasch 
model, AFM (Eq. (2)) has skill complexity – δkj (intercept), and skill 
learning rate – γkj (slope). Although standard AFM does not have 
item complexity, we will have it in our AFM models to account for 
item variability. For each student submission we will count the 
number of prior attempts to use a particular coding construct – tikj. 
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In AFM it is customary to fit concept intercepts and slopes across all 
items. We will treat concepts as within-item effects. 

When the standard AFM model is used, for each item or problem 
step a set of relevant concepts is known. Often, a table relating 
concepts to items is called a Q-matrix. We do not have information 
on what programming constructs are relevant for the successful 
passing of the tests. We used three different rules to select concepts. 
Rule A selects all concepts that were parsed from the student code. 
Rule B uses the concepts that were different from the previous code 
snapshot (added or removed alike). Rule C used concept differences 
just like Rule B, but treating addition and removal as different 
instances of one concept (appending a suffix to the concept 
identifier in case of concept removal). 

First, the AFM model is to use all parsed concepts or concepts 
difference lists. It is, however, safe to assume that not all concepts 
are relevant for solving a problem and different subsets of concepts 
could be relevant for each particular test the problem is verified 
against. To set aside the concepts that have a significant influence 
on the successful passing of the problem’s test, we used a PC 
algorithm for systematic conditional independence search 
implemented in the Tetrad – a data-mining tool developed at 
Carnegie Mellon University [8]. For each problem in our three 
datasets we composed a data-mining problem for the PC algorithm 
to find a bipartite graph where arcs go from concepts to tests 
denoting causal links (but not between tests or concepts). We 
admittedly violate i.i.d. assumptions and, although we are mining 
for these graphs across multiple students, we are using multiple data 
points from the same student. However, we are not going to draw 
causal conclusions on the included arcs and are only using the 
results of the algorithm to filter out concepts. For the tests of 
independence we used a p-value of 0.05. Our experimentation with 
different p-values did not result in tangible changes of the output. 

One important phenomenon we noticed in the data is that students 
have different submission speeds. One student might submit one 
code snapshot per 10-20 minutes of work, while the other would 
submit every change to the code with several submissions per 
minute. As a result, the number of attempts per code construct per 
unit of time would vastly differ across students and the estimations 
of the concept learning rates would be extremely noisy. To 
compensate for these differences, we applied natural logarithm 
function to the student opportunity counts (tikj). 

Four different versions of AFM models were constructed by turning 
on and off of the two features: whether or not to filter concepts, and 
whether or not to log counts of concept opportunities, together with 
one Rasch and one null model, give us 14 models in total.  In order 
to go beyond model-fitting accuracy and to check our third 
hypothesis and to make sure that our models can potentially serve as 
a basis for a component to recommend changes to the code, we ran a 
specialized validation procedure. In this procedure we distinguished 
four changes between passing and failing of a particular problem’s 
test in successive code snapshots. Namely, from fail to fail (NN – 
not passing to not passing), from pass to pass (YY – passing to 
passing), from pass to fail (YN), and from fail to pass (NY). In each 
of the four cases we looked at which concepts students added and 
which concepts they removed between the snapshots. For additions 
and removals, we computed support scores – sums of concept slopes 
in the model giving us model’s judgment in favor of all addition and 
all removals. These two sums were either positive (P), negative (N), 
or zero (0), giving us 9 different combinations. Thus each 
successive code snapshot was assigned a 4-letter code. For example, 
NYP0 would denote that a student went from failing to passing a 
test and the model has a positive support score for concept addition 

and a neutral 0-score for concepts removal. Based on these codes, 
for each of our models we computed four conditional probabilities.  

Probability A: the non-negative support of the changes to the 
concepts in cases of two successful passes of the test. 
Rationale: Since in two consecutive attempts student’s code passed 
the test, model negative support of code changes is undesirable. 
Probability B: negative code changes support in the case of pass 
changes to fail. Rationale: Since students apparently made the code 
worse, we want the model to vote against it.   
Probability C: non-positive support for the code changes in the 
case of two successive fails. Rationale: The code did not improve 
and the model should not support any changes made.  
Probability D: positive support for the changes made between a 
failure and a success. Rationale: When a student is on the right path, 
the model should be supportive of that. 

We performed validation with respect to the three rules of the 
concept selection (A – all concepts, B – changed concepts, and C – 
changed accounting for removals and additions) as well as filtering 
of the concepts (only considering slopes for concepts that were 
selected by the PC algorithm). 

5. RESULTS 
Table 2 is a summary of the model fitting and validation results for 
the 14 models we discussed. The dataset was balanced: with the 
majority class model performing only a little better than chance. The 
Rasch model that assumes no learning is a tangible improvement 
with 71% accuracy. AFM models perform better with respect to 
accuracy. Models considering all concepts in the snapshot (A) are 
doing better, and models considering changes on concepts 
distinguishing additions and removals (C) being second. Filtering 
concept lists using PC algorithm improves model accuracies, while 
taking logs of opportunity counts does a little bit of the opposite. 
Out of the top three models with respect to accuracy, two are 
picking all concepts available and two are using PC algorithm for 
concept filtering. 

An important consideration is the size of the input data. More data 
complicates training the models as well as online-prediction of 
potential modifications to the code. Models using concept selection, 
rule A, are more data hungry. Applying the PC algorithm to only 
leave influential concepts reduces the data requirement. Logging 
opportunity counts increases the data requirement mostly due to the 
text representation of our data. Model accuracy and data 
requirements together paint a mixed picture. 

Reviewing the validation columns of Table 2, We see in the average 
validation probabilities columns, probabilities A and C described 
model quality with respect to situations when a student neither 
improves the code nor makes it worse (in terms of passing the tests). 
In these cases, we would like our models to not discourage changes 
when students’ code did not improve beyond an already passing 
rating (probability A) and we would like models to not support 
changes when students do not improve their code and the tests still 
fail to pass (probability C). Arguably, A and C are secondary to 
probabilities B and D, where we want them to positively reinforce 
changes from pass to fail (probability D) and negatively reinforce 
changes from fail to pass (probability B). In an attempt to make 
model selection more rigorous we take an average of all 
probabilities (A through D), and an average of the columns of the 
primary interest (B and D). 

Looking at validation results alone, models with logged opportunity 
counts using concept selection rules A and B are in the lead, model 
AFM B +PC+Log has a slight edge (third and first with respect to 
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the two averages of the conditional probabilities). This model also 
has a top average rank overall. It is only 5% over the accuracy of the 
Rasch model, but it is quite low on data requirements and performs 
well in the validation. 

Table 2. Summary of model fitting and validation statistics. 
Models ranked among top three in each category are bold faced. 

Model 
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 Avg. validation 

prob. & rank 
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A-D B, D 

Null .56 - - - - - - - - 

Rasch .71 - 49 - - - - - - 

AFM A .81 4 1312 11 .61 5 .39 7 6.75 

AFM B .73 11 446 8 .62 4 .39 8 7.75 

AFM C .78 6 445 7 .59 9 .23 12 8.50 

AFM A+PC .84 1 1528 12 .57 11 .34 10 8.50 

AFM B+PC .77 7 526 9 .60 7 .44 4 6.75 

AFM C+PC .83 2 530 10 .56 12 .30 11 8.75 

AFM A+Ln .75 10 242 5 .62 2 .45 3 5.00 

AFM B+Ln .71 12 123 1 .63 1 .43 5 4.75 

AFM C+Ln .77 8 139 2 .60 6 .35 9 6.25 

AFM A+PC+Ln .82 3 284 6 .59 8 .47 2 4.75 

AFM B+PC+Ln .75 9 141 3 .62 3 .49 1 4.00 

AFM C+PC+Ln .78 5 161 4 .58 10 .40 6 6.25 

* Null and Rasch models are not ranked and given as a reference 
 

It is particularly interesting whether accuracy, data requirements, 
and validation conditional probabilities correlate. Naturally, 
accuracy grows with the data necessary to fit the model and explains 
35% of its variance. The average of four conditional probabilities is 
negatively related to the accuracy and explains 71% of its variance. 
However, despite the fact that the average of negative support for 
going from pass to fail and positive support for going from fail to 
pass, respectively correlates with model accuracy negatively, the 
percent of variance explained is low. 

6. DISCUSSION 
In this work we investigated the value of using student models for 
programming domain without a priori conceptualization of the 
problem domain. We hypothesized that, thanks to the inherent 
structure of the programming language, it could be possible to skip 
tedious development of a concept vocabulary overall. 

Serving as a basis for navigation support, the models of student 
knowledge that we built could be used for recommending the next 
problem to solve. However, an arguably more interesting feature is 
to reuse the models for within-problem support. As we have shown 
in our validation, even in the absence of a formal conceptual domain 
structure, just relying on the code parser and concept selection and 
filtering algorithms, our models can be useful. 

Based on the model accuracy, data requirement, and validation, we 
were able to select a model that has a promise to be accurate both 
modeling student knowledge and suggesting students what concepts 
to address in their code. The choice, however, has a number of 
tradeoffs. Depending on model accuracy, computational complexity 
of model fitting (size of the data required), and validation 
characteristics (potential accuracy of recommendation) one might 

opt to select a different model. The trade-off between modeling 
accuracy and validation accuracy is particularly sharp, because these 
two metrics are negatively correlated. 

In our models, we only accounted for the presence of programming 
language constructs in the code, completely ignoring the number of 
times they were used. One particular roadblock that exists on the 
path toward incorporating problem-concept counts is that it would 
be not possible to use the PC algorithm anymore. The PC algorithm 
is intended for binary data only (passing of the test and presence of 
the concept). There are few empirically verified structural search 
algorithms that use block-of-conditional-independence-tests that 
handle hybrid data (binary and count data together). 

In addition, when looking at the code, we only looked at the list of 
concepts and not at the structure of the code. We were able to detect 
certain strategies that students employed while solving the 
problems. In our future work, we plan to exploit these findings to 
improve our model’s prediction and validation scores. 
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ABSTRACT
Gap-fill questions are fill-in-the-blank questions which con-
sist of a sentence with one or more gaps (blanks) and a num-
ber of choices for each gap. Such questions play crucial roles
in creating test materials and tutorial dialogues. In this pa-
per, we present a system that automatically generates such
questions by exploiting previously recorded student-tutor in-
teractions with an Intelligent Tutoring System. Our method
is novel because it relies on mining questions’ distractors, i.e.
tempting incorrect answers, from tutorial dialogues unlike
most of the existing approaches that rely on instructional
contents. Experimental results show that the proposed sys-
tem can generate high quality gap-fill questions.

Keywords
Question Generation, Tutoring System, Dialogue Systems

1. INTRODUCTION
Test construction is an expensive and time-consuming pro-
cess for instructors and educational researchers. Computer-
assisted test construction can dramatically reduce costs asso-
ciated with such test construction activities [8]. As a result,
particular attention has been paid by researchers to auto-
matically generate several types of questions such as gap-fill
questions that can be used in assessment instruments [4].
The more general problem of question generation has been
systematically addressed via shared tasks [11].

In this paper, we present a novel method that mines gap-fill
questions from tutorial dialogues. Gap-fill questions are fill-
in-the-blank questions which consist of a sentence/paragraph
with one or more gaps (blanks). Gap-fill questions can be
of two types: with alternative options (key and distractors)
and without choices. The former ones are called cloze ques-
tions and the latter ones are called open-cloze questions. In
this paper, we use the term gap-fill questions to refer to the

cloze questions. Consider the following gap-fill question:

Newton’s law is relevant after the mover doubles his
force as we just established that there is a non-zero net force
acting on the desk then.
(a) third (b) second (c) first (d) heating

One of the options in a gap-fill question is the correct answer
to the question, called the key. The rest of the choices are
the distractors, i.e. incorrect answers that are tempting less
proficient students who often confuse them with the key.
The question sentence containing gap(s) is also known as the
stem. In the gap-fill question above, the question sentence
contains a gap and there are four potential choices for the
gap. The key is second and first, third and heating are three
distractors. Two of distractors are very close to the key
while another, heating, is quite remotely related.

The attractiveness of gap-fill questions is that they are well-
suited for automatic marking because the correct answer is
simply the original word corresponding to the gap in the
original sentence. Furthermore, gap-fill questions are ef-
fective at diagnosing and assessing students’ knowledge [5].
Many automatic gap-fill question generation techniques are
reported in the literature [7, 12]. These techniques have
been successfully used even in large scale evaluations (e.g.
TOEFL1 and TOEIC2) to measure learners’ proficiency at
various tasks, e.g. assessing second language learners’ skills
of the target language. Gap-fill questions are also impor-
tant in Intelligent Tutoring Systems (ITSs)[2], a category of
advanced educational systems that emphasizes interaction,
active learning, and adaptation to the learner. Specifically,
ITSs use such questions for assessing students’ knowledge
level and learning gains as part of their assessment. Fur-
thermore, ITSs use such questions for scaffolding in their
practice modules. We explain next the role of gap-fill ques-
tions for scaffolding purposes in dialogue-based ITSs.

In dialogue based or conversational ITSs, students typically
solve problems (a.k.a. instructional tasks) with the help
of the system. That is, during a tutoring session students
are prompted to provide complete solutions to various prob-
lems. If some of the steps in their solutions are missing, the
computer tutor will provide appropriate scaffolding through

1http://www.ets.org/toefl
2http://www.ets.org/toeic
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the use of hints, some in the form of open-cloze questions,
to help students articulate missing or vague parts. Table 1
shows a fragment of a real student-tutor interaction from the
intelligent tutoring system DeepTutor [9]. The first student
response (to a previous hint - not shown) is incorrect and
therefore the system decides to provide a more informative
hint in the form of a open-cloze hint/statement/question.

Table 1: A fragment of student-tutor interactions
while solving a task.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STUDENT: Netwon’s first law
TUTOR: Let me give you a hint. The decomposition
principle says that the analyses of forces and motion
along two directions, such as horizontal and ver-
tical, can be done .
STUDENT: perpendicular, separately

In this paper, we propose a novel method to automatically
generate gap-fill questions by exploiting recorded data from
massive online education environments such as DeepTutor
[10]. In such massive online courses (MOOCs) or massive
online ITSs (MOITSs) instructional tasks or problems are
solved by many students. Consequently, many student re-
sponses to hints in the form of questions, some of which
are open-cloze questions, are collected and recorded in log
files. Our approach here exploits this richness of informa-
tion available in recorded tutorial dialogues from massive
online training with ITSs. An advantage of mining these
tutorial dialogues is the fact that we have access to actual
students answers to open-cloze questions. That is, students’
responses to these questions are words that they think best
fill in the gaps in the open-cloze questions. Because not all
responses are correct, we consider the incorrect responses as
potential candidates for distractors. We rank these candi-
date distractors to find the best set of distractors. We will
show later that this simple idea generates very good distrac-
tors for gap-fill questions.

2. RELATED WORKS
Before presenting the most related previous work, we de-
scribe the four main steps needed to generate gap-fill ques-
tions with choices from instructive texts or content-related
documents. Understanding the four main steps will help
better appreciate related work. The four main steps are : a)
Selecting useful sentences from the text b) Identifying gaps
(i.e. words to be deleted) in the selected sentences c) Gen-
erating distractor candidate list and d) Ranking the distrac-
tors in the list. The literature of gap-fill question generation
contains methods that go through each of the steps or focus
on particular steps.

Mitkov et al. [4] proposed a computer-aided procedure to
generate multiple-choice questions from textbooks that goes
through all the four steps. They find key terms by using
regular expressions and thresholds. Hypernyms and coordi-
nates of the terms are considered the distractors. The rank-
ing of distractors is done using semantic similarity functions
on the assumption that a distractor should be as semanti-
cally close to the key as possible. Agarwal and Mannem
[1] also go through all four steps to automatically generates

gap-fill questions from textbooks for reading comprehension
tests.

Hoshino and Nakagawa[3] modeled the problem of gener-
ating multiple-choice questions as a learning problem. To
decide whether a given word can be left blank in the declar-
ative stem, they trained classifiers using a training data set.
The distractors were random words from the same article
excluding punctuation and the same word. Sumita et al.
[13] generated gap-fill questions considering verbs as gaps
in a sentence. Thesaurus was used to obtain distractors for
the keys of the gaps. To rank distractors, they took each
distractor, filled the gap using it, and searched the Web to
get the hit counts of the sentence. Smith et al. [12] gen-
erated cloze questions in English language learning. They
used distributional thesaurus to find distractors.

As one may note, most of these solutions require instruc-
tional texts such as textbook chapters and encyclopedia en-
tries in addition to thesauri to generate gap-fill questions.
Our method is unique because it is based on a generative
approach, i.e. the potential distractors are generated by
students themselves. Thus, our approach which works by
mining questions and distractors from recorded dialogues
complements the existing literature. Furthermore, this is
the first approach, to the best of our knowledge, that relies
on actual student answers to generate distractors.

3. THE METHODOLOGY
Since we do not start with instructional texts but with stu-
dents’ responses to open-cloze questions, we only need to
generate distractors and rank them in order to generate gap-
fill questions.

3.1 Generating Distractor Candidates
Finding plausible distractors that separate knowledgeable
students from knowledge-poor students is one of the major
challenges for cloze question generation. A good distractor
is a concept that is semantically similar at some extent to
the key but it is not a correct answer [4].

As already mentioned, we use student responses to open-
cloze questions during tutorial dialogues as a source of dis-
tractors. When same open-cloze questions are answered by
many students, there is a large pool of candidate distractors
from which to select. We show in Table 2 an open-cloze
question together with student responses and their counts
or votes, i.e. the number of students that give the same re-
sponse as the answer to the same question. Some open-cloze
questions may not have enough student responses. In such
cases, we follow some of the existing techniques for finding
distractor candidates, e.g. we use WordNet as in [4]: extract
the hypernyms and coordinated concepts (concepts with the
same hypernym) of the key and consider them as the dis-
tractor candidates for the key.

3.2 Ranking Distractors
We used the following criteria to rank candidate distractors:
R1: Use a semantic similarity score between the key and
distractors. This idea was used in the past by Mitkov et
al. [4]. According to them, a good distractor is very related
but not identical to the key. We used a Latent Semantic
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Table 2: Students’ responses and their frequencies
(i.e. votes) to an open-cloze question.

While the wind is blowing, the shape of the sled’s path
will be .

curved => 4 no => 1 idk => 1
straight => 3 linear => 1 a triangle => 1
diagonal => 2 uhm no => 1 west => 1

Analysis (LSA) based similarity measure [6] to compute the
similarity between a key and its distractors.

R2: Use votes. We rank the candidates based on their
votes/counts (the higher, the better). We break the tie using
the semantic similarity score with the key.

4. EXPERIMENTS AND RESULTS
We mined a collection of tutorial dialogues obtained from
two of our experiments with the DeepTutor system ([9]).
From the first experiment, we extracted tutorial dialogues
for 297 students who solved 32 tasks (problems). Since a
task was solved by zero or more students, we had 2,687
task sessions altogether (i.e. 9 tasks per student on aver-
age). Similarly, from the second experiment, we extracted
4,430 task sessions corresponding to 349 students and 37
tasks (i.e. 13 tasks per student on average). A total of 102
unique single-gap open-cloze questions were also mined. It
is noted that some of the questions received a large number
of responses while some others only a few. All of the sin-
gle gap open-cloze questions received at least two responses,
82.85% of the questions received at least three responses,
and 72.38% of questions received at least 4 responses.

4.1 Relation between a Response’s Similarity
and its Rank

We define the frequency rank (FR) of a student response
i to a hint in the form of a open-cloze question q as :

FR(i) =
100 ∗ fi∑

fi
where fi is the number of students who

typed i as the answer to open-cloze question q (i.e. votes
or counts of i). Then for each response, i.e. which could be
either a correct response or candidate distractor, we com-
puted its similarity with the corresponding key as well as
its FR score. We discarded the student responses that were
misspelled or contained emoticons. We used a small lexicons
of emoticons for this purpose. Next, we computed correla-
tion coefficients between the similarities and FR scores at
different levels of response frequencies (see Table 3). The
correlation coefficients for all responses (i.e. minimum fre-
quency >=1) and for responses generated by at least two
students (i.e. minimum frequency >=2) were 0.682 and
0.720 respectively. Similarly, the coefficients for responses
with minimum frequencies of 3, 4, and 5 were 0.737, 0.733
and 0.754 respectively.

The positive correlation coefficients indicate that there is
clearly a positive relation between the frequency of a re-
sponse and its semantic similarity score. As we noticed, the
correlation coefficients increased as we increased the mini-
mum frequency. These results suggest that ranking student
responses by their semantic similarity scores with the key

Table 3: Correlation between Sim(key,responses) &
FR(responses) for responses with freq >= Min Freq

Min Freq 1 2 3 4 5
Correlation LSA 0.682 0.725 0.737 0.733 0.754

can be approximated by their vote counts, i.e. how many
students generated the answer. The higher the counts, the
more similar the response is to the key. As the distractors
for a key should be as semantically close to the key as pos-
sible, we can rank the responses by their votes and utilize
them as potential distractors.

4.2 Evaluation of Distractor selection
We conducted two evaluations to determine the quality of
the distractors generated by our automated method. In each
evaluation, we asked two annotators to rate each distractor
with one of the following quality ratings: good, ok, and bad .
The good distractors are ideal distractors, the ok distractors
can be considered as potential distractors but are not as
appropriate as the good distractors. The bad distractors do
not make sense as a distractor or have the exact meaning
with the key.

In the first evaluation, we considered questions that had at
least three different student responses and had at least two
votes per response. There were 23 questions that satisfied
this condition. We ranked the distractor candidates by using
R2 as presented in Section 3.2 and chose the top 3 candi-
dates as distractors. We rejected the candidates if they were
synonyms of the key. We considered a key and distractor
synonyms when their semantic similarity score was above or
equal to 0.9. We also removed duplicate distractors in the
final list. To reduce the annotation bias, we introduced a
random word from a Wikipedia article as the fourth distrac-
tor. The order of the four distractors were randomized.

Next, we asked the annotators to annotate the instances,
each consisting of a question sentence, its key and the dis-
tractors. A typical annotated instance is showed in the Ta-
ble 4. The inter-rater agreement using the unweighted ver-
sion of the Cohen’s kappa statistic was 0.64 when we con-
sidered good, ok and bad groups separately. It increased
to 0.86 when we merged good and ok groups into a single
group. The detailed annotation results are presented in Ta-
ble 5. The proportion of the good questions is the highest
for both annotators. Since we introduced one bad distractor
per question and we had 23 questions, we expected at least
23 bad distractors per annotator. Discounting this number
in the table, one can notice that we can achieve very good
distractors using the voting scheme.

Table 4: Sample Annotation
Question The force of gravity exerted by the Earth

on the cat is all the time.
Key constant
Distractors relative horizontal zero smile
Annotation good good good bad
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Table 5: Annotation results for 23 questions with 4
distractors each

good ok bad expected bad
Annotator 1 46 11 35 23
Annotator 2 41 16 35 23

In a second evaluation, we addressed the case when we could
not get sufficient distractors for a key due to too few re-
sponses available in our tutorial dialogue dataset. We had
100 such questions in our corpora. In such cases, we gener-
ated distractor candidates for a question from three differ-
ent sources: student responses corresponding to the ques-
tion, different questions with the same key, and WordNet.
For each candidate, we checked whether its parts-of-speech
matched with that of the key. If matched, we marked the
candidate as a potential distractor for the key. Once we
had three potential distractors, we stopped. The fourth dis-
tractor was a random word from Wikipedia. Annotation
results showed that WordNet-based approach could gener-
ate distractors out of context. For example, it generated
one, two, and three as the three distractors for the key zero
for the question: The net force is . The three candidates
may look good but for the given question, they are bad dis-
tractors. Since the students’ responses are mostly contex-
tual,they are preferred over the WordNet-based distractors.

4.3 Error Analysis
The most challenging issue was finding similarities between
student answers and the key. Although word pairs such as
(is, equals), (vertical, y-direction), (identical, constant) in-
clude words with same meaning in the context of Newtonian
Physics, LSA failed to find that due to lack of domain knowl-
edge. Use of numbers (e.g. 1st for first, 9.8m/s for constant
acceleration) and misspellings of the words (e.g. seperately
for separately, thirrd for third, on for no) in students re-
sponses were other factors limiting the performance of the
proposed approach.

5. CONCLUSION AND FUTURE WORK
We presented in this paper a unique method to generate gap-
fill questions. We also proposed different ranking functions
to prioritize the list of potential distractor candidates. Since
we exploit the students responses corresponding to a prob-
lem, our approach would be particularly useful for scalable
ITSs and MOOCs and where thousands of students solve the
same problem. In future, we exploit the open-cloze questions
with multiple gaps to generate more gap-fill questions.
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ABSTRACT
We present an approach to Intelligent Tutoring Systems
which adaptively personalizes sequences of learning activi-
ties to maximize skills acquired by each student, taking into
account limited time and motivational resources. At a given
point in time, the system tries to propose to the student
the activity which makes him progress best. We introduce
two algorithms that rely on the empirical estimation of the
learning progress, one that uses information about the dif-
ficulty of each exercise RiARiT and another that does not
use any knowledge about the problem ZPDES.

The system is based on the combination of three approaches.
First, it leverages recent models of intrinsically motivated
learning by transposing them to active teaching, relying on
empirical estimation of learning progress provided by spe-
cific activities to particular students. Second, it uses state-
of-the-art Multi-Arm Bandit (MAB) techniques to efficiently
manage the exploration/exploitation challenge of this op-
timization process. Third, it leverages expert knowledge
to constrain and bootstrap initial exploration of the MAB,
while requiring only coarse guidance information of the ex-
pert and allowing the system to deal with didactic gaps in
its knowledge.

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) have been proposed to
make education more accessible, more effective and simulta-
neously as a way to provide useful objective metrics on learn-
ing. Recently, online learning systems have further raised
the interest in these systems and several recent projects
started on Massive Open Online Course (MOOC) for web-
based teaching of university level courses. For a broad cov-
erage on the field of ITS see [9] and [13].

According to [13], there are four main components of an ITS:
i) a cognitive model that defines the domain knowledge or
which steps need to be made to solve problems in a particu-
lar domain; ii) a student model that considers how students
learn, what is the evolution of their cognitive state depend-

ing on particular teaching activities; iii) a tutoring model
that defines, based on the cognitive and the student model,
what teaching activities to present to students and iv) a user
interface model that represents how the interaction with the
students occurs and how problems are proposed to the learn-
ers.

In this work we are more focused on the tutoring model, that
is, how to choose the activities that provide a better learn-
ing experience based on the estimation of the student com-
petence levels and progression, and some knowledge about
the cognitive and student model. We can imagine a stu-
dent wanting to acquire many different skills, e.g. adding,
subtracting and multiplying numbers. A teacher can help
by proposing activities such as: multiple choice questions,
abstract operations to compute with a pencil, games where
items need to be counted through manipulation, videos, or
others. The challenge is to decide what is the optimal se-
quence of activities that maximizes the average competence
level over all skills.

There are several approaches to develop a Tutoring Model.
A first approach is based on hand-made optimization and
on pedagogical theory, experience and domain knowledge.
There are many works that followed this line, see the recent
surveys on the field by [9, 13]. A second approach considers
particular forms of knowledge to be acquired and creates di-
dactic sequences that are optimal for those particular classes
of problems [2, 6, 7]. A third approach, and more relevant
for our work, is that the optimization is made automati-
cally without particular assumptions about the students or
the knowledge domain. The framework of partial-observable
Markov decision process (POMDP) has been proposed to se-
lect the optimal activities to propose to the students based
on the estimation of their level of acquisition of each KC
[14].

Our ITS aims at providing to each particular student the
activities that are giving the highest learning progress. We
do not consider that these activities are necessarily the ones
defined a-priori in the cognitive and student model, but the
ones that are estimated, at runtime and based on the stu-
dents results, to provide the maximum learning gain. This
approach has three main advantages:

Weaker dependency on the cognitive/student model
In most cases the tutoring model incorporates the student
model inside. Given students’ particularities, it is often
highly difficult or impossible for a teacher to understand
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all the difficulties and strengths of individual students and
thus predict which activities provide them with maximal
learning progress. Also, typically, these models have many
parameters, and identifying all such parameters for a single
student is a very hard problem due to the lack of data, the
intractability of the problem and the lack of identifiability
of many parameters that often results in models which are
inaccurate in practice [3]. It has been shown that a sequence
that is optimal for the average student is often suboptimal
for most students, from the least to the most skilled [11].

We consider that it is important to be as independent as
possible of the cognitive and student model when deciding
which activities to propose. This requires that the ITS ex-
plores and experiments various activities to estimate their
potential for learning progress for each student. The tech-
nical challenge is that these experiments should be not just
sufficiently informative about the student’s current compe-
tence but also to evaluate the effectiveness of each exercise
to improve those competences (a form of stealth assessment
[16]).

Efficient Optimization Methods We will rely on meth-
ods that do not make any specific assumptions about how
students learn and only require information about the esti-
mated learning progress of each activity. We make a simple
assumption that activities that are currently estimated to
provide a good learning gain, must be selected more often.
A very efficient and well studied formalism for these kind
of problems is Multi-Armed Bandits [5]. Following a casino
analogy, at each step we can choose a slot-machine and we
get to observe the payback we get, the goal it to find the
best arm, but while we are trying to discover it we have to
bet to test them.

More Motivating Experience Our approach considers
that, at each time instance, the exercises that are provid-
ing the higher learning progress must be the ones proposed.
This allows not only to use more efficient optimization algo-
rithms but also to provide a more motivating experience to
students. Several strands of work in psychology [4] and neu-
roscience [8] have argued that the human brain feels intrinsic
pleasure in practicing activities of optimal difficulty or chal-
lenge, i.e. neither too easy nor too difficult, but slightly
beyond the current abilities, also known as the zone of prox-
imal development [10].

Our main contributions, when compared to other ITS sys-
tems, are: the use of highly performing Multi-Armed Bandit
algorithms [5]; a simpler factored representation of the cog-
nitive model that maps activities to the minimum necessary
competence levels; and considering that the acquisition of
a KC is not a binary variable but defined as the level of
comprehension of that KC. The advantage of using MAB is
that they are computationally efficient and require a weaker
dependency between the tutoring and the cognitive and stu-
dent models. Other contributions include an algorithm to
estimate student competence levels; and the empirical learn-
ing progress of each activity. An extended version of this
article is available at [12] including an initial user study.

2. ITS WITH MULTI-ARMED BANDITS

2.1 Relation between KC and pedagogical ac-
tivities

In general, activities may differ along several dimensions and
may take several forms (e.g. video lectures with questions at
the end, or interactive games or exercises of various types).
Each activity can provide opportunities to acquire differ-
ent skills/knowledge components (KC), and may contribute
differentially to improvement over several KCs (e.g. one ac-
tivity may help a lot in progressing in KC1 and only little
in KC2). Vice versa, succeeding in an activity may require
to leverage differentially various KCs. While certain regu-
larities of this relation may exist across individuals, it will
differ in detail for every student.

First, we model here the competence level of a student in a
given KC as a continuous number between 0 and 1 (e.g. 0
means not acquired at all, 0.6 means acquired at 60 percent,
1 means entirely acquired). We denote ci the current esti-
mation of this competence level for knowledge unit KCi. In
what we call a R Table, for each combination of an activity
a and a KCi, the expert then associates a q−value (qi(a))
which encodes the competence level required in this KCi to
have maximal success in this activity a. This in turn pro-
vides a upper and lower bound on the competence level of
the student: below qi(a) in case of mistake; above qi(a) in
case of answering correctly.

We start by assuming that each activity is represented by a
set of parameters a = (a1, ..., ana

). The R Table then uses
a factorized representation of activity parameters, where in-
stead of considering all (a,KCi) combinations and their cor-
responding qi(a), we consider only (aj ,KCi) combinations
and their corresponding qi(aj) values, where qi(aj) denotes
the competence level in KCj required to succeed entirely in
activity a which j−th parameter value is aj . This factoriza-
tion makes the assumption that activity parameters are not
correlated. The alternative would require a larger number
of parameters and would also require more exploration in
the optimization algorithm. We use the factorized R Table
in the following manner to heuristically estimate the com-
petence level qi(a) required in KCi to succeed in an activity
parameterized with a: qi(a) =

∏na

j=1 qi(aj)

2.2 Estimating the impact of activities over stu-
dents’ competence level in knowledge units

Key to the approach is the estimation of the impact of each
activity over the student’s competence level in each knowl-
edge unit. This requires an estimation of the current compe-
tence level of the student for each KCi. We do not want to
introduce regular tests that might interfere negatively with
the learning experience of the student. Thus, competence
levels need to be inferred through stealth assessment [16]
that uses indirect information from the results on the exer-
cises.

When doing an activity a = (a1, ..., ana
), the student can

either succeed or fail. In the case of success, if the estimated
competence level ci in knowledge unit i is lower than qi(a),
we are underestimating the competence level of the student
in KCi, and so should increase it. If the student fails and
qi(a) < ci, then we are overestimating the competence level
of the student, and it should be decreased. For these two
first cases we can define a reward:

ri = qi(a)− ci (1)

and use it to update the estimated competence level of the
student according to ci = ci + αri where α is a tunable
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parameter that allows to adjust the confidence we have in
each new piece of information.

A crucial point is that the quantity ri = qi(a)−ci is not only
used to update ci, but is used to generate an internal reward
r =

∑
ri to be cumulatively optimized for the ITS (details

below). Indeed, we assume here that this is a good indicator
of the learning progress over KCi resulting from doing an
activity with parameters a. The intuition behind this is
that if you have repeated successes in an activity for which
the required competence level is higher than your current
estimated competence level, this means you are probably
progressing.

2.3 RiARiT: Right Activity at Right Time
To address the optimization challenge for ITS, we will rely
on multi-arm bandit techniques (MAB)[5]. A particularity
here is that the reward (learning progress) is non-stationary,
which requires specific mechanisms to track its evolution.
Indeed, here a given exercise will stop providing reward, or
learning progress, after the student reaches a certain com-
petence level. Also we cannot assume that the rewards are
i.i.d. as different students will have different preferences and
many human factors, i.e. distraction, mistakes on using the
system, create several spurious effects. Thus, we rely here
on a variant of the EXP4 algorithm [1, 5]. We consider a set
of filters that track how much reward each exercise parame-
ters is giving. Then the algorithm selects stochastically the
teaching activities proportionally to the expected learning
progress for each parameter.

Expert knowledge can also be used by incorporating coarse
global constraints on the ITS. Indeed, for example the expert
knows that for most students it will be useless to propose
exercises about decomposition of real numbers if they do
not know how to add simple integers. Thus, the expert can
specify minimal competence levels in given KCi that are
required to allow the ITS to try a given parameter aj of
activities.

2.4 ZPDES: Zone of Proximal Development
and Empirical Success

Our goal is to reduce the dependency on the cognitive and
student models and so we will try to simplify further the al-
gorithm. Our simplification will take two sources of inspira-
tion: zone of proximal development and the empirical
estimation of learning progress.

As discussed before focusing teaching in activities that are
providing more learning progress can act as a strong moti-
vational cue. Estimating explicitly how the success rate on
each exercise is improving will remove the dependency on
the R table. For this we replace Eq. 1 with r =

∑t

k=1
Ck

t
−∑t−d

k=1
Ck

t−d
where Ck = 1 if the exercise at time k was solved

correctly. The equation compares the d + 1 more recent
success with all the previous past, providing an empirical
measure of how the success rate is increasing. We no longer
estimate the competence level of the student, and directly
use the reward estimation.

The other inspiration is the concept of the zone of proxi-
mal development [10] that considers that activities that are
slightly beyond the current abilities of the learner are the
more motivating. This concept will provide three advan-

tages: improve motivation; further reduce the need of quan-
titative measures for the educational design expert; and pro-
vide sequence of activities that follow a more sequential or-
der. A first point is that there are some parameters that
have a clear relation of increasing complexity (such as the
parameter exercise type) and should be treated differently
than other parameters that do not have such ordering (for
instance the complexity in the modality presentation will
change depending on each student and not on the problem
itself). A final point is that we are choosing exercises based
on the estimated (recent) past learning progress, and if we
know which exercise is next in terms of complexity then
we can use that one. This information, if correct, allows the
MAB to propose the more complex exercises without requir-
ing to estimate their value first. Providing a more predictive
behavior and not just relying on the recent past.

This algorithm is identical to RiARiT but we treat the pa-
rameters that have a clear relation of increasing complexity
differently. For the parameter i, when the expected learning
progress of parameter j is below the level of the more com-
plex parameter value, wi(j) < wi(j + 1)/θ, and the success

rate is higher than a pre-defined threshold :
∑t

k=1
Ck(j)

t
>

ω, we allow the parameter value j + 3 to be chosen and
initiate it with: wi(j) = 0 and wi(j + 3) = wi(j + 2).

3. TEACHING SCENARIO
We will now describe a specific teaching scenario about learn-
ing how to use money, typically targeted to students of 7-8
years old. The parameters of the activities are commonly
used in schools for acquiring these competences and there
are already well studied teaching sequences validated in sev-
eral studies [15].

In each exercise, one object is presented with a given tagged
price and the learner has to choose which combination of
bank notes, coins or abstract tokens need to be taken from
the wallet to buy the object, with various constraints de-
pending on exercises parameters. The five Knowledge Com-
ponents aimed at in these experiments are:
KnowMoney: Global skill characterizing the capability to
handle money to buy objects in an autonomous manner;
SumInteger: Capability to add and subtract integer num-
bers; DecomposeInteger: Capability to decompose inte-
ger numbers into groups of 10 and units; SumCents: Ca-
pability to add and subtract real numbers (cents); Decom-
poseCents: Capability to decompose real numbers (cents);
Memory: Capability to memorize a number which is pre-
sented and then removed from visual field.

The various activities can be parameterized with the fol-
lowing properties: Exercise Type depending on the com-
plexity of decomposing a price1 that can be read directly by
making the correspondence to a real note/coin a = (1, 2, 5)
and those that need a decomposition that requires more than
one item b = (3, 4, 6, 7, 8, 9). The exercises will be generated
by choosing prices with these properties in a set of six levels
of increasing difficulty and picking an object that is priced
realistically.; Price Presentation: i) written and spoken;
ii) written; iii) spoken; Cents Notation: i) xex; ii) x, xe;
Money Type: i) Real euros; ii) Money Tokens.

1In the euro money system the money items (bills and coins)
have the values 1, 2 and 5 for the different scales.
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Figure 1: The evolution of the comprehension of two
knowledge components with time for population .
Markers on the curve mean that the difference is
significative.

4. SIMULATIONS
We present a set of simulations with virtual students. We
consider two populations. A population ”Q” where the stu-
dents have different learning rates and maximum compre-
hension levels for each KC and another population ”P”where,
in addition to this, the students have limitations in the com-
prehension of specific parameterizations of the activities. We
expect that in the population ”Q” an optimization will not
provide big gains because all students are able to use all
exercises to progress. On the other hand, the population
”P” will require that the algorithm finds a specific teach-
ing sequence for each particular student. We note that the
algorithm itself is not provided with any a-priori informa-
tion about the properties of the students. We present here
the results showing how fast and efficiently our algorithms
estimate and propose exercises at the correct level of the
students. Each experiment considers a population of 1000
students generated using the previous methods and lets each
student solve 100 exercises.

Figure 1 shows the skill’s levels evolution during 100 steps.
For Q student, learning with RiARiT and ZPDES is faster
than with the predefined sequence, but at the end, Prede-
fined catch up with ZPDES. For P simulations, as students
can not understand particular parameter values, they block
on stages where the predefined sequence does not propose
exercises adequate to their level, while ZDPES, by estimat-
ing learning progress, and RiARiT, by considering the esti-
mated level on all KC and parameter’s impact, are able to
propose more adapted exercises.

5. CONCLUSIONS AND FUTURE WORK
In this work we proposed a new approach to intelligent tutor-
ing systems. We showed through simulations and empirical
results that a very efficient algorithm, that tracks the learn-
ing progress of students and proposes exercises proportion-
ally to the learning progress, can achieve very good results.
Using as baseline a teaching sequence designed by an expert
in education [15], we showed that we can achieve compara-
ble results for homogeneous populations of students, but a
great gain in learning for populations of students with larger
variety and stronger difficulties. In most cases, we showed

that it is possible to propose different teaching sequences
that are fast to adapt and personalized. We introduced two
algorithms RiARiT that uses some information about the
difficulty about the task, an another algorithm ZPDES that
does not use any information about the problem. It is ex-
pected that RiARiT, as it uses more information, behaves
better when the assumptions are valid, while ZPDES, with-
out any information can not achieve as high performance
in well behaved cases but is surprisingly good without any
information. Even when compared with a hand optimized
teaching sequence ZPDES shows better adaptation to the
particular students’ difficulties.
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ABSTRACT 
Prior studies on Massive Open Online Courses (MOOCs) suggest 
that there is a significant decrease in student participation after 
one week of instruction [8]. This paper uses a combination of 
students’ Week 1 assignment performance and social interaction 
within the MOOC to predict their final performance in the course. 
The study also examines the role external incentives in final 
MOOC performance. Using logistic regression as a classifier, we 
are able to predict the probability of students earning certificates 
for completion of the MOOC, as well as the type of certificate (i.e. 
Distinction and Normal) earned, with high accuracy. 
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1. INTRODUCTION 
In less than two years, Massive Open Online Courses (MOOCs) 
have attracted millions of learners to enroll in courses such as the 
History of Chinese Architecture, Information Visualization, and 
Healthcare Innovation and Entrepreneurship. These online 
courses provide a diverse set of learners with opportunities to 
engage in lifelong learning. Institutions of higher education are in 
a unique position concerning MOOCs; many universities such as 
MIT and Stanford supply the content of MOOCs, and many 
university students are encouraged to take MOOCs to expand 
their existing knowledge base or access courses that are not 
available at their home institution. However, against a background 
of thriving enrollment, the completion rate of MOOCs is 
staggeringly low [3]. Previous research indicates that fewer than 
7% of learners who enroll in a MOOC actually complete it [6]. Of 
even more concern is that the significant decrease in participation 
usually takes place by the second week of the course [8]. If 
institutions of higher education want to take advantage of the 
potential of MOOCs in student learning, it is important to 
understand what variables affect the completion of these courses 
as well as at what kinds of interventions can be designed to 
encourage persistence. As such, this paper uses learner’s behavior 
in the first week of a Biology MOOC to predict performance at 
the end of the course. 

2. RELATED WORK 
A number of studies have explored students’ behaviors and 
learner’s engagement patterns in MOOCs to understand issues of 
persistence. In one study, Balakrishnan [1] looked at student 
retention in a MOOC offered by UC Berkeley. He used variables 
related to the (1) cumulative time students spent in watching 
video, (2) the number of posts viewed in the forum, (3) the 
number of posts created on the forum, and (4) the amount of time 
spent on the progress page. Using these variable and Hidden 
Markov Models, Balakrishnan was able to predict students’ 
likelihood to drop out of the MOOC. These measures of student 
engagement are likely factors in predicting student retention in 
MOOCs. While learner engagement seems to be a core 
component in answering the question of persistence in MOOCs, 
there still remain questions about other variables involved in 
understanding the complex problem of MOOC persistence. 
Patterns of student behavior in MOOCs can tell us something 
about the types of activities that are known to be engaging. For 
example, Kizilcec and his colleagues [4] identified four 
prototypical engagement patterns in a MOOC that consisted of 
watching videos and taking quizzes. These patterns were: (1) 
students who completed the majority of assessment, (2) students 
who engaged mainly in terms of watching videos, (3) students 
who did assessment at the beginning of the course, and (4) 
students who only watched videos for one or two assessment 
periods. The completing category of students is respectively 27%, 
8% and 5% in the three sampled courses.  

In addition to thinking about individual characteristics that predict 
persistence of MOOCs, an understanding of situated theories of 
learning is useful in examining learner persistence in MOOCs [5]. 
Situated learning theory posits that knowledge resides primarily in 
social interactions and only secondarily in the individual [2]. In 
the context of MOOCs, the social interactions learners have with 
one another via social networks could offer additional 
explanations for persistence in MOOCs that transcend individual 
learner characteristics. The role of social networking in MOOCs 
has been explored in a few MOOC studies. In an initial study, 
Yang and her colleagues [7] modeled how students’ social 
positioning predicts their dropout using survival analysis. 
Nevertheless, little research integrates both the predictors of 
academic assessment and social interaction in modeling students’ 
performance. 
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Finally, the larger context of incentives to complete a MOOC 
adds yet another dimension to our understanding of learner 
persistence. In traditional university environments, grades provide 
learners with a huge incentive to attend class and engage with the 
material. Such an incentive does not exist in MOOCs, where 
completion commonly results in a digital badge or a certificate 
that often contains little value. Often times, learners enroll in 
MOOCs out of intrinsic interest in the material and not because 
the MOOC is required for their undergraduate or graduate degree. 
The current study is uniquely situated within a context in which a 
subsample of the learners are incentivized to participate in the 
MOOC by their University. The study will examine how students 
who receive additional external incentives performed differently 
than the general population. 

3. DATASET 
We are analyzing an online course titled “The Preparation for 
Introductory Biology,” offered by professors from University of 
California, Irvine (UCI) and hosted in Coursera. The duration of 
the course was four weeks, and comprised of three units. Each 
unit was composed of short videos, three to four quizzes, and 
three to four peer assessments. These quizzes were in the 
multiple-choice format with automatic, immediate feedback. 
Additionally, learners were able to re-take each quiz with new 
questions up to three times in order to improve their scores. This 
course offered two study tracks: a Basic track, which was based 
on the performance of ten quizzes and resulted in a normal 
certificate, and a Scholars track, which included peer assessments 
and resulted in a distinguished certificate. Students did not pre-
select a track, but rather were considered to have completed the 
Scholars track if they fulfilled the requirements.  

The online course was created with a primary goal of preparing 
incoming freshman for the onsite Bio 93 course at UCI. The 
failure rate for this onsite course is 15%, which results in a 
proportion of undergraduates having to retake the course in the 
following term. At UCI, students must obtain a Mathematics SAT 
score of at least 550 (out of 800) to be eligible for the Biological 
Sciences major. Students who enter UCI with a score below 550 
enter the Undeclared major and must instead pass a full year of 
biology and chemistry before being eligible to enroll as a 
Biological Sciences major. In this particular year, Undeclared 
major students were incentivized to enroll and complete the 
Preparation for Introductory Biology MOOC. If Undeclared major 
students successfully completed the MOOC with Distinction, they 
would be able to enter the major after just one term instead of 
waiting a year. This provides us with a unique opportunity to 
investigate the effects of providing an incentive to a group of 
learners enrolled in a MOOC.  

The data mainly come from the SQL file exported from the 
Coursera database, which include time-stamped datasets of 
learners’ assignment (quiz and peer assessment) performance, 
scores, forum activities, and final performance. Another source of 
data come from UCI registrar, which records students who are 
enrolled in the onsite Bio 93 course. A reported 37,933 students 
signed up for the course and 551 students obtained Distinguish 
certificate for completing the Scholars track while 1,971 students 
obtained Normal certificate for completing the Basics track. Of 
the students who signed up, 35,411 students did not complete the 
course. 232 UCI Biology students and 172 Undeclared major 
students were identified to have signed up for the online course at 

the time of the study; we are still waiting to confirm a small 
proportion of these students.  

4. DATA ANALYSIS 
Our analysis consists of two logistic regression models, which 
predict student performance at the end of the course. 

4.1 Feature Set  
The predicted variable for the first model is the certificate the 
learner gets, i.e. a Distinction certificate or a Normal certificate. 
The predicted variable for the second model is whether the 
students get a Normal certificate or do not complete the MOOC, 
and thus receive no certificate.  

The first predictor is the average quiz score learners obtained in 
the first week of the course. There are four quizzes in Unit 1 and 
the quiz score ranged from 0 to 6.  

The second predictor is the number of peer assessments students 
completed in Week 1. We did not include the scores that students 
received from their peer assessors because those scores were not 
available until the second or the third week of the MOOC and 
therefore were not thought to affect MOOC persistence at week 
one.  

The third predictor is learners’ social network degree in the first 
week, which measures the level of social integration. The social 
network degree measures the local centrality of learners in the 
online learning community. It is calculated as the number of edges 
to which the node is connected. In this scenario, we treat learners 
as nodes and making comments to another learner’s post is 
regarded as a directed edge from the commenter to the poster. The 
degree value is the number of connections that each learner has. 
Learners who did not participate in forums are assigned with 0 for 
their social network degree. 

The fourth predictor is whether or not a learner is an incoming 
UCI Undeclared major student. This subgroup of students will go 
on to take the Bio 93 onsite course and have received external 
incentive to participate in the online course. We identified 
students as Undeclared by matching their school email addresses 
with Coursera accounts. 

4.2 Logistic Regression  
Two logistic regression models were run separately. The first 
logistic regression model predicts the type of certificate a learner 
received (Distinction or Normal certificates). The second logistic 
regression predicts whether students receive Normal certificates, 
or none at all. In the first model, the number of peer assessments 
taken in Week 1 is a strong predictor for achieving Distinction. 
For every unit increase in the number of peer assessments taken in 
Unit 1, the odds of getting Distinction are over 7 times larger than 
getting Normal, holding other predictors constant. Learners who 
are more active and well connected in the forum in the first week 
are more likely to receive Distinction than Normal certification, 
holding the number of peer assessments taken constant. For 
students taking the same number of peer assessments, the odds of 
UCI Undeclared major students getting Distinction are 89.4% 
higher than the rest of the learners. Table 1 indicates the odds 
ratio for the five predictors in the two logistic regression models. 
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                              Table 1 Odds Ratio 
Odds Ratio Class 

Variables Distinction vs 
Normal 

Normal vs 
None 

Average Quiz Score -- 2.416*** 

Number of Peer Assessment 8.745** 1.054 

Social Network Degree 1.192* 1.123 

UCI Undeclared Major 1.894* 2.282** 

Note.  *** p<0.001 ** p<0.01 * p<0.05 .p< 0.1  

In the second model, the average quiz scores in Unit 1 strongly 
predicted whether learners get Normal certificate or none. 
Learners’ activity in the forum is no longer statistically significant 
in the predictive model. The odds of a UCI Undeclared major 
students getting Normal certificates are 2.282 times non-UCI-
Undeclared major students, holding the average quiz score, the 
number of peer assessments completed and social network degree 
at fixed values.  

Tenfold cross-validation was employed to estimate the predictive 
model. The first model predicting Distinction and Normal 
certificate earners achieved 92.6% accuracy. The second model 
predicting Normal certificate and no certification earners achieved 
79.6% accuracy. Table 2 shows the evaluation of the predictive 
models. 

Table 2 Model Evaluation 

Evaluation Modelling 
Distinction and 
Normal earners 

Modelling Normal 
and None earners 

Accuracy 0.926 0.796 

ROC Area 0.947 0.851 

Precision Positive 0.779 0.703 

Precision Negative 0.978 0.911 

Recall Positive 0.924 0.907 

Recall Negative 0.927 0.713 

Measure Positive  0.846 0.792 

Measure Negative 0.952 0.800 

 

5. DISCUSSION AND FUTURE WORK 
The models indicate that assignment performance in Week 1 is a 
strong predictor of students’ performance at the end of the course. 
The degree of social integration in the learning community in 
Week 1 is positively correlated with the achievement of 
Distinction certificates. Students with external incentive are more 
likely to complete the course compared to students in general, 

even in comparison with students who have similar backgrounds. 
However, this research is limited because we cannot control more 
variables that influence students’ performance in the MOOC. 
Future research should focus on how to increase students’ social 
integration and interaction in the online learning community, as 
these factors have been shown to influence student participation 
in MOOCs. More investigation into providing external incentive 
and increasing course relevance for the target audience is still 
needed. It is also worth exploring the effectiveness of the 
integration of online education and traditional face-to-face 
education in more depth.  
Additionally, more experimentation and research into the 
relationship between quality of online courses and students’ 
engagement and performance is recommended. Research from 
disciplines such as Education, Human Computer Interaction, and 
Computer Science should collaborate and redesign online 
education. The low engagement and completion rates reflect the 
existent opportunities for the improvement of online education. 
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ABSTRACT 

The worldwide increase in demand for qualified workers in 
science, technology, engineering, and mathematics (STEM) fields 

has resulted in a greater focus on preparing students to enroll in 
postsecondary STEM programs. The processes that lead students 
to become interested in and equip them for STEM careers begin 
years earlier. Previous research indicates that family background, 
financial resources, and prior family academic achievement can 
be used to predict whether a student will enroll in a STEM major. 
In this paper, we consider another class of factors that may be 
predictive while being more actionable. In this paper, we use 

predictive analytics, based on previously-validated automated 
detectors of student learning and engagement, to predict which 
students will choose a STEM major. With data from 363 college 
students who used ASSISTments during their regular middle 
school math classes, we develop a model that can successfully 
distinguish 66% of the time if a student will choose a STEM 
major or a non-STEM major when they enter college. In doing so, 
we offer steps towards providing educators with more actionable 

information on the STEM trajectories of individual students.  

Keywords 

STEM, Affect Detection, Knowledge Modeling, Educational Data 
Mining, Predictive Analytics, Gaming the System  

 

1. INTRODUCTION 
Science, technology, engineering, and mathematics (STEM) jobs 
have played a significant role in driving the modern economy, 
with growth as high as three times faster than that of non-STEM 
jobs in the United States over the last decade [13]. Many STEM 
jobs require a postsecondary degree or other advanced technical 

training. However, research shows a gap between the number of 
students who express interest in STEM degree programs and the 
number who actually enter them, which is driven by inadequate 
preparation for higher level STEM skills and other aspects of 
college readiness [21]. This lack of preparation often begins as 
early as middle school. For instance, the National Mathematics 
Advisory Panel argues that difficulties with concepts like fractions 
hinder students from further achievement in mathematics, 

including algebra [15].  

Since the motivation and interest that guides students to enter 
STEM careers can often be traced to middle school [12], it may be 
valuable to work on creating better understanding of the factors 
and processes in middle school students’ learning and engagement 
that connect to eventual decisions to pursue STEM degrees and 

careers. Studies show that family background, financial resources, 
and prior family academic achievement have a significant impact 
to a student's interest and intention to major in STEM [21]. 
However, current predictive models are generally insufficient to 
help classroom teachers identify which students are on track, 
which need further support, and what types of interventions are 

likely to have the greatest impact [14]. Part of the challenge is one 
of getting the right data – predictive models have typically relied 
on course-level data like grades [4] or high-level indicators of 
general student interest in STEM careers [12, 21], making it 
difficult to make predictions actionable before a student is already 
significantly off-track. 

Recent work, however, has taken advantage of the increasing 
deployment of educational software that logs student behavior 

(often in fine-grained detail), developing automated detectors that 
assess student learning and engagement [3, 8, 10, 18]. This 
development creates new opportunities to assess students on a 
broader range of constructs than previously possible and to predict 
long-term student outcomes, such as college enrollment several 
years after using a learning system [20]. This study builds on 
these models, finding that enrollment in STEM degree programs 
(among those in college) can be inferred from learning and 
engagement during middle school mathematics learning. Using 

previously developed automated detectors of knowledge, affect, 
and disengaged behavior, we develop a prediction model to 
distinguish whether or not students who attend college will enroll 
in a STEM major. By identifying these constructs, we argue, we 
can better identify which students are most in need of 
interventions, helping educators to better serve their students.   

2. METHODOLOGY 

2.1 The ASSISTments System 
This study predicts student outcomes from their interactions with 
the ASSISTments system [19], a free web-based mathematics 

tutoring system for middle-school mathematics, provided by 
Worcester Polytechnic Institute (WPI). ASSISTments assesses a 
student’s knowledge while assisting them in learning, providing 
teachers with formative assessment of students as they acquire 
specific knowledge components. Within the system, each 
mathematics problem maps to one or more cognitive skills. When 
students answer correctly, they proceed to the next problem. 
When they answer incorrectly, the system scaffolds instruction by 

dividing the problem into component parts, stepping students 
through each before returning them to the original problem (see 
Figure 1). Once the original problem is correctly answered, the 
student advances to the next. 
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Figure 1. Example of an ASSISTments problem.  

2.2 Data 

2.2.1 Post-High School Survey Data 
For this study, over 2,500 students who had used ASSISTments 
during their middle school mathematics classes were invited to 
participate in a survey about their post-high school academic and 
career achievements. As of this writing, a total of 425 students 
have responded, for a retention rate of about 20%. Students were 

drawn from school districts in the Northeastern US who used 
ASSISTments during the 2004-2005 to 2006-2007 school years 
(with a few continuing usage for more than one year). Of the 3 
districts targeted for this research, 1 was a low-performing district 
in an urban area, primarily serving English language learners 
eligible for free or reduced-price lunches; the other 2 districts 
drew from suburban middle-class populations. 

The survey asked students to specify what degree program(s) they 
were enrolled in, whether they were engaged in full or part-time 

employment, and what their current employment was. Out of the 
425 respondents, 363 were enrolled in college and will be 
analyzed within this paper. Student answers were coded to reflect 
their enrollment or participation in a STEM major as defined by 
the National Science Foundation [16].  

2.2.2 ASSISTments Data 
Action log files from ASSISTments were obtained for each of the 
363 respondents, generating a total of 329,565 actions within the 
system, across a total of 166,188 original and scaffolding 
problems. (Actions include answering questions or requesting 
help.) On average, this resulted in 457 problems per student. 

Knowledge, affect, and behavior models were applied to this 
dataset, generating features used for our predictive model of 
STEM major enrollment. 

2.3 Feature Distillation  
The features used to predict college major classifications (STEM 
vs. non-STEM) were generated using a discovery with models 

approach, leveraging automated detectors of student engagement 
and learning that were previously developed and validated for 
ASSISTments. These included existing models of student 
knowledge, disengaged behaviors (carelessness, gaming the 
system, and off-task behavior), educationally-relevant affective 
states (boredom, engaged concentration, confusion, frustration), 
and other information about student usage (the proportion of 

correct actions and the total number of actions made by the 
student, a proxy for overall usage).   

Corbett and Anderson’s [9] Bayesian Knowledge Tracing (BKT) 
model, a proven knowledge-estimation model used in a number of 
ITS systems, was applied to the data for this study by employing a 

brute-force grid search. BKT infers students’ latent knowledge 
from their performance on previous problems involving the same 
set of skills. Each time a student attempts a problem or problem 
step for the first time, BKT recalculates the estimates of that 
student’s knowledge for the skill (or knowledge component) 
involved in that problem. BKT estimates were calculated at the 
student’s first response to each problem and were applied to each 
of the student’s subsequent attempts on that problem.  

To obtain assessments of affect and disengaged behaviors, we 
leverage existing detectors of student affect and behavior within 
the ASSISTments system [17, 18]. These included boredom, 
engaged concentration, confusion, frustration off-task behavior, 
gaming the system, and carelessness. Data from students who 
attended urban schools were labeled using affect models 
optimized for students in urban schools [17, 18], and data from 
students who attended suburban schools were labeled using affect 
models optimized for students in suburban schools [17].   

Except for carelessness (explained below), the affect and behavior 
detectors were developed in a two-stage process. First, student 

affect labels were acquired from BROMP field observations, 
which records them using HART, an Android app (reported in 
[18]). Then those labels were synchronized with the log files 
generated by ASSISTments. This process resulted in automated 
detectors that can be applied to log files at scale, specifically the 
data set used in this project (action log files for the 363 students). 
The detectors were constructed using only log data from student 
actions within the software occurring concurrently or prior to each 

BROMP observation, achieving state-of-the-art model goodness 
[17, 18], and were applied to the data set used in this paper to 
produce confidence values for each construct for each student 
actions. Detector confidences were rescaled in order to correct for 
bias caused by resampling during training [18, 20]. 

Carelessness is operationalized using contextual slip estimates—
the probability that despite knowing the skill to answer an item, a 
specific incorrect action made by the student for that item is the 
result of slip or carelessness (see [2]). The probability of 
carelessness/slip is assessed contextually and is different 
depending on the context of the student error. As such, the 

estimate of probability of carelessness/slip is different for each 
student action. This study uses carelessness models that were 
previously constructed for ASSISTments [18]. 

2.4 Modeling STEM Major Enrollment 
Within this paper, we develop a logistic regression model 

predicting STEM major enrollment from combinations of 
features. Using logistic regression allows for relatively good 
interpretability of the resultant model, while matching the 
statistical approach used in much of the work predicting long-term 
transitions from K-12 education to college [3, 6, 11, 20].   

For each of the assessments (learning, affect, and disengaged 
behaviors), aggregate student-level predictor variables were 
created by taking the average of the predictor feature values for 
each student. (In other words, taking the average boredom per 
student, average confusion per student, etc.) A simple backward 
elimination feature selection, based on each parameter’s statistical 

significance was used. All predictor variables were standardized 
using z-scores to increase interpretability of the resulting odds 
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ratios. (Note that this does not impact model goodness or 
predictive power in any fashion.)  

3. RESULTS 
First, we looked at our original, non-standardized features and 
how their values compare between those who were pursuing a 
STEM major in college and those who were not (Table 1).   

Table 1. Feature comparison for STEM Major students (1, 
n=194) and Non-STEM Major (0, n=169).  

 STEM 
Major 

Mean Std. 
Dev. 

t-value Cohen’s 
d 

Carelessness 0 0.204 0.118 -4.437  

(p < 0.01) 

0.460 

1 0.267 0.154 

Student 

Knowledge 

0 0.340 0.196 -4.853 

(p < 0.01) 

0.508 

1 0.447 0.223 

Correctness 0 0.418 0.171 -5.184  

(p < 0.01) 

0.547 

1 0.508 0.161 

Boredom 0 0.222 0.072 0.286  

(p = 0.78) 

0.030 

1 0.219 0.078 

Engaged 

Concentration 
0 0.660 0.064 1.500 

(p = 0.14) 

0.162 

1 0.652 0.044 

Confusion 0 0.085 0.058 0.636  

(p = 0.53) 

0.067 

1 0.081 0.062 

Frustration 0 0.171 0.078 1.602 

(p = 0.11) 

0.166 

1 0.155 0.101 

Off-Task 0 0.206 0.086 -0.709 

(p = 0.48) 

0.076 

1 0.212 0.062 

Gaming 0 0.181 0.174 5.269 

(p < 0.01) 

0.573 

1 0.100 0.108 

Number of 
Actions 

0 1049.5 1569.2 1.984  

(p < 0.05) 

0.218 

1 784.53 794.65 

An independent samples t-test (Table1) shows that students in  
STEM majors had higher mean values for average student 
knowledge, average carelessness, and average correctness, while 
students in non-STEM majors had higher mean values for average 
gaming and average number of actions. Effect sizes for these 
features were computed using Cohen’s d which measures the 

standardized mean difference of the features between two groups 
– in this paper, the students pursuing a STEM major and those 
taking a non-STEM major. As shown in Table 1, gaming the 
system has the largest effect size (d=0.573), indicating that 
students who took a non-STEM major had a mean gaming 
percentage 0.573 standard deviations higher during middle school 
than students who took a STEM major. It is worth noting that the 
effect size of gaming for predicting STEM major is substantially 
larger than the effect size of gaming for predicting whether 
students attended college or not, where d was 0.293 [43].  

These observations align with the individual effects of each 

feature on the prediction of STEM major enrollment. For 
example, there is a strong positive relationship between enrolling 
in a STEM major and average correct answers, indicating that 
success in mathematics using ASSISTments is associated to 
higher probability of pursuing a STEM major. The same strong 
positive relationship is seen between STEM major enrollment and 
student knowledge estimate as the student learns with 
ASSISTments. Two non-intuitive results are found in these data. 

The first concerns the relationship between carelessness and 
STEM major enrollment. Taken by itself, the more a student 
becomes careless, the more likely the student is to choose a STEM 
major, evidence in keeping with past results that careless errors 
are characteristic of more successful students [7]. The second non-

intuitive result concerns the amount of interaction the student has 
had with the system. Our results show that the number of actions 
per student is negatively related to majoring in a STEM program, 
perhaps indicative of struggling students whose actions consist 
mostly of help requests and scaffolded attempts (which indicate 
that the student got many problems wrong on the first try). 
Additionally, the more a student games the system, the less likely 
that student is to enroll in a STEM major – a result compatible 

with past evidence that gaming is associated with poorer learning 
in mathematics [8].  

A model for STEM Major enrollment including a combination of 

data features was developed using Logistic Regression and cross-
validated at the student level (6-fold). Our final model (Table 2) 
achieves a cross-validated A’ of 0.663 and a cross-validated 
Kappa of 0.257. This model is statistically significantly better 

than the null model, 2 (df = 2, N = 363) = 38.010, p < 0.001 and 

achieved a fit of R2 (Cox and Snell) = 0.099, R2 (Nagelkerke) = 
0.133, indicating that its predictors explain 9.9-13.3% of the 
variance of those who attended college. As seen in Table 2, the 
predictors (student knowledge and gaming) maintained the same 
directionality as they demonstrated individually (Table 1). 

Table 2. Model of STEM major enrollment 

Features 
Coeffici

ent 

Chi-

Square 
p-value 

Odds 

Ratio 

Student Knowledge  0.357 8.859 0.003 1.429 

Gaming -0.492 13.792 < 0.001 0.611 

Intercept 0.133 1.418 0.234 1.142 

4. DISCUSSION AND CONCLUSION 
This paper presents a logistic regression model which indicates 

that a combination of features of student engagement and student 
success in ASSISTments can distinguish a student who will take a 
STEM major 66.3% of the time. Success within middle school 
mathematics (indicated by correct answers and high probability of 
knowledge in ASSISTments) is positively associated with STEM 
major enrollment, a finding aligned with studies that 
conceptualize high performance and developing aptitude during 
early schooling as a sign of STEM major readiness and predictor 

of later enrollment in STEM programs [21]. The disengaged 
behavior of gaming the system during middle school mathematics 
is found to be negatively associated with pursuing a STEM 
degree. Previous research has shown that that gaming negatively 
impacts learning [8], but it is also a particularly strong indicator of 
disengagement with mathematics, suggesting that students’ lack 
of interest in STEM careers may manifest early. It has been shown 
that gaming behaviors can be successfully remediated either 

through alternate opportunities to learn the material that students 
bypassed or through metacognitive interventions which explain 
why gaming is ineffective for learning [1, 8]. The relationship 
between gaming and the choice of college major is relatively 
large, larger than its relationship to whether a student attends 
college [20], suggesting that gaming remediation could be an 
important component of efforts to encourage more students 
towards STEM degree programs.   

Our model also finds that affective states are not particularly 

strong predictors of whether a student will pursue a STEM major, 
in contrast to work which found that affective states were 
predictive of college attendance [20]. A possible explanation is 
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that student affect may be less relevant for college major choice 
than how students respond to that affect (e.g. a student who just 
becomes careless when he or she gets bored might be more likely 
to maintain the STEM track than a student who games the system 
in response to his or her boredom). It also may be that affect 

during schooling largely plays a role in determining whether 
students choose higher education at all; once we analyze only the 
students who choose higher education (e.g. the current sample), 
affect plays a much smaller role than domain-specific learning or 
choices. Negative affective states should still be attended to, as 
they impact both learning outcomes and college attendance [18, 
20]. It may be a valuable area of future work to explore whether 
the interactions of affective states with other factors can influence 

these predictions. For example, gaming the system and 
carelessness may be mediating some of the relationships between 
affect and college major selection.  

One possible use of these findings is to give educators and career 
counselors a new lens on early indicators of disinterest or 
disengagement from STEM content and instruction, allowing 
them to develop counseling strategies that will sustain student 
interest in pursuing STEM degrees and careers. In doing so, it is 

important to note that despite considerable current societal 
emphasis on encouraging students to pursue STEM majors, some 
students will have other interests and goals. At the same time, the 
demand for STEM professionals considerably outstrips supply 
and there is value in a citizenry that has basic STEM literacy [5], 
regardless of their career choices. If these predictions, based on 
interactions within a mathematics tutor, can be used to provide 
targeted help to students that builds on their strengths and 

strengthens their weaknesses, we stand the chance of both 
identifying students who are particularly gifted in mathematics 
and creating greater options for students who struggle for one 
reason or another. As online learning spreads to other domains of 
K-12 education, we will be able to provide similar support within 
other subject domains, supporting all students in reaching their 
maximum potential.  
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ABSTRACT
The recently proposed SPARse Factor Analysis (SPARFA) frame-
work for personalized learning performs factor analysis on ordinal
or binary-valued (e.g., correct/incorrect) graded learner responses
to questions. The underlying factors are termed “concepts” (or
knowledge components) and are used for learning analytics (LA),
the estimation of learner concept-knowledge profiles, and for con-
tent analytics (CA), the estimation of question–concept associa-
tions and question difficulties. While SPARFA is a powerful tool
for LA and CA, it requires a number of algorithm parameters (in-
cluding the number of concepts), which are difficult to determine
in practice. In this paper, we propose SPARFA-Lite, a convex
optimization-based method for LA that builds on matrix comple-
tion, which only requires a single algorithm parameter and enables
us to automatically identify the required number of concepts. Us-
ing a variety of educational datasets, we demonstrate that SPARFA-
Lite (i) achieves comparable performance in predicting unobserved
learner responses to existing methods, including item response the-
ory (IRT) and SPARFA, and (ii) is computationally more efficient.

Keywords
Personalized learning, learning analytics, content analytics, factor
analysis, matrix completion, convex optimization.

1. INTRODUCTION
Recent advances in machine learning propel the design of person-
alized learning systems (PLSs) that mine learner data (e.g., graded
responses to tests or homework assignments) to automatically pro-
vide timely feedback to individual learners. Such automated sys-
tems have the potential to revolutionize education by delivering a
high-quality, personalized learning experience at large scale.

1.1 SPARse Factor Analysis (SPARFA)
The recently proposed SPARse Factor Analysis (SPARFA) frame-
work introduces models and machine learning algorithms for learn-
ing and content analytics [16, 17]. Learning analytics (LA) stands
for the analysis of the knowledge of each learner, while content
analytics (CA) stands for the analysis of all learning resources,
i.e., textbooks, lecture videos, questions, etc. SPARFA analyzes
binary-valued (1 for a correct answer and 0 for an incorrect one)
or quantized (ordinal-valued, e.g., partial credits) graded responses
of N learners to Q questions, in the domain of a course/exam.
The key assumption of SPARFA is that the learners’ responses to
questions are governed by a small number of K (K � N,Q) la-
tent factors, called “concepts,” which are also known as knowl-
edge components [11]. SPARFA performs the joint estimation of
(i) question–concept associations, (ii) learner concept knowledge
profiles, and (iii) question difficulties, solely from binary-valued

graded learner responses. Provided this analysis, SPARFA enables
a PLS to provide automated feedback to learners on their individual
concept knowledge and to course instructors on the content organi-
zation of the analyzed course.

SPARFA, as well as other factor analysis methods, inevitably suffer
from the lack of a principled and computationally efficient way to
select the appropriate values of the algorithms’ parameters, espe-
cially the number of latent concepts K. The choice of the number
of concepts K is important for two reasons: First, it affects the
performance in predicting unobserved learner responses. Second,
it determines the interpretability of the estimated concepts, which
is key for a PLS to provide human-interpretable feedback to learn-
ers. Rule-based intelligent tutoring systems [24] rely on domain
experts to manually pre-define the value of K. Such an approach
turns out to be labor-intensive and is error prone, which prevents its
use for applications in massive open online courses (MOOCs) [20].
SPARFA utilizes cross-validation to select K, as well as all other
algorithm parameters [17]. Such an approach is computationally
extensive as it requires multiple SPARFA runs to identify appropri-
ate values for all algorithm parameters.

1.2 Contributions
In this work, we propose SPARFA-Lite, a convex optimization-
based LA algorithm that automatically selects the number of latent
conceptsK by analyzing graded learner responses in the domain of
a single course/assessment. SPARFA-Lite leverages recent results
in quantized matrix completion [15] to analyze quantized graded
learner responses, which accounts for the fact that responses are of-
ten graded on an ordinal scale (partial credit). Since SPARFA-Lite
only has a single algorithm parameter, it has low computational
complexity as compared to existing methods such as IRT or con-
ventional SPARFA. We demonstrate the effectiveness of SPARFA-
Lite in (i) predicting unobserved learner responses and (ii) perform-
ing LA on a variety of real-world educational datasets.

1.3 Related work
Factor analysis has been used extensively to analyze graded learner
response data [19, 23]. While some factor analysis methods treat
binary-valued graded learner responses as real numbers [2, 13],
others use probabilistic models to achieve superior performance in
predicting unobserved learner responses. These methods include
the additive factor model (AFM) [9], instructional factors analy-
sis (IFA) [10], and learning factor analysis (LFA) [22], which all
assume that the number of concepts K to be known a priori. Col-
laborative filtering IRT (CF-IRT) [5] and SPARFA [17] both use
cross-validation to select K, as well as all other tuning parame-
ters, by identifying the best prediction performance on unobserved
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learner responses. This approach is computationally extensive and
does not scale to MOOC scale applications, where the dimension
of the problem is large and immediate feedback is required. The
authors of [4] proposed to select K by applying an SVD to the
binary-valued graded learner response matrix and examining the
decay of its singular values, which is not an automated approach.

Matrix completion (MC) aims to recover a low-rank matrix from
incomplete, real-valued observations [6, 8], and has been used ex-
tensively in collaborative filtering applications. More recently,
1-bit MC [12], and its generalization, quantized MC [15] have been
proposed for the recovery of low-rank matrices from incomplete
binary-valued and quantized (or ordinal) observations, respectively.
Since the graded learner responses in educational scenarios are typ-
ically binary-valued or ordinal, we next investigate the applicability
of quantized MC [15] to educational scenarios.

2. SPARFA-LITE STATISTICAL MODEL
SPARFA-Lite aims at recovering the unknown, low-rank matrix Z
that governs the learners’ responses to questions, solely from quan-
tized (ordinal) graded learner responses. Suppose that we have N
learners answering Q questions. Let the Q × N matrix Z be the
underlying low-rank matrix that we seek to recover. Let Yi,j ∈ O
denote the quantized observed graded response of the j th learner,
with j ∈ {1, . . . , N}, to the ith question, with i ∈ {1, . . . , Q}.
O = {1, . . . , P} is a set of P ordered labels. Inspired by [15], we
use the following model for the graded learner response Yi,j :

Yi,j = Q(Zi,j + εi,j), (i, j) ∈ Ωobs,

εi,j ∼ Logistic(0, 1) .
(1)

Here, Logistic(0, 1) represents the Logistic distribution with zero
mean and unit scale [14]. The set Ωobs ⊆ {1, . . . , Q} ×
{1, . . . , N} contains the indices associated to the observed learner
responses Yi,j . The function Q(·) : R → O represents a scalar
quantizer, defined as

Q(x) = p if ωp−1 < x ≤ ωp, p ∈ O,

where {ω0, . . . , ωP } is a set of quantization bin boundaries, with
ω0 ≤ ω1 ≤ · · · ≤ ωP−1 ≤ ωP . We will assume that the set
of quantization bin boundaries {ω0, . . . , ωP } is known a priori. In
situations where these bin boundaries are unknown, they can be
estimated directly from data (see, e.g., [15, 16] for the details).

In terms of the likelihood of the observed graded learner re-
sponses Yi,j , the model in (1) can be written equivalently as

p(Yi,j = p | Zi,j)= Φ(ωp−Zi,j)−Φ(ωp−1−Zi,j) , (2)

where Φ(x) = 1
1+e−x corresponds to the inverse logit link func-

tion. For this paper, we will be using only the inverse logit link
function as it leads to algorithms with lower computational com-
plexity comparing to the inverse probit link function [15].

The goal of the SPARFA-Lite algorithm detailed next is to recover
the unknown low-rank matrix Z given the observed binary-valued
graded learner responses Yi,j , (i, j) ∈ Ωobs.

3. THE SPARFA-LITE ALGORITHM
To recover the low-rank matrix Z from binary-valued graded
learner responses, we minimize the negative log-likelihood of the
observed graded learner responses Yi,j , (i, j) ∈ Ωobs, subject to a
low-rank promoting constraint on Z. In particular, we seek to solve

the following convex optimization problem:

(P)

®
minimize
Z∈RQ×N

f(Z) = −
∑

i,j:(i,j)∈Ωobs
log p(Yi,j |Zi,j)

subject to ‖Z‖ ≤ λ.

Here, the constraint ‖Z‖ ≤ λ is used to promote low-rank solu-
tions Z [8] and the parameter λ > 0 is used to control its rank.
In practice, one can use the nuclear norm constraint ‖Z‖∗ ≤ λ,
which is a convex relaxation of the (non-convex) low-rank con-
straint rank(Z) ≤ r [6,8]; alternatively, one can use the max-norm
constraint ‖Z‖max ≤ λ (see [18] for the details). We select the
only algorithm parameter λ > 0 via cross-validation. We empha-
size that this parameter-selection process of SPARFA-Lite is much
more efficient than that for regular SPARFA, which has three algo-
rithm parameters.

Since the gradient of the negative log-likelihood of the inverse logit
link function can be computed efficiently, (P) can be solved effi-
ciently via the FISTA framework [3]. Starting with an initialization
of the matrix Z, at each inner iteration ` = 1, 2, . . ., the algorithm
performs a gradient step that aims at reducing the objective function
f(Z), followed by a projection step that makes the solution satisfy
the constraint ‖Z‖ ≤ λ. Both steps are repeated until convergence.

The gradient step is given by Ẑ`+1 ← Z` − s`∇f , where s` is
the step-size at iteration ` (see [15] for the details on step-size se-
lection). The gradient of the objective function f(Z) with respect
to Z is given by

[∇f ]i,j =

®
Φ′(Li,j−Zi,j)−Φ′(Ui,j−Zi,j)

Φ(Ui,j−Zi,j)−Φ(Li,j−Zi,j)
if (i, j) ∈ Ωobs

0 otherwise,

where the derivative of the inverse logit link function corresponds
to Φ′(x) = 1

2+e−x+ex
. The Q×N matrices U and L contain the

upper and lower bin boundaries corresponding to the measurements
Yi,j , i.e., we have Ui,j = ωYi,j and Li,j = ωYi,j−1.

The projection step imposes low-rankness on Z. For the nuclear
norm constraint case ‖Z‖∗ ≤ λ, this step requires a projection
onto the nuclear norm ball with radius λ, which can be performed
by first computing the SVD of Z followed by projecting the vector
of singular values onto an `1-norm ball with radius λ (the details
can be found in [6]). The resulting projection step corresponds to

Z`+1 ← ‹Udiag(s)‹VT , with s = Pλ(diag(S)), (3)

where ‹US‹VT denotes the SVD of Ẑ`+1. The operator Pλ(·) de-
notes the projection of a vector onto the `1-norm ball with radius λ,
which can be computed at low complexity [15]. For the max-norm
constraint ‖Z‖max ≤ λ, the projection step can be calculated effi-
ciently by following the method put forward in [18]. We emphasize
that SPARFA-Lite is guaranteed to converge to a global optimum,
since the problem (P) is convex.

4. SPARFA-LITE LEARNING ANALYTICS
We now demonstrate how SPARFA-Lite can be used to perform
LA. To this end, we assume that there is tag information avail-
able for each question, i.e., there are a set of M user-defined la-
bels (tags) associated with the Q questions, with each question as-
sociated with at least one tag. We define the Q × M question-
tag matrix T with Ti,m = 1 if tag m is associated to question
i, and Ti,m = 0 otherwise. We also define the Q × N matrix
A with Ai,j = Φ(Zi,j) ∈ [0, 1], which is the de-noised and
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completed version of the (partially observed) graded learner re-
sponse matrix Y. Using both matrices T and A, we can com-
pute the N × M learner tag knowledge matrix B with the en-
tries Bj,m = (

∑Q
i=1 Ti,m)−1B̃j,m ∈ [0, 1], where B̃ = ATT.

The entries Bj,m represent the de-noised concept knowledge of
learner j on tag m; large values represent good knowledge of tag
m, whereas small values represent poor tag knowledge. This tag
knowledge information is crucial for a PLS to perform LA.

5. EXPERIMENTS
We now compare SPARFA-Lite against existing factor analysis
methods for predicting unobserved learner responses, using real-
world educational datasets and demonstrate its efficacy in per-
forming LA. All algorithm parameters are selected through cross-
validation. All results are averaged over 25 independent Monte–
Carlo trials.

5.1 Predicting unobserved learner responses
We first compare the performance of SPARFA-Lite in predicting
unobserved graded learner responses with two state-of-the-art fac-
tor analysis algorithms.

Datasets. In this experiment, we use five different educational
datasets for: (1) an undergraduate course on fundamentals of elec-
trical engineering, consisting of N = 92 learners answering Q =
203 questions, with 99.5% of the answers observed; (2) an under-
graduate course on signals and systems, consisting of N = 41
learners answering Q = 143 questions, with 97.1% of the an-
swers observed; (3) an undergraduate course on introduction to
probability and statistics, consisting of N = 57 learners answer-
ing Q = 107 questions, with 68.9% of the answers observed; (4)
a university entrance exam, consisting of N = 1706 learners an-
swering Q = 60 questions, with 60.9% of the answers observed;
and (5) another university entrance exam, consisting of N = 1564
learners answering Q = 60 questions, with 70.8% of the an-
swers observed. The undergraduate course datasets are collected
via OpenStax Tutor [21]; see [25] for the details on the univer-
sity entrance exam dataset. Note that all of these datasets contain
binary-valued graded learner responses, which is a special case of
the general, quantized model proposed above (with P = 2 and
{ω0, ω1, ω2} = {−∞, 0,∞}). For simplicity, we will refer to the
individual datasets as Dataset 1-to-5, respectively.

Experimental setup. We now compare SPARFA-Lite against
CF-IRT [5] and SPARFA [17], two established factor analysis
methods that perform well in terms of predicting unobserved
graded learner responses. To assess prediction performance on un-
observed learner responses, we randomly puncture each dataset by
removing 20% of the observed learner responses in Y to form
a test set. We then train all three algorithms on the rest of the
observed learner responses and predict the unobserved responses
in the test set. Since CF-IRT and SPARFA both have the num-
ber of concepts K as a tuning parameter, we run both algorithms
using a range of possible values of K and select the value of K
that achieves the best prediction performance. For SPARFA-Lite,
we only need to select the value of the single algorithm parame-
ter λ that controls K. To assess the prediction performance of all
three algorithms, we use three well-established performance met-
rics: prediction accuracy (COR), prediction likelihood (LIK), and
area under the receiver operation characteristic curve (AUC) [11].
The prediction accuracy corresponds to the percentage of correctly
predicted responses. The prediction likelihood corresponds to the
average the predicted likelihood of the unobserved responses, i.e.,

Table 1: Performance comparison of SPARFA-Lite vs. CF-IRT
and SPARFA on predicting unobserved ratings for five educa-
tional datasets. Bold numbers represent the best performance
among the three algorithms. SPARFA-Lite achieves compara-
ble performance to CF-IRT and SPARFA in all experiments
and metrics at significantly lower computational complexity.

CF-IRT [5] SPARFA [17] SPARFA-Lite

Dataset 1
COR 0.8687 0.8711 0.8737
LIK 0.7286 0.7195 0.7235
AUC 0.8247 0.8056 0.8299

Dataset 2
COR 0.8061 0.8096 0.8181
LIK 0.6393 0.6759 0.6707
AUC 0.7985 0.7285 0.8047

Dataset 3
COR 0.7263 0.7000 0.7200
LIK 0.5876 0.5334 0.5699
AUC 0.7629 0.7116 0.7372

Dataset 4
COR 0.6967 0.7015 0.7019
LIK 0.5538 0.5587 0.5537
AUC 0.7180 0.7249 0.7175

Dataset 5
COR 0.6866 0.6880 0.6903
LIK 0.5506 0.5536 0.5505
AUC 0.7457 0.7478 0.7472∑

i,j:(i,j)∈Ω̄obs
p(Yi,j |Zi,j)

|Ω̄obs|
, where Ω̄obs represents the set of learner

responses in the test set. The area under curve is a commonly-used
performance metric for binary classifiers (see [11] for the details).

Results and discussion. Table 1 shows the mean of the perfor-
mance metrics over 25 trials. We see that SPARFA-Lite achieves
comparable performance as CF-IRT and SPARFA. Note that it out-
performs CF-IRT and SPARFA on the most important performance
metric–prediction accuracy (COR), with the exception of Dataset 3.

We emphasize that SPARFA-Lite is computationally more efficient
than CF-IRT and SPARFA, since it (i) has only a single algorithm
parameter and (ii) can be solved efficiently as it is a convex opti-
mization problem. CF-IRT and SPARFA, in contrast, have multiple
tuning parameters (including K) [5, 17], which means one have to
run them multiple times to conduct a grid search over all possible
values of these parameters. In particular, one Monte–Carlo trial
of SPARFA-Lite on Dataset 1 only takes 3 sec, while CF-IRT and
SPARFA require roughly 2 min. and 10 min. respectively, in MAT-
LAB on a standard desktop PC with a 3.07 GHz Intel Core i7 pro-
cessor (corresponding to 40× and 200× speed up). One can further
reduce the computational complexity of SPARFA-Lite by replacing
the nuclear norm constraint with the max-norm constraint [7, 18].

5.2 SPARFA-Lite learning analytics
Dataset and experimental setup. In this experiment, we use
data collected from a high-school algebra test conducted on Ama-
zon’s Mechanical Turk [1]. The dataset consists of the quantized
(with P = 4 ordinal values) graded responses of N = 99 learners
answering Q = 34 questions, and the learner responses are fully
observed. A total of M = 13 tags have manually been assigned to
the questions. We use SPARFA-Lite to perform learning analytics
on this dataset as described in Sec. 4.

Results and discussion. Table 2 shows the tag knowledge pro-
file for a set of selected learners on the tags “Simplifying expres-
sions,” “Geometry,” and “Systems of equations.” The first row of
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Table 2: Tag knowledge of selected learners. SPARFA-Lite per-
forms robust LA by estimating each learner’s tag knowledge
from ordinal graded response data.

Simplifying Geometry System of
expressions equations

Class average 69 % 64% 30%

Best learner 84% 79% 34%
Average learner 70% 63% 24%
Worst learner 32% 34% 43%

the table shows the mean tag knowledge of all learners (in pre-
cent), while rows 2–4 show the tag knowledge (in percent) for the
best learner, an average learner, and the worst learner, respectively.
Leveraging these tag knowledge profiles, a PLS can automatically
provide personalized feedback to learners on their strengths and
weaknesses, and automatically recommend learning resources for
remedial studies. For example, for the average learner in Table 2,
a PLS would alert them to focus on the tag “System of equations”
and recommend them learning resources associated with this tag,
because their tag knowledge is below the class average. Moreover,
a PLS can use this analysis to provide feedback to course instruc-
tors on the average tag knowledge of the entire class, helping them
to make timely adjustments to their future course plan.

6. CONCLUSIONS
SPARFA-Lite is an efficient method that analyzes an incomplete
set of quantized graded learner responses to questions to perform
learning analytics. SPARFA-Lite achieves comparable or supe-
rior performance in predicting unobserved graded learner responses
compared to existing factor-analysis methods, with significantly re-
duced computational complexity.
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ABSTRACT 

As education technology matures, researches debate whether data 

mining (EDM) or knowledge engineering (KE) paradigms are best 

for modeling complex learning constructs. A hybrid paradigm 

may capture strengths from both approaches. In particular, recent 

work has argued that successful data mining depends on thought-

ful feature engineering. In this paper, we explore the use of cogni-

tive modeling (a form of knowledge engineering) to enhance the 

feature engineering process for detectors of gaming the system, 

one of the most studied complex constructs in EDM. Using this 

construct enables us to measure the extent to which our techniques 

improve performance over previous models.  

Keywords 

Gaming the system, Cognitive Tutor, feature engineering, cogni-

tive modeling, cognitive task analysis 

1. INTRODUCTION 
Over the last ten years, researchers interested in student disen-

gagement have sought to improve the detection of gaming the 

system, behavior where students attempt to solve problems in an 

educational environment by exploiting properties of the system 

[2]. Within intelligent tutors, gaming the system manifests in 

several ways, including help abuse (e.g. [1], [12], [17]) and sys-

tematic guessing (e.g. [12], [17]). However, the construct appears 

to be quite complex, and while human coders are capable of 

achieving good inter-rater reliability for this construct [2], its 

complexity is still a challenge for the modeling community. 

Gaming the system has now been modeled in a variety of systems 

using techniques from both Educational Data Mining (EDM) and 

Knowledge Engineering (KE). Within an EDM approach, classifi-

cation algorithms are used to match training labels generated from 

in situ field observations (as in [17]) or from text replays (e.g. [2], 

[3] and [4]). These models have been effective at predicting gam-

ing, but critics of EDM techniques argue that the resultant models 

are difficult to interpret.  

KE models of gaming offer greater interpretability, but may over-

simplify a construct that can manifest in many different ways. 

Often KE models focus only on 1-2 patterns of gaming, (e.g. 

quick incorrect answers or specific types of help abuse in [12], 

[17]), and it is reasonable to question whether such a complex and 

ill-defined construct can be fully described by 2-3 simple rules. In 

particular, simple rules may indicate gaming when a student skips 

to bottom-out hints to obtain answers (a pattern typical of gam-

ing), but then pauses to self-explain, a behavior associated with 

positive learning outcomes [16]. 

In this study, we leverage Cognitive Task Analysis (CTA) [5], a 

form of KE, to produce a better EDM model. In line with results 

suggesting that attention to feature construct validity improves 

model goodness [15], we enhance construct validity by construct-

ing features based on the explicit patterns articulated by expert 

human judges for how they recognize gaming [13]. We find that 

this method generates features that better reflect the meaningful 

units of student behavior that trigger experts to recognize gaming; 

using these features within an EDM process leads to better good-

ness than a model developed using cognitive task analysis alone.  

2. COGNITIVE MODELING OF TEXT 

REPLAY CODING 
Many EDM studies of gaming that have leveraged human judg-

ments have relied upon text replays ([3], [4]), a sequence (clip) of 

student actions displayed in textual form, used to reliably and 

rapidly label systematic patterns of student behavior. Each replay 

contains time-stamped information about the context the student is 

interacting with (elements of the learning environment, including 

the relevant skills being tested), the input entered by the student, 

and the system’s assessment of that input (right, wrong, a “bug” 

or common misconception, or a help request). A trained human 

coder labels each text replay as “gaming” or “not gaming”.  

In the CTA presented in [13], researchers interviewed and ob-

served a gaming expert who had coded over 20,000 text replays 

from Cognitive Tutor Algebra, eliciting information about which 

cues were meaningful during that process. [13]’s CTA showed 

that expert coding involved two main processes: interpreting the 

student’s actions and using these interpretations to identify pat-

terns indicative of gaming. In particular, CTA identified 19 differ-

ent constituents, or units of behavior, used by the expert. Analysis 

shows that the expert relied heavily on pauses to assess students’ 

reflection and engagement, but gaming labels were also dependent 

upon contextualized information about the student input (e.g., was 

the student entering several similar answers in a row). Table 1 

shows a partial list of these constituents. 

Further analysis [13] found that no constituent is independently 

sufficient for identifying gaming, but that certain combinations of 

constituents are. Expert interviews identified 13 substantive pat-

terns of the 19 constituents, which we refer to as pattern features. 

In this paper, we build on this work, using the constituents of 

[13]’s CTA to generate new pattern features and then applying  

EDM techniques to improve model performance. 
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Table 1. Some pattern constituents indicative of gaming  

 
 

3. METHODS 

3.1 Data 
This study relies on data from Cognitive Tutor Algebra that have 

been used to study three gaming models ([3], [12], [13]), the 

Pittsburgh Science of Learning Center DataShop “Algebra I 2005-

2006 (Hampton only)” dataset [8], which contains data from 59 

students over the course of an entire school year. For [3], the data 

from 12 different lessons were segmented into clips of at least five 

actions and 20 seconds in length, within a single problem. A total 

of 10,397 text replays were presented to the expert, who labeled 

708 (6.8%) as gaming [3].  

[13] divided these text replay clips into subsets so that 75% of the 

clips from each category (531 gaming and 7,267 not gaming) are 

randomly assigned to a training set. The remaining 25% (177 

gaming and 2,422 not gaming) were held-out for testing to ensure 

against overfitting. In this study, we use the same division during 

feature distillation, but final models are trained using standard 

cross-validation techniques. 

3.2 Feature Distillation 
The 19 constituents identified through [13]’s cognitive task analy-

sis were used as features for the detectors built in this study. Con-

stituent labels were applied to each clip, and the number of times 

each constituent appeared was computed.  

Whereas the cognitive modeling approach in [13] attempted to 

replicate the expert’s decision process, this paper’s hybrid model 

searches for pattern features beyond those the expert directly 

articulated. This enables us to test a broader range of patterns on 

the large number of clips coded by the expert coder.  

In order to generate new patterns, each clip from the training set 

was tagged with the 19 constituents identified in [13]. Constituent 

labeling involved a multistep process. First, student actions were 

given the following 4 labels: help, attempt (an attempted answer 

regardless of its correctness), incorrect (bug or wrong attempt) 

and bug. Note that the range in specificity here allows more than 

one action label to be applied in some cases. Next, 15 2-action and 

57 3-action sequences were created from these action labels. For 

example, the 2-action sequences included “help → attempt” and 

“help → incorrect,” and 3-action sequences included “incorrect → 

help → attempt.” Sequences of 2 consecutive help requests were 

not generated since these are collapsed in the log files. Next, these 

sequences were tagged with constituent labels. In order to reduce 

the number of possible combinations, constituents that were asso-

ciated with “not gaming” in the CTA were excluded from this 

process. These labels were then used to generate patterns consist-

ing of 0-2 constituents. Impossible combinations of constituents 

were excluded (e.g., a help request could not be tagged with both 

[scanning help message] (C2) and [searching for bottom out 

hints] (C3)), producing 496,944 possible pattern features. 

As the feature set was now enormous (increasing the potential for 

over-fitting), 2 steps were used to reduce the number of features 

tested in our final model. First, Cohen’s Kappa [6] was used to 

evaluate how individual pattern features predicted gaming. Pattern 

features with Kappa < 0.05 (Kappa of 0 indicates chance) were 

eliminated first, reducing the number of possible features from 

496,944 to 29,294. Next, a modified forward selection process 

was applied to the remaining patterns.  

Although Kappa is a popular indicator of performance, it is rela-

tively poor at eliminating patterns that identify many true posi-

tives at the cost of also identifying a large numbers of false posi-

tives. Since a combination of more specific sub-patterns might 

detect just as many true positives while detecting fewer false 

positives, a combination of more specific pattern features could 

achieve a better performance, even though the single overly gen-

eral pattern would be selected first by a forward selection process 

based solely on Kappa. In order to prevent high rates of false 

positives, our forward selection process gave more weight to 

pattern features with a higher ratio of true positives (TP) to false 

positives (FP), a metric similar to precision. For the first iterations 

of our forward selection process, only pattern features with a TP 

to FP ratio ≥ to 1 were considered. This threshold was then low-

ered in increments of .05 each time Kappa could no longer be 

improved at the current threshold. This process repeated until the 

threshold became 0 and Kappa did not improve.  

The ratio of TP to FP was used during forward selection instead of 

precision to reduce over-fitting to the training set. Amongst the 

generated pattern features, many detect a small number of TP 

while not capturing any FP.  Those pattern features are likely to 

be overly specific to the training set. For such patterns, the value 

for the precision metric will be 1, the highest possible value, 

whereas the ratio of TP to FP is undefined (and are treated as 0 in 

our approach). As such, when executing forward selection using 

precision, those overly specific patterns will be added early to the 

set of best patterns, over-fitting to the training set. By contrast, 

those patterns will only be considered as possible best patterns 

when using TP to FP ratio if they still contribute to the overall 

performance at the end of the forward selection process. 

Performance was evaluated on both the training and the test set to 

ensure that our forward selection algorithm did not overfit to the 

training data. This process was executed on the training set, result-

ing in the selection of 60 pattern features.   

In addition to constituent and pattern features, 6 features, which 

we term “count features,” were also considered. For these, we 

counted the number of actions of specific types during the clip, 

including (1) help, (2) attempts, (3) right answers, (4) incorrect 

Interpretive Label

C1 Pause ≤ 5 seconds before a help request [did not think before 

help request ]

C2 Pause ≥ 4 and ≤ 8 seconds per help 

message after a help request

[scanning help 

messages ]

C3 Pause ≤ 3 seconds per help message 

after a help request

[searching for 

bottom out hint ]

C4 Pause ≤ 5 seconds before a step 

attempt

[guess ]

C5 Pause ≤ 8 seconds after a bug [did not read error 

messag e]

C6 Answer was the same as the previous 

action, but in a different context

[same answer/diff. 

context ]

C7 Answer was similar to the previous one 

(Levenshtein [16] distance of 1 or 2)

[similar answer ]

C8 Context of the current action is not the 

same as the context for the previous 

[switched context 

before right ]

C9 Context for the current action is the 

same as the context for the previous 

[same context ]

C10 Answer or context is not the same as 

the previous action

[diff. answer 

AND/OR diff. 

context ]

Constituent Description
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answers (whether just wrong or a bug), (5) wrong answers (incor-

rect but not a bug), and (6) bugs. Combined with the other 2 fea-

ture types, this resulted in 85 features that were considered during 

the construction of CognitiveHybrid-PF, our first hybrid detector.  

3.3 Validation and Performance 
Detectors of gaming the system were constructed in RapidMiner 

5.3 [11], using J48, JRip, Step Regression and Naïve Bayes, four 

algorithms that have been successful for past educational data 

mining problems. Performance was assessed using two metrics: 

Cohen’s Kappa and A' [7]. A' is the probability that given a pair 

of two clips, one coded as gaming the system and the other coded 

as non-gaming, the model can accurately detect which clip was 

coded as gaming. A' is equivalent to the area under the ROC curve 

in signal detection theory and the Wilcoxon statistic [7]. A detec-

tor with an A' of 0.5 performs at chance, and a detector with an A' 

of 1.0 performs perfectly. A' was computed at the clip level, using 

the code at http://www.columbia.edu/~rsb2162/edmtools.html. 

Detector performance during RapidMiner’s forward selection was 

evaluated using a 6-fold student-level cross-validation. By cross-

validating at the student level, we increase the confidence that our 

detectors will generalize to new students.  

4. Results 
The detectors were refined in three stages.  

4.1 CognitiveHybrid-PF: Pattern Feature  

Detector 
Our first detector was built using all 85 features. The Naïve Bayes 

algorithm performed best under 6-fold student-level cross-

validation. (Kappa = 0.477 and A' = 0.770), accurately diagnosing 

411 (58.05%) of the gaming clips and misdiagnosing only 495 

(5.11%) of the non-gaming clips. The resulting model (Table 2) 

contains 22 of 85 potential features: 20 pattern features, 1 constit-

uent-based feature (F21), and 1 count feature (F22). Except for 

F22, each was associated with a higher probability of gaming by 

the Naïve Bayes detector.  

A closer inspection of the model improves our understanding of 

the actions and constituents that typify gaming in Cognitive Tutor 

Algebra. Only 3 pattern features (F5, F8, F12) selected in this 

model contain help constituents (C1 and C3). Instead, the predom-

inant label was incorrect (both bugs and other wrong answers). 

This action appeared in 19/20 pattern features, omitted only from 

F7, where further scrutiny shows that the more specific bug label  

was a component of this and 7 other pattern features. This sug-

gests that incorrect answers typify gaming, but a contrasting result 

also emerges. Right answers were possible in 13 of 20 pattern 

features, perhaps because a student who is gaming the system 

might get the correct answer by systematically guessing.  

Overall, CognitiveHybrid-PF’s feature selection suggests gaming 

behaviors in this corpus are typified by fast, systematic guessing 

patterns (e.g., providing similar answers or the same answers in 

different contexts). The effect of context changes appears to be 

nuanced but highly predictive when combined with other factors. 

A student who repeatedly enters the same answer in different 

contexts is not engaged in learning, but neither is a student who 

persists within one context after multiple incorrect steps. 

4.2 CognitiveHybrid-C: Constituent Detector 
Although CognitiveHybrid-PF shows substantial improvements 

over previous models in terms of cross-validated Kappa, room for 

improvement remains, especially for A'. Within CognitiveHybrid-

PF, A' may have been reduced by the binary way the pattern 

features  were   used,   resulting  in  high   confidences  for  clips 

Table 2. Features utilized by CognitiveHybrid-PF.  

 

matching one or more pattern features, but confidences approach-

ing 0 for all other clips. To address this issue, we construct 

F1 incorrect → [same answer/diff. context ] & incorrect

F2 [diff. answer AND/OR diff. contex t] & incorrect → [similar 

answer ] & incorrect → [similar answer ] & incorrect

F3 bug & [did not read error message ] → [similar answer ] & 

incorrect → [diff. answer AND/OR diff. context ] & attempt

F4 incorrect → [same answer/diff. context ] & attempt → bug

F5 [similar answer ] & incorrect → [guess ] & [similar answer ] 

& attempt → [did not think before help request ] & [same 

context ] & help

F6 incorrect → [guess ] & [similar answer ] & attempt → 

[switched context before right ] & incorrect

F7 bug → [guess ] & diff. answer AND/OR diff. context] & bug 

→ [guess ] & [diff. answer AND/OR diff. context ] & 

attempt

F8 [did not think before help request ] & [same context ] & 

help → attempt → [guess ] & [similar answer ] & incorrect

F9 bug → [similar answer ] & incorrect → [diff. answer 

AND/OR diff. context]  & bug

F10 [guess ] & [same context ] & attempt → [same context ] & 

incorrect → [guess ] & [similar answer ] & incorrect

F11 [guess ] & [same context ] & incorrect → [diff. answer 

AND/OR diff. context ] & attempt → [switched context 

before right ] & incorrect

F12 [guess ] & [similar answer ] & incorrect → [diff. answer 

AND/OR diff. context ] & incorrect → help & [searching 

for bottom-out hint ]

F13 incorrect → [similar answer ] & bug → [same answer/diff. 

context ] & attempt

F14 [guess ] & [diff. answer AND/OR diff. context ] & incorrect 

→ [guess ] & bug → [guess ] & [diff. answer AND/OR diff. 

context ] & attempt

F15 [same context ] & bug & [did not read error message ] → 

[diff. answer AND/OR diff. context] & attempt → [guess ] & 

incorrect

F16 [guess ] & [same answer/diff. context ] & attempt → 

incorrect → [diff. answer AND/OR diff. context ] & 

incorrect

F17 incorrect → [guess ] & [diff. answer AND/OR diff. context ] 

& bug → [diff. answer AND/OR diff. context ] & incorrect

F18 [guess ] & [same context ] & incorrect → [diff. answer 

AND/OR diff. context ] & incorrect → [similar answer ] & 

incorrect

F19 [similar answer ] & incorrect → [same context ] & incorrect 

→ [similar answer ] & incorrect

F20 [similar answer ] & incorrect → [guess ] & [similar answer ] 

& incorrect → [similar answer ] & attempt

F21 number of times that [switched context before right ] occured 

in the clip

F22 number of right answers  in the clip

Selected features
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CognitiveHybrid-C, which relies only on constituent and count 

features. As with CognitiveHybrid-PF, Naïve Bayes was selected 

as the best algorithm when performance was assessed using 6-fold 

student-level cross validation. The exclusion of pattern features 

improved A' (0.875) but also increases the false positive rate, 

lowering Kappa (0.332). The model accurately diagnosed 323 

(45.62%) gaming clips but misdiagnosed 657 (6.78%) non-

gaming clips. Compared to CognitiveHybrid-PF, 

CognitiveHybrid-C is more parsimonious, requiring only 2 con-

stituent features ([same answer/diff. context] and [thought about 

error]) and 4 count features (wrong, bug, incorrect, and right). 

Except for (count of right), all were associated with higher proba-

bilities of gaming.  

4.3 CognitiveHybrid-E: Ensemble Detector 
Both CognitiveHybrid-C and CognitiveHybrid-PF have strengths, 

but neither is ideal. CognitiveHybrid-E (our ensemble detector) 

leverages the better prediction confidences (A') of C and the better 

classifications (Kappa) of PF by ensembling the two. This is done 

by averaging the two models’ confidences together, and setting a 

threshold of 0.5. CognitiveHybrid-E, when student-level cross-

validated, achieves good Kappa (0.457) and A' (0.901), accurately 

diagnosing 392 (55.37%) gaming clips and misdiagnosing only 

476 (4.91%) not-gaming clips. 

CognitiveHybrid-E’s performance (Kappa = 0.457, A' = 0.901) is 

better than previous detectors trained on the same data. Neither 

[3]’s decision tree detector (Kappa  = 0.40) nor their latent re-

sponse model (Kappa = 0.04) is cross-validated [3] and (un-

published) cross-validation drops the decision tree detector’s 

performance to Kappa = 0.24. [13]’s cognitive model performed 

well on training data (Kappa = 0.430), but performance dropped 

when applied to a held-out test set (Kappa = 0.330). 

CognitiveHybrid-E also compares favorably to other published 

gaming detectors: [4], conducted in SQL-Tutor, reported student-

level cross-validated Kappa = 0.36, A’ = 0.770. In ASSISTments 

[14], a model of gaming achieved Kappa = 0.370 and A' = 0.802; 

an earlier model in ASSISTments [17] achieved Kappa = 0.181. 

5. CONCLUSIONS AND DISCUSSION 
In this study, we provide enhanced, automated models of gaming- 

the-system for Cognitive Tutor Algebra, improving model per-

formance for a construct already well established in the literature 

([3], [13]). Improvements were driven by a hybrid approach that 

leverages both KE and EDM techniques, using cognitive model-

ing of human experts during feature distillation and then applying 

EDM practices to combine these operators to predict gaming. 

These results have implications for debates between KE and EDM 

approaches. They suggest that EDM researchers could substantial-

ly improve their feature engineering by employing KE techniques 

during feature distillation. At the same time, they also attest to 

limitations in relying solely on human experts to define the con-

structs in automated detectors. There are many constructs that 

humans can easily recognize but are still difficult to define. The 

detailed interview method used in [13] and built on here fore-

grounds the value of expert evaluations. By considering hundreds 

of thousands of possible patterns, EDM methods can improve 

performance. For modeling complex constructs, the combination 

of KE and EDM can be stronger than either method alone.  
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ABSTRACT 
Mining learner-generated sketches holds significant potential for 
acquiring deep insight into learners’ mental models. Drawing has 
been shown to benefit both learning outcomes and engagement, 
and learners’ sketches offer a rich source of diagnostic 
information. Unfortunately, interpreting learners’ sketches—even 
sketches comprised of semantically grounded symbols—poses 
significant computational challenges. In this paper we describe 
SKETCHMINER, an educational sketch mining framework that 
automatically maps learners’ symbolic sketches to topology-based 
abstract representations that are then analyzed with graph 
similarity metrics to perform automated assessment and 
misconception discovery. SKETCHMINER has been used to mine a 
corpus of symbolic science sketches created by upper elementary 
students in inquiry-based drawing episodes as they interact with 
an intelligent science notebook in the domain of physical science. 
Results of a study with SKETCHMINER suggest that it can correctly 
assess learners’ symbolic sketches. 

Keywords  
Student modeling, Sketch analysis 

1. INTRODUCTION 
Diagrams and sketching are fundamental to science education. 
From primary through post-secondary education, students use 
drawings and graphical representations to make sense of complex 
systems and as a tool to organize and communicate their ideas to 
others. Studies have shown that learning strategies focusing on 
learner-generated sketches can produce effective learning 
outcomes, such as improving science text comprehension and 
student engagement [12], facilitating the writing process [11], and 
improving the acquisition of content knowledge [3]. Furthermore, 
spatial ability has been recognized as a predictor of STEM success 
even when accounting for mathematical and verbal ability [17].  

Unlike the well studied areas of how people learn from writing 
text, viewing graphics, and reading, relatively little is known 
about how the generation of scientific drawings affects learning. 
Van Meter and Garner [9] posit that students asked to draw a 
picture engage in three cognitive processes: selecting relevant 

information, organizing the information to build up an internal 
verbal model, and constructing an internal nonverbal 
representation to connect with the verbal representation. Others 
suggest that drawing can be a meaningful learning activity 
requiring both essential and generative processing to mentally 
connect multiple knowledge representations [14]. 

The benefits of learner-generated sketching can best be realized 
by thoughtfully designing activities within a well-designed 
curriculum, as the positive effects of drawing strongly depend on 
the quality of the learner-generated products and scaffolding [10]. 
The act of generating a visual representation is a cognitively 
demanding task and, as such, requires scaffolds to guard against 
excessive and extraneous cognitive load [16]. Effective scaffolds 
for drawing include providing cutout figures, guiding questions, 
and targeted drawing prompts [7,19]. 

From a computational perspective, learner-generated drawings 
pose significant challenges. Even in an environment with 
predefined symbolic elements, the generative nature of the task 
yields a very large solution space of unique drawings and 
configurations. The work presented here describes initial efforts to 
mine learner-generated science drawings. To automatically cluster 
and compare drawings, the proposed framework uses a multi-step 
process of translating trace sketch behavior data of student 
drawings into topological representations. This process consists of 
converting the drawn elements into a graph representation based 
on a topology derived from the domain and using a modified edit 
distance methodology for comparing the topological graphs. We 
show how these comparisons can be used to analyze drawings to 
detect misconceptions, as well as to cluster student solutions in a 
manner that exhibits high fidelity with respect to human 
categorization. 

This paper is structured as follows. Section 2 discusses other 
approaches that have been used to analyze student sketching. 
Section 3 describes the tablet-based learning environment that was 
used to collect the symbolic sketch dataset from elementary 
students. Section 4 introduces SKETCHMINER, a sketch data 
mining systems that automatically analyzes and compares student 
drawings using topological graphs. Finally, Section 5 describes an 
application of SKETCHMINER to cluster student drawings 
compared to a human clustering.    
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2. RELATED WORK 
Sketch analysis poses significant computational challenges, with a 
majority of prior work focused on sketch recognition. For 
example, sketch recognition frameworks have been designed for 
domains such as organic chemistry and circuits in which free- 
hand drawing is translated into domain-specific symbols [1].  
Another system, Mechanix, combines free-hand recognition 
capabilities with error checking to create feedback for 
undergraduate engineering students enrolled in a statics course 
[15].  

Bollen and van Joolingen’s SimSketch merges sketching with 
modeling and simulation of science phenomena [2]. In SimSketch, 
user free-hand drawings are segmented into objects by the system, 
and then annotated by the user with a variety of behaviors and 
attributes. Students can then run a simulation based on their 
drawing and see the results before revising their sketch. 
SimSketch has been evaluated in a planetarium setting and been 
shown to be both a functionally useable and enjoyable system for 
visitors. 

Another promising line of investigation for studying learner-
generated drawing in educational settings centers on the 
CogSketch system [5]. CogSketch has been developed as an open-
domain sketch understanding system. Sketch worksheets were 
built within CogSketch, and used in a study to collect and cluster 
undergraduate geology student sketches by an analogical 
generalization engine [4]. 

3. LEONARDO CYBERPADS 
Recent years have witnessed growing interest in introducing 
science notebooks into elementary science classrooms [13]. 
Science notebooks capture students’ inquiry-based activities in 
both written and graphical form, potentially providing a valuable 
source of both diagnostic and prognostic information. However, 
because elementary teachers have limited training in science 
pedagogy, they often struggle with effectively using science 
notebooks in classroom learning activities [18]. 

For the past three years our laboratory has been developing a 
digital science notebook, the LEONARDO CyberPad (Figure 1), 
which runs on tablet computing platforms. LEONARDO integrates 
intelligent tutoring systems technologies into a digital science 
notebook that enables students to graphically model science 
phenomena. With a focus on the physical and earth sciences, the 
LEONARDO PadMate, a pedagogical agent, supports students’ 
learning with real-time problem-solving advice. LEONARDO’s 
curriculum is based on that of the Full Option Science System [8] 
and is aligned with the Next Generation Science Standard goals in 
elementary school science education [20].   

Throughout the inquiry process, students using the LEONARDO 
CyberPad are invited to create symbolic sketches, including 
electrical circuits. Given the challenges of machine analysis of 
freehand sketching, as well as concerns of excessive cognitive 
demand for elementary students working in such an unstructured 
space [18], LEONARDO supports symbolic drawing tasks. To 
preserve the generative processing hypothesized to be of great 
benefit for learner-generated drawings strategies, each activity 
begins with a blank page so that the representations must be 
created from scratch. Students then choose from a variety of 
semantically grounded objects and place them at various points in 
the drawing space. For example, objects for the electricity unit 
include light bulbs, motors, switches, and batteries. Students then 
place wires on the drawing space, connecting the various objects 
to simulate proper electrical behavior. This focuses the learning 

activity on choosing the appropriate circuit elements and creating 
the appropriate circuit topology. Drawing tasks vary in 
complexity from copying a picture of a circuit held up by the 
PadMate, to recreating a circuit made during a physical 
investigation, to creating more complex circuits designed to 
increase their understanding of series and parallel circuits. 

4. TOPOLOGY-BASED SKETCH MINING 
To analyze student drawings, SKETCHMINER first translates them 
into a more abstract representation. It takes as input trace logs 
from students’ work in the CyberPad. From the trace logs it 
extracts student actions at a level of granularity capable of 
producing replay-quality representations of the drawing activities. 
From these actions it extracts the state of the student drawing at 
each point in the activity. For the analyses reported in this paper, 
we focus only on the final submitted sketches rather than  the  
multiple drawings generated during the sketching process. The set 
of objects and locations are then utilized by a simulation engine 
that supports the querying of topological features of the drawing. 
SKETCHMINER uses these topological features to generate a 
labeled graph representation of the drawing. Topological graphs 
provide two key representational benefits. First, they are very 
flexible and can be used across many domains. For the domain of 
circuits, our representation focuses on the electrical topology of 
the circuit drawing, which could be replaced or augmented by 
other features such as two-dimensional spatial topology. Second, 
graphs are easily visualized and interpretable by humans, which 
facilitates  the interpretation of patterns and features extracted by 
automated analysis. 

The first step in the translation from drawings to topological 
graphs is encoding the non-wire circuit elements. Circuit elements 

Figure 1. Screenshot of the LEONARDO CyberPad 

Figure 2. Circuit elements and corresponding topology 
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are represented as nodes in the graph. Because there are only two 
points where each node can interact with other objects in the 
drawing space, each node is connected to two nodes representing 
its contact points (Figure 2). 

After creating the nodes of the graph, SKETCHMINER then 
generates the edges between them. For each contact point in the 
graph, the simulation engine uses a depth first search to return all 
other contact points reachable with a zero resistance path. If one 
or more paths exist between contact points, they are then 
connected with a single edge in the graph (Figure 3).  

While multiple methods can be used to compare the similarity of 
graphs and trees, SKETCHMINER uses a method capable of 
numerically summarizing the difference between topographical 
states that also provides a description of how to transition from 
one state to the other. In particular, it uses a modified form of edit 
distance. Edit distance has been used to characterize errors in a 
variety of domains and is perhaps best known for its application in 
natural language spelling correction. Edit distance captures the 
difference between two representations as a series of edit 
operations. Additionally, these edit operations can be weighted, 
with the sum of necessary operations equaling the edit distance. 
SKETCHMINER uses edit distance to measure the number of 
element additions, element deletions, edge additions and edge 
deletions needed to match two topologies. While traditional string 
edit distances tend to also utilize substitution, we chose to treat 
this instead as deleting an element, then adding a new one because 
this is the path a student would have to take to modify his or her 
drawing.   

To determine the sequence of edit operations necessary to match 
two topologies, SKETCHMINER utilizes a guided search of possible 
actions to determine the lowest cost path through the operation 
space. While there are more efficient algorithms for graph edit 
distance, (e.g., see [6] for a survey), the greater complexity of 
these is not justified for the size of topological graphs generated 
from student sketches in this work. 
Another design decision for SKETCHMINER considered how to 
weigh different edit operations for calculating the edit distance. 
An unweighted edit distance produces some undesirable effects. 
In particular, an unweighted score does not differentiate well 
between different types of errors. Consider a target drawing of a 
complete circuit featuring a battery and a motor. A blank 
submission and a complete circuit with the motor contacts short-
circuited will both produce the same edit distance. 

One approach to correcting for this is to adjust the weighting of 
actions. A subset of the student answers was analyzed with 
subject matter experts in an attempt to determine how the edit 
distance was aligning with curricular goals and assessment of 
different types of errors. A weighting scheme was generated to 

penalize missing elements at a cost of 4, extra elements at a cost 
of 2, and extra/missing edges at a cost of 1. SKETCHMINER uses 
this weighting scheme.  

5. CORPUS ANALYSIS 
For the analyses of SKETCHMINER reported here, a corpus of 
fourth grade symbolic drawings was collected with the LEONARDO 
CyberPads running on iPads in elementary classrooms in North 
Carolina and California. After data cleaning, drawing activities 
from 132 students were used for the analysis. Student drawings 
were scored in comparison to normative models constructed by 
the research team. Because there may be multiple correct 
solutions to a given exercise, student submissions were scored 
against multiple “correct” solutions and assigned the score of the 
closest match. These scores were then used to qualitatively 
analyze the student drawings as a basis for the distance metric for 
unsupervised clustering and for misconception detection. 

To evaluate SKETCHMINER’s edit distance’s value as an 
assessment metric, we clustered student drawings using both the 
weighted and unweighted topographical edit distance as the 
distance metric. In order to evaluate the clusters, two independent 
coders from the project’s education team developed a rubric 
(described in Table 2) and scored the student responses for a 
circuit involving a switch, motor, and battery connected in series. 
Based on the rubric, the drawings were independently classified 
into 4 clusters by the two coders (𝜅 = .9), creating a gold standard 
clustering to validate our clusters against.  

After the hand coding, we then ran an automated cluster analysis 
on the student drawings based on the SKETCHMINER generated 
codings. To cluster the drawings we utilized the WEKA toolkit 
implementation of k-means clustering with k=4 to align with the 
human coding. Because k-means can be dependent on 
initialization, the analysis was run 10 times with different random 
seeds and the results averaged. 

Table 1. Classification accuracy 

Distance Metric Accuracy Precision Recall 
Unweighted .73 .56 .63 

Weighted .86 .74 .76 

As shown in Table 1 above, SKETCHMINER produced strong 
alignment with the human classifications, with the weighted edit 
distance producing better results than unweighted. The improved 
accuracy is a result of the weighted edit distance outperforming 
the unweighted edit distance at separating the three error classes.   

Table 2. Classification by class for weighted edit distance 

Class Accuracy Precision Recall 
1 (Blank) .89 .61 1 
2 (No Structure) .87 .66 .5 
3 (Some Structure) .86 .92 .6 
4 (Correct) .98 1 .96 

Further analysis of the weighted edit distance classification 
reveals that the process produced near-perfect accuracy on correct 
answers (Class 4). Inspection of the misclassified correct student 
sketches showed one example where the student had created the 
correct circuit, and a smaller unrelated circuit on a different part 
of the drawing space which inflated its edit distance. The other 
human-coded correct answer misclassified by SKETCHMINER was 
due to the student creating the correct topology but using a light 
bulb instead of a motor. 
For classifying errors, the clustering showed strong alignment 

Figure 3. Connections encoded as edges 
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with empty entries, but had difficulty separating Class 2 errors 
(elements present but with no structure) from empty submissions. 
One possible way of improving this in the future could be to treat 
absence-of-circuit elements as a special case error.   

6. CONCLUSION 
Understanding how students learn from drawing is a foundational 
problem in learning analytics. Tablet-based science notebooks, 
such as the one provided by the LEONARDO CyberPad, offer an 
excellent “laboratory” for instrumenting the drawing process and 
afford significant opportunity for educational data mining 
techniques. In this paper we have introduced SKETCHMINER, 
which utilizes a graph-based representation of drawing topologies 
to automatically interpret learner-generated symbolic sketches. In 
an analysis of SKETCHMINER’s application to a corpus of fourth 
grade student symbolic sketches, it was found that its assessment 
of student drawings aligns with human-provided assessments.    

The results show promise as a means of automatically assessing 
learner drawings and suggest several lines of investigation for 
future research. First, while “distance to solution” is a valuable 
metric, SKETCHMINER’s edit distance could also be used to 
compare errors to each other. Preliminary analysis using this 
technique has shown promise for identifying common error states 
that could be used in curriculum redesign or to generate targeted 
scaffolding for students. 

Another area for future research is applying SKETCHMINER to 
more topologically complex domains. Because the topographical 
relations in the domain of circuits are somewhat sparse, 
SKETCHMINER’s representations would need to be evaluated on 
more complex student drawings containing more diverse sets of 
elements and relationships with more complex topologies. 

Perhaps the most promising area for analysis is investigating the 
drawing process itself. Topographical representations can be 
created at any point in the drawing process, allowing for analysis 
of sequences and patterns in student drawing. Models learned 
from corpora of learner drawing processes can be used to create 
more accurate models of learners’ conceptual representations, as 
well as the basis for providing customized scaffolding to support a 
broad range of learner populations.  
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ABSTRACT 

In recent years, schools have added cyber security to their 

computer science curricula. While doing so, existing teachers are 

trained with the new material. In this study we explore differences 

in teachers' and students' learning of cyber security, implementing 

a multi-way, data-driven approach by comparing measures of 

software quality and security. Our findings suggest that teachers’ 

codes have a better quality than the students’, and that the 

students’ codes are slightly better secured than the teachers’. The 

findings imply on the teachers benefit from their prior knowledge 

and experience. Also, findings shed light on the difference 

between quality and security in today’s programming paradigms. 
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1. INTRODUCTION 
Educational systems worldwide often adopt "hot", emerging 

topics to their curricula. Usually, teachers from within the system 

are quickly trained to teach the new material. The current study 

aims on understanding the differences in teachers' and students' 

learning of new material in the case of cyber security (also known 

as computer security, IT security), that is, the practice of 

protecting computer systems from unauthorized access, change or 

destruction. This understanding might contribute to the pedagogy 

of teaching new materials, as well as to teacher development, 

shedding light on previous findings regarding novices' and 

experts' programing knowledge [1,9]. Studies in this field had 

usually used various measures to assess experts’ and novices’ 

programming skills and knowledge, mostly based on qualitative 

data collection (mainly programming-related tasks and 

interviews), rather than on assessment of programs written. Our 

approach is to use automatically extracted software quality and 

security features. 

Explicit metrics for measuring different dimensions of code 

quality have been developed from the late 1960s, shortly after the 

development of the then-new domain of software engineering 

[3,5]. Metrics were defined with their automation in mind. As 

setting a numerical value for metrics might be time-consuming, 

subjective and expensive, "one would prefer for large programs an 

automated algorithm which examine the program and produces a 

metric value" [3; p. 596]. In recent years, EDM/LA methods have 

been used along with software metrics, allowing complex 

structure-based features, as well as adding variables measuring 

student-computer interaction [e.g., 2,7]. In this paper, we take an 

EDM approach, together with a comprehensive set of software 

metrics for both quality and security. We use both quality and 

security metrics. 

As the main purpose of the current study is to explore the way 

novice students and experienced teachers learn cyber security – 

most commonly involves learning Python – we chose to focus on 

software metrics derived from the standards of that language. 

Therefore, we used the Style Guide for Python Code (PEP 8)1 as 

the basis to the metrics. (These metrics were not accessible to the 

participants, and were only assessed in retrospect.) As there is no 

yet a Python standard for security, and based on the similarities 

between Python and C++, we based our quality metrics on the 

C++ Secure Coding Standard, by Carnegie Mellon University's 

CERT2. Both these standards are widely used in code evaluation 

2. METHODOLOGY 
Participants in this study were 31 11th- and 12th-grade students 

from two Israeli high-schools, 17-18 years old; and 18 high-

school computer science teachers from different parts of Israel, 

31-53 years old. Two of the latter were the teachers of the 

participant students. 

Each of the participant teachers attended one of two cyber security 

programs (June 2012 – March 2013 or September 2013 – January 

2014). The participant students took a curriculum-based cyber 

security program, as part of their computer science studies, during 

2012/3 school year. Solutions (in Python) to tasks assigned during 

these programs were collected and analyzed. 

Overall, 109 source files were collected – 68 teachers' and 41 

students'. The teachers were assigned with four different exercises 

(writing a UDP echo server, a basic TCP command server, an 

advanced TCP command server, and a Web server); the students 

were assigned with three different tasks (writing a UDP echo 

server, an advanced TCP command server, and a TCP-based 

Chat). 

Number of actual participants in the analysis was decreased to 17 

teachers (with 60 files) and 15 students (with 27 files), as 

sometimes teachers/students worked in pairs or triples. When the 

same pair/triple had submitted all of the exercises, we arbitrarily 

left only one of the group in the data set. When pairs/triples had 

changed over the course of the program, we arbitrarily assigned 

chose only one representative for each submission. 

                                                                 

1 This guide was co-authored by Python creator, Guido van 

Rossum. Available on http://legacy.python.org/dev/peps/pep-

0008 [accessed 3 May 2014]. 

2 Available at https://www.securecoding.cert.org [accessed 3 May 

2014]. 
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2.1 Feature Engineering 
Features were evaluated at the code-level; for the participant-level 

analysis (descriptive statistics, hierarchical tree), feature values 

were averaged across each participant's source files. 

2.1.1 General Features (6 features) 
For each source file, the general features are the following:  

 Number of Statements (code size); 

 Number of Comment Lines; 

 Documentation Rate (= Comment Lines / Statements); 

 Number of Lines (statements, comments and empty lines); 

 File Name Length [characters; excluding the extension .py]; 

 File Name Meaningfulness (1 – file name is not meaningful at 

all; 2 – partly meaningful; 3 – very meaningful). 

2.1.2 Quality Features (02 features) 
These were automatically extracted by running Pylint 

(http://pylint.org), a common source code bug and quality checker 

for Python which follows PEP 8 style guide. Pylint defines five 

categories of standard violations/errors: 

1. Convention (C; 18 measures). Recommendations of software 

structural quality. Convention measures indicate standard 

violations (e.g., function/variable name does not match a 

regular expression defined in the standard); 

2. Warning (W; 61 measures). Python-specific problems that 

do not follow Python's best practices and may cause run time 

bugs (e.g., an unused import from wildcard import); 

3. Error (E; 32 measures). Probable bugs in the code that relate 

to general programming concepts (e.g., the use of a local 

variable before its assignment); 

4. Refactor (R; 15 measures). A "bad smell" code (derived 

from the term refactoring. the process of restructuring existing 

computer code without changing its external behavior). Such 

violation might be indicated when a function takes too many 

variables as input; 

5. Fatal. This are errors in Pylint processing and not in the 

source file itself, hence were excluded. 

Pylint scans the code and returns a list of measures for which 

violations/errors found, along with their count (we consider 0 for 

the measures that were not triggered by Pylint). Based on Pylint 

output, the following features were computed for each category: 

 Mean Count (C/W/E/R) – mean count of violations/errors 

across all the category's measures. 

 Normalized Mean Count (C/W/E/R) – Mean Count divided by 

code size (Number of Statements); 

 Rate of Triggered Measures (C/W/E/R) – number of triggered 

measures divided by total number of measures; 

 Triggered Category (C/W/E/R) – indicating whether at least 

one measure of it was triggered. 

 Normalized Triggered Category (C/W/E/R) – Triggered 

Category divided by code size (Number of Statements). 

2.1.3 Security Features (6 features) 
These features – extracted using scripts written by the research 

team – are binary, indicating whether the relevant mechanism was 

implemented (1) or not (0). 

 Input Validation (the process of ensuring that a program 

operates on clean, correct and expected input); 

 Anti-Spoofing Mechanism (spoofing attack is a situation in 

which an attacker masquerades as another entity by sending 

specially crafted data that seems as it was send from the 

legitimate source); 

 Bound Checking (checking whether a variable is within some 

range before it is used); 

 Checking for Errors (not checking return codes for errors can 

cause logical security bugs/crashing of the program that can 

cause Denial of Service attacks); 

 Sensitive Data Encryption; 

 Client-Side-Only Security (when the server relies on 

protection mechanisms placed on the client side only); 

Among these, Client-Side-Only Security is the only one for which 

a 0-value denotes a good behavior. 

3. RESULTS 

3.1 Descriptive Statistics 

3.1.1 General Features 
Means of four general metrics are significantly different between 

students and teachers: Number of Statements, Number of Lines, 

File Name Length, and File Name Meaningfulness; on average, 

students' programs were longer than the teachers', and teachers' 

file names were longer and more meaningful than the students'. 

The difference regarding code size (Number of Statements and 

Number of Lines) might hint that teachers have a better grasp of 

the concept of programming with Pyhton, as this language allows 

far fewer lines compared to other languages. No significant 

differences were found between the means of the two 

documentation-related features. Average Documentation Rate was 

0.1, which shows a reasonable documenting practice in Python. 

Results are summarized in Table 1. 

Table 1. Descriptive statistics, t-test results for general features 

(one decimal place representation unless mean<0.1) 

Variable Mean 

(SD) 

N=32 

Mean 

(SD), 

Teach. 

N=17 

Mean 

(SD), 

Stud. 

N=15 

t(30)a 

Number of Statements 51 

(28.3) 

40.5 

(19.7) 

62.9 

(32.3) 

2.3*, 

df=22.6b 

Number of Comments 6.1 

(7.4) 

5.5 

(7.8) 

6.8 

(7.0) 

0.5 

Documentation Rate 0.1 

(0.1) 

0.1 

(0.2) 

0.1 

(0.1) 

-0.4 

Number of Lines 56.9 

(29.6) 

45.4 

(23.8) 

69.7 

(30.9) 

2.5* 

Name Length 10.8 

(5.1) 

12.9 

(4.0) 

8.4 

(5.2) 

-2.8** 

Name Meaning. 1.3 

(0.5) 

1.6 

(0.4) 

0.9 

(0.5) 

-4.3** 

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 

b Levene's test for equality of variance resulted with a significant 

result, hence equal variances not assumed. 
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3.1.2 Quality Features 
Means of eight quality metrics of convention (C) and warning (Q) 

type are significantly different between students and teachers (see 

Table 2): Mean Count, Normalized Mean Count, Rate of 

Triggered Measures – for both C and W; Trigged Category W, 

and Normalized Triggered Category C. On average, students had 

more convention- and warning-type violations than the teachers. 

As convention guidelines improve code readability and 

maintainability, these differences might indicate on the teachers' 

smoother migration to programming in a new language. 

Table 2. Descriptive statistics, t-test results for quality features 

(one decimal place representation unless mean<0.1 or 

difference needs to be shown) 

Variable Mean 

(SD) 

N=32 

Mean 

(SD), 

Teach. 

N=17 

Mean 

(SD), 

Stud. 

N=15 

t(30)a 

Mean Count C 72.3 

(56.7) 

40.8 

(28.8) 

108.0 

(60.0) 

4.0**, 

df=19.6b 

Mean Count W 56.9 

(70.9) 

20.7 

(37.6) 

97.8 

(78.4) 

3.5**, 

df=19.5b 

Mean Count E 1.4 

(1.5) 

1.3 

(1.0) 

1.5 

(2.0) 

0.5, 

df=19.5b 

Mean Count R 0.2 

(0.3) 

0.1 

(0.4) 

0.2 

(0.3) 

0.6 

Normalized Mean 

Count C 

0.11 

(0.04) 

0.09 

(0.04) 

0.13 

(0.03) 

3.6**, 

df=26.7b 

Normalized Mean 

Count W 

0.02 

(0.03) 

0.01 

(0.02) 

0.04 

(0.03) 

2.9**, 

df=21.6b 

Normalized Mean 

Count E 

– c – c – c 0.05 

Normalized Mean 

Count R 

– c – c – c 1.1 

Rate of Triggered 

Measures C 

0.4 

(0.1) 

0.3 

(0.1) 

0.4 

(0.1) 

4.5** 

Rate of Triggered 

Measures W 

0.05 

(0.04) 

0.03 

(0.03) 

0.07 

(0.04) 

3.5** 

Rate of Triggered 

Measures E 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01) 

-0.1, 

df=21.6b 

Rate of Triggered 

Measures R 

0.01 

(0.02) 

0.01 

(0.02) 

0.01 

(0.01) 

0.7 

Triggered Category C 1 (0) 1 (0) 1 (0) N/A 

Triggered Category W 0.7 

(0.4) 

0.6 

(0.4) 

0.9 

(0.3) 

2.7*, 

df=28.1b 

Triggered Category E 0.4 

(0.3) 

0.4 

(0.3) 

0.4 

(0.4) 

-0.6, 

df=23.8b 

Triggered Category R 0.2 

(0.3) 

0.1 

(0.3) 

0.2 

(0.3) 

1.2 

Normalized Triggered 

Category C 

0.03 

(0.02) 

0.04 

(0.02) 

0.02 

(0.01) 

-3.1** 

Normalized Triggered 

Category W 

0.02 

(0.01) 

0.02 

(0.02) 

0.02 

(0.01) 

0.6 

Normalized Triggered 

Category E 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.01) 

-1.1 

Normalized Triggered 

Category R 

– c – c – c 0.2 

* p<0.05, ** p<0.01. a Unless otherwise stated, df=30. 

b Levene's test for equality of variance resulted with a significant 

result, hence equal variances not assumed. c Value < 0.01. 

Pay attention to the opposite direction difference between students 

and teachers in Normalized Triggered Category C. This is a direct 

result of Triggered Category C getting a 1-value for both students 

and teachers and of Number of Statements being larger for 

students that it is for teachers (Normalized Triggered Category C 

is a ratio of these two variables). 

3.1.3 Security Features 
Overall, both teachers and students showed low levels of 

implementing security mechanisms, as summarized in Table 3. 

Both implemented no security mechanism regarding Anti-

Spoofing Mechanisms and Sensitive Data Encryption. As for 

Input Validation and Checking for Errors – on average, students 

statistically significantly implemented more mechanisms than 

teachers regarding these features. It might be that teachers, 

learning from their own fresh experience, emphasized these 

subjects to their students. 

As for Client-Side-Only Security, recall that a 0-value for this 

feature denotes a proper security implementation. As seen in 

Table 3, teachers' mean value for this feature was 0; however, as 

they had barely implemented any security mechanism, this value 

cannot be interpreted as a good practice. The students, with 

relatively a high mean value (0.5), demonstrate poor security 

design that is focused mostly at the client-side. 

Table 3. Descriptive statistics, t-test results for security 

features (one decimal place representation unless mean<0.1) 

Variable Mean 

(SD) 

N=32 

Mean 

(SD), 

Teach. 

N=17 

Mean 

(SD), 

Stud. 

N=15 

ta 

Input Validation 0.06 

(0.17) 

0 (0) 0.13 

(0.23) 

2.3*, 

df=14.0 

Anti-Spoofing 

Mechanism 

0 (0) 0 (0) 0 (0)b N/A 

Bound Checking 0.10 

(0.20) 

0.04 

(0.12) 

0.17 

(0.25) 

1.9, 

df=20.1 

Checking for Errors 0.18 

(0.35) 

0.04 

(0.12) 

0.33 

(0.45) 

2.5*, 

df=15.8 

Sensitive Data 

Encryption 

0 (0) 0 (0) 0 (0) N/A 

Client-Side-Only 

Security 

0.21 

(0.42) 

0 (0)c 0.52 

(0.52) 

3.3**, 

df=11.0 
* p<0.05, ** p<0.01. a Levene's test for equality of variance 

resulted with a significant result, hence equal variances not 

assumed. b For this case, N=12. c For this case, N=16. 

3.2 Hierarchical Clustering 
A hierarchical cluster analysis was performed, using Ward's 

method for clustering by Pearson correlation. Features were 

standardized using Z-scores before clustering. Analysis was 

computed using SPSS 18. The results, presenting two clusters, are 

strikingly clear: One cluster (N=9) holds only teachers, the other 

(N=23) holds all the 15 students and 8 additional teachers. 

Examining features' mean values between the two clusters adds to 

previous student-teacher comparison. The most striking difference 

is in refactor (R) features, which did not show up earlier: a) Rate 

of Triggered Measures R, with t(df=20.5)=2.2, at p<0.05; b) 

Triggered Category R, with t(df=24.4)=2.2, at p<0.05; and c) 

Normalized Triggered Category R, with t(df=20.0)=2.4, at 

p<0.05. Levene's test for equality of variance resulted with 
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significant results, hence equal variances were not assumed. 

Means in the teachers-only cluster were lower than in the mostly-

students cluster (i.e., the teachers had demonstrated better security 

design). Hence, it might be that teachers are more experienced 

than students in regulating their own programming and 

recognizing seemingly-suspicious code. 

Bound Checking was also found significantly different between 

the two clusters, with t(df=19.1)=2.2, at p<0.05 (here also, equal 

variances were not assumed as for Levene’s test significant 

result). Mean value for the teachers-only cluster is lower than the 

mostly-students cluster, in line with previous findings. 

Some features' means were statistically significantly different 

when compared between teachers and students, but not different 

when comparing between clusters: Number of Lines, Number of 

Statements, and Normalized Triggered Category C. As 

Normalized Triggered Category C is the ratio of Triggered 

Category C – for which all of the participants got a value of 1 – to 

Number of Statements, and as Number of Statements and Number 

of Lines are highly correlated– with Pearson’s r=0.983, at p<0.01 

– it is enough to look at Number of Statements; therefore, we 

might conclude that the original difference in Number of 

Statements might have been arbitrary. 

3.3 Prediction Model 
Finally, we built a classifier at the code-level, predicting whether 

a program was submitted by a student or a teacher. 87 source 

codes were used. We ran a Decision Tree algorithm, using 

RapidMiner 5.3 (default parameters), with a manual forward 

feature selection. The best model found (with LOOCV 

kappa=0.751) is relatively simple, having only two features – 

Normalized Mean Count C, and Normalized Triggered Category 

E – three leaves and a total height of two (see Figure 1). It 

highlights the already known difference in convention violations 

between teachers and students. However, it adds an interaction of 

a convention feature with an error-related feature; the latter did 

not show up earlier. This interesting result suggests that students 

and teachers that are relatively good in convention-keeping might 

still pay attention differently to probable bugs. 

Figure 1. Best prediction model (S=Student, T=Teacher) 

 

4. DISCUSSION 
Overall, we found that the teachers did better than students with 

regards to software quality metrics of a new programming 

language. However, the very existence of violations/errors in 

these metrics may hint that the teachers had struggled with the 

new material just like novices do. These findings support 

preliminary findings about computer science teachers being 

"regressed experts" when coping with new material [4]. 

Supporting computer science learners in improving their code 

might be relatively easily, by measuring software quality and 

security while writing the code and enabling a contextual 

feedback; this might produce a better code and, more importantly, 

a better learning [cf. 6, 8]. Popular IDEs (Integrated Development 

Environments) already provide integration with tools like Pylint 

(e.g., Emcas, VIM, Eclipse, Komodo, WingIDE, and gedit), so 

using such software might ease the measuring task. 

As our results suggest, codes with higher software quality are not 

necessarily better secured. Overall, teachers' codes were of higher 

quality comparing to the students' codes, however with regards to 

the measurable security features – the opposite was true. If we 

want future software engineers to implement appropriate security 

mechanisms, we need to educate them in secure programming 

while teaching them programming practices. 
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ABSTRACT 
As technology evolves and design options for web-based 
homework support systems expand, researchers are left with 
questions regarding best practices.  These platforms often provide 
students correctness feedback meant to guide learning and offer 
dynamic tutoring to help students solve difficult problems.  
Feedback typically consists of bland text and worked examples, 
but as hypermedia gains prevalence, researchers are turning their 
focus to the appropriate use of such elements in e-learning 
environments. The following study assesses the effects of 
feedback medium within a randomized controlled trial conducted 
using ASSISTments, an adaptive math tutor.  Results suggest that 
video feedback enhances learning outcomes and is well perceived 
by student users.  These findings are of particular interest to the 
Learning Sciences, with intent to optimize e-Learning design. 

Keywords 

E-Learning, Cognitive Theory, Multimedia Principles, Feedback, 
Adaptive Tutoring, ASSISTments, Randomized Controlled Trial. 

1. INTRODUCTION 
A leader in the field of e-Learning, Richard Mayer has defined 
various multimedia principles for the optimal design of 
technology supported learning environments such as web-based 
homework support systems [3].  Rooted in cognitive theory, these 
principles call for the design of learning environments that are 
driven by an active learning process and that take the restraints of 
cognitive load and working memory into consideration [3][7].  
Still, researchers seeking to enhance student engagement, 
motivation, and persistence, they are left questioning how to 
optimize the learning environment without overloading learners.  

Mayer also posits that learners utilize separate information 
processing channels to internalize information; under the 
redundancy principle, material offered through one channel (i.e., a 
narrated passage) should not be simultaneously presented through 
another (i.e., text accompanying the narration) [3].  When such 
circumstances occur, the learner’s attention is split across 
redundant content, depressing intake from both channels and 

hampering learning.  Further, the modality effect suggests that 
learning gains are greater for narrated content than for content 
presented as text [7].   Based on these principles, the use of video, 
when presented without redundant textual explanation should 
appeal to both auditory and visual processing channels without 
risking overload.  

Video is not novel to education, and it is growing increasingly 
popular due to the concept of the “flipped classroom,” which 
often parallels the use of web-based homework support 
systems.   While the quality of evidence for the flipped classroom 
has not yet proven impressive [4], the trend speaks to the growing 
accessibility of technological resources in education. Self-
recorded video lectures and feedback offer teachers the 
opportunity to be deeply involved in student learning while 
simultaneously enhancing ownership of the technology [5].  

Contrary research has suggested that video is not universally 
successful in promoting learning gains.  In his early work on the 
effect of educational movies, Pane [9] noted mixed results as a 
function of content, offering evidence that the use of video may 
improve the speed of immediate recall, yet potentially harm long-
term learning.  Negative effects of video may include prolonged 
time-on-task that potentially leads to boredom or frustration, the 
inability to appropriately convey abstract content material, and the 
likelihood of technological difficulties that prevent students from 
adequately accessing materials. 

In the present study, the ASSISTments platform is used to 
compare the delivery methods of feedback messages within a 
mathematics e-Learning environment.  Prior research has found 
that dynamic graphics are more effective than static graphics in 
mathematics realms [7], and thus, we hypothesize that video will 
have a positive effect on learning gains within this system.  Since 
its inception, ASSISTments has delivered significant results 
surrounding the use of textual feedback in the form of scaffolding 
and hints [10][11][12]; the present study serves as a preliminary 
exploration into replacing textual feedback with video.   

Thus, we pose the following research questions: 
1. Are learning outcomes enhanced when scaffold feedback is 
delivered using video rather than text? 
2. Can we determine if students disproportionately internalize 
feedback based on the medium, given next question performance 
and response time? 
3. Based on self-report measures, do students respond positively 
to the addition of video to their assignment? 

2. METHODS 
2.1 Participants 
A set of six questions requiring students to use the Pythagorean 
theorem was assigned to 139 8th grade students using 
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ASSISTments.  This student population was comprised of four 
classes of differing skill levels that spanned four suburban middle 
schools in Massachusetts and Ohio.  All students were familiar 
with ASSISTments and used the system on a regular basis as part 
of classwork and homework assignments.   

2.2 Design 
The Pythagorean theorem problem set was derived from pre-
existing ASSISTments certified material, based on Common Core 
State Standards and chosen in an attempt to match 8th grade fall 
curriculum.  The structure of the problem set relied on three 
questions with text feedback (A, B, C) and three isomorphic 
questions with video feedback (A*, B*, C*).  Each question and 
its morph were of similar difficulty and were therefore considered 
interchangeable (i.e., A and A*).  The questions are available at 
[8] for further comparison. 

The fixed question patterns depicted in Table 1 were rooted in 
the intention to allow all students an equivalent opportunity to 
experience both feedback styles.  Thus, the four groups were 
designed to house fixed question patterns from which we could 
assess the impact of video versus text at various points throughout 
the problem set.  Random assignment was attained by allowing 
ASSISTments to allocate students into one of the four groups at 
the start of the assignment.  As depicted in Table 1, students 
assigned to Group 1 received video feedback if they answered 
question 1 incorrectly, text feedback if they answered question 2 
incorrectly, and so on. 

 
Table 1. Group design 

Linear	  Order	   1	   2	   3	   4 5 6 

Group 1  A* B C* A B* C 

Group 2  A B* C A* B C* 

Group 3  A* B* C A B C* 

Group 4  A B C* A* B* C 

           *Depicts question morph with video feedback 
 
Video content was designed to mirror textual feedback in an 
attempt to provide identical assistance through both mediums.  
Each video simply featured the lead researcher reading a feedback 
message while referring to the question content on a whiteboard.  
Figure 1 depicts question C* with video feedback, while Figure 2 
depicts the question morph (C) with text feedback. All video 
material can be accessed at [8]. 

Both types of feedback were set to load incrementally with 
incorrect responses or if the student requested to break the 
question down into steps.  Videos were set to play automatically, 
allowing students to gain information with equal efficiency 
regardless of feedback medium, and perhaps making it harder or 
 

 
Figure 1. Video feedback for question C* 

more inconvenient to “game the system,” or click through the 
scaffold steps in rapid succession. 

For each group, four post-test survey questions asked students 
to judge, using a simple three-measure Likert scale (i.e., not at all, 
somewhat, a lot), if they felt video feedback was helpful, if it was 
enjoyable, if they would prefer similar videos in future 
assignments, and what effect video feedback had on their 
focus.  For the entire student experience, see [8]. 
 

            
Figure 2. Text feedback for question C 

2.3 Procedure 
The problem set was assigned to students in the manner consistent 
with their teacher’s usual use of ASSISTments (i.e., as either 
classwork or homework).  Students were free to work at their own 
pace and were not required to complete the assignment in one 
sitting. Log data was compiled for each student’s performance, 
including elements such as first action, correctness, response time, 
attempts, and hints requested.  Delegating random assignment to 
the tutor produced results that were less than optimal, as 
significantly fewer students were assigned to Group 2 and Group 
4.  However, assessment of the code controlling ASSISTments’ 
random assignment function concluded that this anomaly was not 
influenced by any student attribute or system characteristic. 

Table 2 explains initial group assignment and the process for 
excluding students from analysis.  A total of 139 students were 
originally assigned (OA) the problem set.  Six students failed to 
log enough progress to initiate a group assignment and were 
therefore excluded.  Of the remaining 133 students, 13 students 
did not complete the problem set (I), and 31 students tested out 
(TO) (these students answered each question correctly and failed 
to receive feedback of either style).  A disproportionate number of 
students tested out of Group 3, likely as a function of random 
assignment and small sample size. 

 
Table 2. Students excluded from analysis 
 OA I TO G Remaining 

Group 1 35 4  7  0  24 
Group 2 29 3  6  4  16 
Group 3 43 4  11  2  26 

Group 4 26 2  7  4  13 

Total 133* 13 31 10 79 

             *Six students failed to initiate a condition. 
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In prior research, “gaming the system” within ASSISTments has 
been defined as consistent answer seeking behavior displayed in 
rapid succession (i.e., clicking through all hints or scaffolds for 
completion) [1].  As such, “gamers” were operationalized as any 
student who clicked through question A (or A*) and its four 
scaffolds, regardless of feedback medium, at a rate faster than five 
seconds per response.  By this loose definition, a total of 10 
students qualified as “gamers” (G) and were removed prior to 
analysis as shown in Table 2.  

Our primary analysis assessed student performance on the 
second question as a function of the feedback medium they 
experienced after incorrectly answering the first question.  For 
question 1, Groups 1 and 3 were presented video feedback (A*), 
while Groups 2 and 4 were presented text feedback (A).  We were 
therefore able to collapse these groups when analyzing second 
question performance.  Based on Table 2, the removal of gamers 
significantly differs when the Groups are collapsed: for Groups 1 
and 3, only 7.1% of students are removed from the remaining 
sample, while Groups 2 and 4 lose 43.5% of the remaining 
students.  Considering our operational definition of gamers, and 
noting that Groups 2 and 4 received text feedback upon 
incorrectly answering question 1, the discrepancy found here 
suggests that video feedback may deter gaming. To better 
understand this bias, the proceeding analysis is carried out both 
with and without gamers for comparison.  

3. RESULTS 
3.1 Second Question Analysis 
After considering the aforementioned exclusion methods, 79 
students were remaining for analysis (89 when gamers were 
included).  To address our initial research question, we assessed 
second question performance in students who had received 
feedback on question 1, as summarized in Table 5.  Learning 
outcomes were enhanced for students who received video 
feedback (M = 0.77, SD = 0.43) rather than text feedback (M = 
0.63, SD = 0.50), approaching significance at p = 0.143, with an 
effect size1 of 0.32, 95% CI [-0.28, 0.91].  When gamers were 
included to analyze the effect of the selection bias, the 
improvement for students who had received video (M = 0.76, SD 
= 0.44) versus text (M = 0.52, SD = 0.51) became statistically 
significant, p < .05, with an effect size of 0.50, 95% CI [-0.03, 
1.03].   

Table 5. Summary of second question analysis  
 Video N Text N ES1 95% CI 

Performance       

    w/o Gamers 0.77 
(0.43) 

35 0.63 
(0.50) 

16 0.32 [-0.28, 0.91] 

    w/ Gamers 0.76 
(0.44) 

37 0.52 
(0.51) 

23 0.50* [-0.03, 1.03] 

Resp. Time       

    w/o Gamers 134.86 
(118.76) 

35 421.77 
(1122.27) 

16 -0.45 [-1.05, 0.15] 

     w/ Gamers 129.72 
(117.46) 

37 307.33 
(943.50) 

23 -0.30 [-0.82, 0.23] 

Note. Time is depicted in seconds as: mean (standard deviation). *p < .05.  
 
Further analysis of second question performance suggested that 
response time was faster for students who had received video (M 
= 134.86, SD = 118.76) rather than text (M = 421.77, SD = 
1122.27), approaching significance at p = 0.068, with an effect 
size of -0.45, 95% CI [-1.05, 0.15].  When gamers were included 
                                                                    
1 Effect sizes are reported throughout using Hedges correction [2]. 

for comparison, students who had incorrectly answered the first 
question and received video feedback performed faster (M = 
129.72, SD = 117.46) than those receiving a text scaffold (M = 
307.33, SD = 943.50), but results were not significant and the 
effect size dropped to -0.30, 95% CI [-0.82, 0.23].  As gaming 
was defined as rapidly clicking through questions and feedback, it 
is not surprising that time measures would drop in this manner.   
While these results portray consistent trends approaching 
significance, they should be taken with caution, as the number of 
students who received text feedback was disproportionately 
smaller than the number of students who received video feedback. 

3.2 Response Time Within Feedback  
To address our second research question, we examined students’ 
overall experience within each type of feedback.  Students saw a 
total of 186 scaffold levels of video feedback, and 171 scaffold 
levels of text feedback while completing their assignment. On 
average, response time during video feedback (M = 202.51, SD = 
337.99) was longer than response time during text feedback (M = 
35.18, SD = 28.74) approaching significance at p = 0.085, with an 
effect size of 0.68, 95% CI [0.47, 0.90].  When gamers were 
included for comparison, students saw a total of 241 levels of 
video feedback, and 231 levels of text feedback. Average 
response times dropped within both feedback styles, yet response 
time during video feedback remained longer (M = 169.28, SD = 
268.44) than response time during text feedback (M = 28.38, SD 
= 21.67), approaching significance at p = 0.076, with an effect 
size of 0.73, 95% CI [0.54, 0.92]. 

These results suggest that there was no significant difference 
in the overall number of feedback levels experienced by students 
as a function of feedback medium.  On average, students spent 3 
minutes and 23 seconds within video feedback and only 35 
seconds within text feedback.  When gamers were considered, less 
time on average was spent within each feedback style, with 
students spending 2 minutes 49 seconds within video feedback 
and only 28 seconds within text feedback. Thus, students 
consistently spent more time within video feedback, suggesting 
that they actually took the time to watch the videos and internalize 
the content whereas they seemed to gloss over text feedback. 

3.3 Survey Response Analysis 
Of all students available for analysis, 53 answered the four post-
test survey questions.  Student responses are proportioned in 
Table 8. Taken together, we consider the survey results to suggest 
that video feedback is well perceived by students.  Essentially, 
83% of students reported that they would at least somewhat prefer 
ASSISTments to use video more often.  Coupled with the student 
performance findings discussed above, we feel that video may be 
a beneficial tool for ASSISTments and that further exploration 
regarding the long-term effect on learning is required. 

Table 8. Student responses to post-test survey questions 

 Not at all Somewhat A lot 

How helpful did you find the videos as 
you completed your assignment? 14% 43% 43% 

How much did you enjoy the videos? 17% 57% 26% 

Would you like it if more of your 
ASSISTments assignments used videos? 17% 43% 40% 

Did you feel more focused on your 
assignment when the question had videos? 30% 38% 32% 
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4. CONTRIBUTIONS AND DISCUSSION 
Although Mayer’s work has been a predominant influence on the 
field of multimedia infused learning, much of his research has 
assessed college undergraduates in psychology labs. Thus, his 
results suggest a massive and seemingly unrealistic effect when 
compared to most real-world educational interventions.  
According to recent research detailing average effect sizes in 
educational settings, Lipsey, et al. [6] note that at the middle 
school level, researcher developed studies with specialized topics 
tend to show strength with effect sizes of approximately 
0.43.  The present study is on par with this trend, with effect sizes 
for second question analysis ranging from 0.32 to 0.51.  We argue 
that these results provide a contribution to the Learning Sciences 
and help establish a basis for future research. 

Based on our findings, we feel that video feedback may be a 
significantly beneficial tool for e-Learning.  Immediate learning 
gains, represented by second question performance after receiving 
feedback on question 1, were significantly greater in students who 
experienced video feedback.  Our results suggest that the use of 
video forces the learner to slow down and internalize the concept 
that is being taught, as depicted by consistent trends for response 
times within the feedback experience. Although text feedback 
consistently provides a faster alternative for skilled readers, 
perhaps adaptively slowing the pace more closely mimics the 
actions of a human tutor. 

It should be noted that video feedback appears to have 
deterred gaming behavior. This may have been due in part to 
novelty, but was likely a function of the automatic nature of video 
playback.  When a student tried to game through a question, each 
scaffold level would present another video until they were all 
playing simultaneously.  A slightly more qualitative inspection of 
gaming behavior within this problem set suggested that at least 
three of the students labeled as gamers corrected their behavior 
after being exposed to video feedback.  Future research is required 
to determine if video feedback provides a beneficial intervention 
for this population in general. 

Regardless of the cause, let us assume for a moment that these 
effects are valid and reliable, and that video feedback significantly 
enhances student performance. With the growing popularity of 
web-based homework support systems and the ubiquitous nature 
of video servers such as YouTube and SchoolTube, teachers and 
instructional designers may be overlooking a valuable tool. The 
videos used in this study were of low production quality, shot in a 
single take, and featured a non-professional actress reading from a 
script. Teachers with years of expertise in providing feedback 
could arguably record a short video on their smartphone or tablet 
that would outperform the content used in this study.  The use of 
video within e-Learning environments has the potential to 
streamline the process of repetitive one-to-one tutoring and boost 
the teacher’s efficiency in the classroom. While pedagogical 
agents have become a popular tool for feedback delivery within e-
Learning environments, the same messages may carry 
significantly more power when delivered by the student’s teacher. 
A multitude of brief interactions offering personalized and 
appropriately timed feedback, guidance, and motivation, could 
become an important step toward truly adaptive tutoring.   

Future implementations of this study should utilize a more 
powerful pre/post-test design with additional far transfer items 
and the use of open-ended survey response options to gauge 
student feedback.  We also suggest that future endeavors compare 
a purely video condition to a control containing only textual 

feedback, perhaps using an AB design with multiple content 
topics to maintain fair treatment.  Future work should also attempt 
to pinpoint critical elements driving the effects of video, such as 
motivation, novelty, personalization, and engagement. 
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ABSTRACT 
The current study examined relationships between expert human 
judgments of text quality and grammar and mechanical errors in 
student writing. A corpus of essays (N = 100) written by high 
school students in the W-Pal system was collected, coded for 
grammar and mechanical errors, and scored by expert human 
raters. Results revealed weak relations between grammar errors 
and holistic essay scores and stronger relations between 
mechanics and holistic essay scores. Implications for essay 
scoring algorithms and providing feedback to writers are 
discussed.   

Keywords 

Intelligent tutoring systems, grammar and mechanics, automated 
feedback, automatic essay scoring 

1. INTRODUCTION 
The Writing Pal (W-Pal; [7, 9, 10]) is an intelligent tutoring 
system (ITS) that provides students with instruction and game-
based practice on how to use writing strategies. The system also 
gives students opportunities to write essays, receive automated 
feedback on these essays, and revise the essays. The purpose of 
this study is to examine the importance of errors in grammar and 
mechanics (e.g., punctuation and spelling) for predicting holistic 
scores of essay quality and how the relationship between grammar 
and mechanics and essay quality can be used to help develop 
instructional modules and feedback algorithms within W-Pal. Our 
particular interest in the consequences of considering grammar 
and spelling in instructional modules and in providing automated 
feedback to students stems primarily from concerns expressed by 
writing instructors who have used W-Pal in their classes. 
Currently, W-Pal focuses on providing students with feedback 
that centers on using strategies to more effectively compose 
essays, including strategies to plan essays, write more effective 
introductions, essay bodies, and conclusions, and to revise their 
essays. These strategies have proven successful; however, some 
teachers remain concerned that students primarily need feedback 
on lower level aspects of writing such as grammar, punctuation, 
and spelling.  

Although research supports the teaching of mechanics to students 
[5, 8], meta-analyses of effective writing instruction have 
demonstrated that grammar instruction is among the least 
effective types of student interventions [6]. On the other hand, 
teachers report that correct grammar and mechanics are important 
elements of writing instruction and writing quality. For example, 
in a study by Cutler and Graham [3], over 75% of surveyed 
teachers indicated that they taught grammar skills at least several 
times a week at the expense of teaching essay writing, planning, 
and revising. Additional evidence for the perceived importance of 
grammar skills in the classroom can also be found in writing 
textbooks, which dedicate large sections to grammar instruction 
[8].  

Our main design and pedagogical questions in the context of W-
Pal are whether to include a module that explicitly teaches 
grammar and mechanics, whether to provide grammar and 
mechanics feedback to the students who use W-Pal, and whether 
to incorporate grammar and mechanic indices in our automatic 
scoring algorithms. Fully answering these questions will likely 
require behavioral or intervention studies. However, an initial step 
in assessing the importance of grammar and mechanics is to use 
data mining techniques to assess relationships between grammar 
and mechanical accuracy and essay quality. Thus, in this study, 
we examine a corpus of essays written by students who were 
provided instruction in W-Pal. The essays were scored by expert 
raters for overall essay quality as well as grammatical and 
mechanical accuracy. The essays were also coded for grammatical 
and mechanical accuracy by a separate set of expert raters. We 
specifically seek to address the following three research questions:  

1. To what extent are expert analytic scores of grammar 
and mechanics related to holistic scores of essay 
quality? 

2. To what extent are expert analytic scores of grammar 
and mechanics associated with the number and type of 
errors observed in an essay? 

3. To what extent are expert scores of holistic essay 
quality associated with the number and type of errors 
observed in an essay? 
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Our underlying presumption is that the answers to these questions 
will enhance our understanding of essay writing and expert 
judgments of essay quality. In turn, these answers will aid in the 
design and development of W-Pal by providing information about 
the importance of grammar and mechanical errors in assessing 
writing quality. If grammar and mechanical errors are important 
indicators of writing quality, then there may be value in providing 
instructional modules that help students avoid making 
grammatical and spelling errors, in providing feedback to learners 
about the number and types of errors that occur in their writing, 
and in including automated measures of grammar and mechanics 
in the scoring algorithms used by W-Pal. The results of the study 
will also strengthen our understanding of the linguistic features 
that underlie writing quality. 

2. METHODS 
To address the research questions for this study, a corpus of 
essays was hand coded to identify grammar and mechanical errors 
and these errors were then regressed onto the expert ratings of 
grammar and mechanics and the expert judgments of essay 
quality. In addition, correlations were conducted between the 
expert ratings of grammar and mechanics and the holistic 
judgments of essay quality. 

2.1 Corpus 
We selected 100 essays from an on-line writing study conducted 
in the W-Pal ITS. The essays were written by public high school 
students in the metro Phoenix area. The students ranged in age 
from 14 to 19 and the majority of the students in the study (62%) 
were female; 56% of the students identified themselves as native 
speakers of English, with the remaining participants identifying 
themselves as non-native speakers of English. Participants 
attended 10 sessions (1 session/day) over a 2-4 week period. 
Participants wrote a pretest essay during the first session and a 
posttest essay during the last session. The essays were written on 
two prompts (on the value of competition and on the role of 
images/appearances). The prompts were counterbalanced across 
the pretest and posttest essays. The essays used in this study were 
selected from the pretest essays only. 

Two expert raters with at least 4 years of experience teaching 
freshman composition courses at a large university rated the 
quality of the essays using a standardized SAT rubric and an 
analytic rubric that contained four subsections: introduction, body, 
conclusion, and correctness (see [2] for more details on the 
rubric). The correctness subsection consisted of one rating that 
asked reviewers to judge an essay’s grammar and mechanical 
accuracy. Both the SAT and the analytic rubric generated a rating 
with a minimum score of 1 and a maximum of 6. Raters were 
informed that the distance between each score was equal. The 
raters were first trained to use the rubric with 20 similar essays 
taken from another corpus. The final interrater reliability for all 
essays in the corpus was r > .70. The mean score between the 
raters was used as the final value for the quality of each essay. 
The essays selected for this study had a scoring range between 1 
and 4.5. The mean score for the essays was 2.9 and the median 
score was 3.0. The scores were normally distributed. 

2.1 Hand-Coding of Errors 
An error tag-coding scheme was developed to investigate the 
grammar, mechanics, word use, and spelling in the 100 selected 
essays. The coding scheme was based on an error-tagging manual 
reported in Dagneaux, Dennes, Granger, and Meunier [4]. The 

manual consists of subsections related to form (spelling and 
morphology), grammar (nouns, adjectives, and verbs), lexico-
grammar (complementation, dependent prepositions), lexical 
choices (single, phrases, connectors, and conjunctions), and word 
problems (redundant and missing words). Two expert raters were 
trained on this manual. After reviewing a training set of essays 
and the manual, new codes were incorporated that related to 
punctuation, spelling, sentence fragments, and ambiguous 
referents. These codes were not available in the original coding 
scheme but errors in the essays necessitated them. After training 
was completed, the raters coded each essay independently and 
codes between raters were compared. Differences in coding were 
adjudicated between the two raters until agreement was reached. 
Final raw scores were provided for each essay for each code. In 
addition, a score based on text length was computed (a normalized 
score). Component scores were calculated for all form errors 
(spelling and morphology), all grammar errors, all lexico-
grammar errors, all lexical choice errors, all word problem errors, 
and all punctuation errors. Lastly, a total count of all errors in the 
essay was computed. 

2.2 Statistical Analyses 
Statistical analyses using SPSS were conducted to investigate the 
role that grammar and mechanics play in explaining human scores 
of essay quality. A correlation was calculated between holistic 
essay scores and expert scores of grammar and mechanics to 
examine links between holistic and analytic scores. A regression 
model was then used to assess the accuracy of the expert scores 
for grammar and mechanics by investigating associations between 
the hand-coded error counts and the expert judgments. Finally, a 
regression model was used to examine the associations between 
the hand-coded errors and the expert scores for holistic essay 
quality. For both regression models, a training and test approach 
was used. SPSS syntax does not select an exact percentage for 
training and test sets and thus training sets in SPSS may range 
from 63-71% of the corpus.   

3. Results 
3.1 Expert Scores 
A correlation was calculated between the expert ratings for the 
holistic score and the expert ratings for grammar and mechanics 
(the analytic score). The resulting correlation, r(100) = .388, p < 
.001, reflects a positive, medium effect between the holistic and 
analytic scores. 

3.2 Grammar Scores 
Correlations were calculated between the hand-coded errors and 
the expert scores for grammar and mechanics to examine the 
strength of the relationship between these two variables. Prior to 
this analysis, the hand-coded error scores were also checked for 
multi-collinearity. The analyses demonstrated that there were 26 
hand-coded errors that demonstrated at least a small effect size (r 
> .10) with the expert ratings and did not demonstrate strong 
multi-collinearity with each other (defined as r > .90). The 
majority of these variables were related to overall errors and 
mechanics, but not to grammar.  

A stepwise linear regression analysis was conducted including the 
26 hand-coded errors in which these variables were regressed onto 
the raters’ evaluations for the 71 essays randomly selected by 
SPSS for the training set. The linear regression using the 23 
variables yielded a significant model, F(2, 69) = 20.980, p < .001, 
r = .615, r2 = .378. The test set yielded r = .653, r2 = .426. Two 
variables were significant predictors in the regression: total 
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number of errors (raw) and punctuation errors (raw). The 
regression model for the training set is presented in Table 1. 

3.3 Holistic Scores 
Correlations were calculated between the hand-coded errors and 
the expert holistic scores to assess the strength of the relationship 
between errors and the holistic rating of essay quality and to 
check for multi-collinearity between the hand-coded errors. These 
analyses showed that there were 22 hand-coded errors that 
demonstrated at least a small effect size with the expert ratings of 
essay quality and did not demonstrate strong multi-collinearity 
with each other. The majority of the errors that demonstrated 
medium or close to medium effect sizes were related to spelling, 
punctuation, and lexical errors. 

A stepwise linear regression analysis was conducted with the 22 
variables in which the variables were regressed onto the raters’ 
evaluations for the 71 essays randomly selected by SPSS for the 
training set. The regression model for the training set is presented 
in Table 2. The linear regression using the 22 variables yielded a 
significant model, F(2, 69) = 8.043, p < .010, r = .435, r2 = .189. 
The test set yielded r = .456, r2 = .208. Two variables were 
significant predictors in the regression: total number of errors 
normalized and logical connector errors normalized. 

3.4 Post-Hoc Analysis 
 

We conducted a post-hoc analysis in which we removed the total 
errors variable. We conducted this analysis to examine if, in the 
absence of a total error count, errors related to grammar or 
mechanics (or both) were predictive of essay quality. As in the 
previous analyses, a stepwise linear regression analysis was 
conducted with the remaining 21 variables from the holistic score 
analysis. These 21 variables were regressed onto the raters’ 
evaluations for the 64 essays randomly selected by SPSS for the 
training set. The linear regression using the 21 variables yielded a 
significant model, F(1, 63) = 9.601, p < .010, r = .364, r2 = .132. 
The test set yielded r = .293, r2 = .086. One variable was a 
significant predictor in the regression: form errors normalized 
(i.e., errors related to spelling and morphology errors normalized 
for text length). The remaining 20 variables, including all of the 
grammar variables, did not significantly add to the model and 
were left out. The regression model for the training set is 
presented in Table 3. 

 

 

Table 3: Regression analysis predicting expert holistic 
scores without total errors 

Entry Variable added r R2 

Entry 1 Form errors normalized 0.364 0.132 

4. Discussion 
We have taken a corpus-based data mining approach to 
investigating the importance of grammatical and mechanical 
features in predicting the quality of students’ essays. The results 
of this study indicate that expert ratings of grammar and 
mechanical accuracy are positively correlated to essay score and 
that the total number of errors and the number of punctuation 
errors in an essay are predictive of human judgments of grammar 
and mechanical accuracy. The findings also indicate that if 
grammatical errors in essays have any effect on expert judgments 
of essay quality, they are small. In contrast, errors related to 
spelling, punctuation, and lexical choices showed relatively strong 
correlations. These findings call into question the need to design 
instructional modules to teach grammar in W-Pal, as well as in 
other tutoring systems which focus on helping students to improve 
their writing quality.  

In reference to relations between expert judgments of essay 
quality and expert judgments of grammar and mechanics, the 
findings report a moderate correlation that explains 15% of the 
variance in overall essay quality. Previous studies have shown 
similar results for the strength of grammar and mechanic 
judgments to predict essay quality [1, 2]. Importantly, these 
studies have indicated that human ratings of grammar and 
mechanics are the least predictive analytic ratings of essay quality 
(behind analytic judgments related to text organization, 
perspective, unity, conviction, and other elements). The regression 
analysis between coded errors in essays and human judgments of 
grammar and mechanic errors demonstrated that total errors and 
punctuation errors explained 43% of the variance in the human 
judgments for the test set. Such a finding indicates that expert 
ratings of grammar and mechanics are not solely based on overt 
errors in essays (i.e., over 50% of the variance in these judgments 
are not explained by grammar, spelling, and punctuation errors in 
the essay). 

In reference to relations between grammatical errors and overall 
essay quality, the strongest correlation reported for a grammatical 
variable (article errors) demonstrated only a small effect size with 
holistic scores (and one that was not significant). In total, only 
four grammatical errors demonstrated at least small effect sizes 
with holistic scores of essay quality (i.e., article errors, verb 
morphology errors, noun errors, and verb errors). In no instances 
were grammatical error variables included in regression models 
that predicted essay quality. Thus, the findings point toward a 
weakness of grammatical errors in explaining writing quality and 
provide little evidence to support the inclusion of a grammar 
instruction module in the W-Pal system or include grammar 
indices in the automatic scoring algorithms contained in W-Pal. 
Additionally, since grammar errors in the essays are not strongly 
linked to overall scores of essay quality, there appears to be no 
strong evidence to provide feedback to W-Pal users concerning 
grammatical errors.  

Correlations between holistic scores and the hand coded errors 
yielded the strongest associations for spelling errors. However, 
only a few spelling error variables showed medium effects sizes 
with essay quality and only one index of combined spelling and 
morpheme errors (form errors) was included in a regression model 

Table 1: Regression analysis predicting expert grammar 
and mechanics scores 

Entry Variable added r R2 
Entry 1 Total errors raw 0.572 0.327 
Entry 2 Punctuation errors raw 0.615 0.378 

Table 2: Regression analysis predicting expert holistic 
scores 

Entry Variable added r R2 
Entry 1 Total errors normalized 0.350 0.122 

Entry 2 
Logical connector errors 
normalized 0.435 0.189 
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that explained essay quality (this index explained 13% of the 
variance in essay quality). The majority of mechanical errors 
demonstrated only small effects with human judgments of essay 
quality and most of these errors did not reach significance.  

Thus, while the evidence for mechanical instruction is a bit 
stronger, the findings do not strongly support the need to design 
instructional modules to teach mechanics in W-Pal. From a 
practical standpoint, designing a module that covers all potential 
spelling and punctuation errors in English is also too ambitious for 
a single ITS. In addition, research has demonstrated that students 
learn to spell best when they correct their own mispellings under 
the guidance of a teacher. This is especially true for students who 
have developed spelling skills (such as the adolescent writers 
targeted by W-Pal); these students should be able to predict 
spelling difficulties and apply previous knowledge to correct 
present spelling errors [11]. Therefore, the results of this study 
combined with design limitations and previous studies suggest 
that explicit spelling instruction may not be beneficial or practical. 

In contrast to grammar errors, however, relations between spelling 
errors and holistic essay scores do appear strong enough to justify 
changes to the W-Pal automatic scoring algorithms and to the 
automatic feedback system. Automatically counting the number 
and types of spelling errors in an essay may improve the accuracy 
of the current scoring algorithm. In addition, compiling incidence 
scores for the number and types of punctuation normalized by the 
number of clauses or sentences may also increase the accuracy of 
the scoring algorithm. From a feedback perspective, highlighting 
spelling errors for W-Pal users may allow them to correct 
mispelled words more naturally. If, after highlighting spelling 
errors, users cannot still correctly spell the word, a drop-down 
menu with suggested spellings could be provided. In this way, 
spelling feedback that resembles best practices could be provided 
to W-Pal users. Of course such feedback mechanisms need to be 
assessed experimentally to better understand the relationship 
between spelling feedback and essay quality. 

5. Conclusion 
The results from this study, in combination with previous 
research, indicate that the explicit instruction of grammar in an 
ITS like W-Pal is likely unnecessary. In addition, providing 
feedback to users in reference to grammatical errors in their 
writing appears unwarranted (mostly because grammatical errors 
do not demonstrate strong relationships with essay quality). The 
same cannot be said for spelling and punctuation, which yield 
stronger relationships with judgments of writing quality. Thus, 
future versions of the W-Pal system will likely need to be 
sensitive to students’ spelling and punctuation errors. However, 
we realize that the expectations of the scoring rubric used in this 
study may differ from the expectations found in an actual 
classroom and that the rubric itself may help in determining the 
importance of grammar and mechanics for the raters. The findings 
also indicate that human ratings of grammar and mechanics go 
beyond overt grammar, punctuation, and spelling errors as found 
in the text. A better understanding of what textual elements 
humans attend to when assessing grammar and mechanics would 
assist in more accurately identifying errors, which would be 
helpful in developing instructional techniques more strongly 
grounded in teacher cognition. Overall, the findings from this 
study provide important implications for system development and 
design that are based on real learning in practice. The findings 
also promote a number of future research areas. 
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ABSTRACT 
We investigate how writing proficiency relates to the flexible use 
of cohesion. Forty-five students wrote 16 essays across 8 sessions. 
Natural language processing techniques were used to calculate the 
cohesion of each essay. Random walk and Euclidian distance 
measures were then used to visualize and classify students’ 
flexibility in cohesion across the essays. Results revealed that 
students who were more flexible in their cohesion also had greater 
literacy skills and prior knowledge. Further, cohesive flexibility 
was most strongly related to the unity of the pretest essays.  

Keywords 
Intelligent Tutoring Systems, dynamical analysis, writing, 
flexibility, cohesion, automated essay scoring 

1. INTRODUCTION 
Students’ ability to effectively communicate via writing has been 
shown to be a critical skill for academic and professional 
achievement. Standardized tests, for instance, typically require 
students to complete a single assignment that is designed to tap 
into their proficiency at writing. This assessment has a profound 
impact on college acceptance and other opportunities, such as 
scholarships, honors organizations, and assistantships [1].   

Unfortunately, teachers do not have the time to provide thorough 
feedback on every essay a student generates. In response to these 
needs, researchers have developed adaptive computerized systems 
designed to assess the quality of essays [2]. Automated essay 
scoring (AES) systems employ natural language processing (NLP) 
and statistical methods to evaluate the structure, content, and 
holistic quality of written text [2-3]. Although the validity of these 
scores has been questioned [4], AES systems tend to calculate 
automated scores that are comparable to human scores [5].  

AES systems have been recently integrated into learning 
environments, such as automated writing evaluation (AWE) 
systems [6] and intelligent tutoring systems (ITSs) [7]. These 
environments emphasize the provision of instruction and 
formative feedback based on the quality and specific 
characteristics of students’ writing. This has presented a number 
of problems regarding the ability of the algorithms to provide 
specific and formative feedback that is beneficial to students [8].  

The above categories of systems (AES, AWE, and ITSs) tend to 
rely on text-level features of individual essays to assess writing 
ability. Although essay scores are generally comparable to those 
provided by humans, they rarely incorporate information about 

the students themselves (e.g., their skills, affective states, etc.) 
into the system feedback or scoring algorithms. Additionally, the 
systems place little to no focus on the writing style of individual 
students. In other words, they do not take into consideration the 
possibility that high-quality essays may exhibit different textual 
properties across multiple writers.  

Researchers have identified a number of linguistic features that 
are associated with writing quality [9-13]. Through the use of 
NLP tools, these indices can be automatically calculated and 
combined to develop algorithms for essay scoring. Recently, Coh-
Metrix was used to examine which linguistic features were 
capable of discriminating between high- and low-quality essays 
[11]. The results revealed that high-quality essays included more 
diverse and novel word choices and more complex syntax. 
Interestingly, no indices of cohesion were related to essay scores. 
Crossley and colleagues (2011) conducted an analysis using 
similar indices to predict essay scores. In contrast to the previous 
results, this study found that essay quality was positively 
associated with cohesion. These mixed findings indicate that 
writing proficiency is a more complex and dynamic construct than 
previously assumed. Specifically, this skill may not be adequately 
captured by a single writing sample, as linguistic properties 
associated with essay quality vary across multiple contexts, such 
as writer populations, time constraints, and prompts [9,14-15].  

We hypothesize that writing proficiency is associated with a 
flexible use of linguistic properties, rather than a fixed set of 
features. For example, certain prompts and contexts may require 
different levels of cohesion to effectively convey the main idea. In 
this case, strong writers may have the ability to assess the context 
of their writing task and flexibly employ different cohesive 
devices that match the evidence and arguments presented in that 
specific essay, whereas less skilled writers might not have 
developed the strategies necessary to vary their style across 
different contexts. Researchers have cited flexibility as a 
characteristic of strong writers [2]. However, few studies (if any) 
have explicitly measured writing flexibility and examined its 
relation to writing skills and other individual differences. We 
address this gap by investigating how writing proficiency relates 
to students’ flexible use of cohesion across various prompts, and 
examine how individual differences relate to this flexibility.  

2. METHODS 
The data was collected as part of a larger study, which compared 
students’ use of a writing strategy ITS to an AWE component of 
the system. We focus on the participants who engaged with the 
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AWE component of the system (n = 45). Students completed a 10-
session experiment. During the first session, students completed a 
pretest. Training occurred during the following eight sessions. 
Throughout each training session, students wrote two essays, each 
on a different prompt topic. Thus, 16 training essays were 
collected for each student. During session 10, students completed 
a posttest, which was similar to the pretest. 

2.1 Measures 
Students’ writing proficiency was assessed at pretest and posttest 
through the use of timed (25-minute) and counterbalanced 
prompt-based essays. All essays were assessed on a scale of 1-6 
by two expert raters. The holistic grading rubric was based on a 
standardized rubric typically used for the assessment of Scholastic 
Achievement Test (SAT) essays. The rubric contained subscale 
scores, which assessed the quality of various sections of the essay. 
These subscales related to the following aspects of the essay: 
effective lead, clear purpose, clear plan, topic sentences, 
paragraph transitions, organization, unity, perspective, conviction, 
and grammar, syntax and mechanics.  

Reading comprehension ability and vocabulary knowledge were 
assessed using the Gates-MacGinitie reading skill test. Students’ 
prior knowledge was assessed using a measure of prior knowledge 
that assessed knowledge of science, literature, and history.  

Coh-Metrix was used to assess the cohesion of the students’ 16 
essays. Coh-Metrix [16] is a computational text analysis tool that 
was developed, in part, to provide stronger measures of text 
difficulty. This tool includes Easability Components, which were 
developed to account for the multiple dimensions of text 
difficulty. Referential cohesion is one of the Easability 
Components and reflects the degree to which words and ideas 
overlap across a text. For each of the 16 essays, a referential 
cohesion percentile score was computed on a scale from 0 to 100. 

3. QUANTITATIVE METHODS 
To assess the flexibility of students’ use of cohesion, we 
employed NLP and dynamical methodologies. The unique 
combination of these methodologies affords researchers a new 
assessment technique that can visualize and capture the degree to 
which students exhibit a controlled or flexible writing style. 

Table 1. Referential cohesion classification and vector 
assignment 

Essay Cohesion Level Axis Direction Assignment 

Less than 25% Referential 
Cohesion 

-1 on X-axis (move left) 

Between 25% and 50% 
Referential Cohesion 

+1 on Y-axis (move up) 

Between 50% and 75% 
Referential Cohesion 

+1 on X-Axis (move right) 

Greater than 75% 
Referential Cohesion 

-1 on Y-axis (move down) 

 

Random walks are mathematical analyses that provide a spatial 
representation of patterns that form in categorical data across time 
[17]. Random walks were used to visualize patterns in students’ 
use of cohesive devices across their 16 training essays. Each essay 
was classified as one of four orthogonal Cohesion Level groups 

(see Table 1) using the Coh-Metrix referential cohesion percentile 
score (ranging from 0-100). These orthogonal categories were 
then assigned to individual vectors along a scatter plot. For 
instance, an essay that received a referential cohesion score below 
25 would be assigned to the vector (-1,0), along the left side of the 
X-axis. Each student’s random walk began at the origin. For each 
essay that the student wrote, the walk would move in the direction 
that was consistent with its assigned vector. The resulting walk 
depicts each student’s use of cohesion across the training essays.  

 

Figure 1. Example Random Walk 

Figure 1 illustrates what a random walk might look like for a 
student who wrote 4 essays. All walks begin by placing a dot at 
the origin. In this example, the first essay written was low in 
referential cohesion (score < 25); thus, the dot moved one step left 
along the X-axis (#1). The next essay received a referential 
cohesion score between 25-50; thus, the dot moved up along the 
Y-axis (#2). The third essay had a referential cohesion score that 
ranged from 50-75, so the dot moved one step right along the X-
axis (#3). The last essay received a cohesion score that ranged 
from 25-50; so, the dot moved one step up (#4). Using these rules, 
unique random walks were generated for each of the students. 

To quantify the information in the random walk visualizations, 
distance time series were calculated for each student using 
Euclidian distance. Here, y represents the particle’s position on 
the Y-axis, x represents the particle’s position on the X-axis, and i 
represents the ith step in each student’s walk. 

Distance = (𝑦! − 𝑦!)! + (𝑥! − 𝑥!)!   (1) 

A measure of Euclidian distance was calculated for each step in a 
student’s walk. This produced a distance time series, which 
reflected the degree to which students were flexible in their use of 
cohesion. For example, if a student used the same degree of 
cohesion throughout all 16 essays, that student would move far 
away from the origin, resulting in a high Euclidian distance score. 
Conversely, if a student varied a great deal in the use of cohesion, 
the resulting Euclidian distance for their walk would be lower, as 
their changes would cause them to remain close to the origin.  
4. RESULTS 
We calculated the average Euclidian distance of each student’s 
walk (their cohesion distance score). Students varied considerably 
in their flexibility, ranging from a minimum cohesion distance 
score of 1.42 to a maximum score of 8.50 (M = 5.04, SD = 1.88). 
In Figure 2, each student’s cohesion distance score is plotted to 
visualize the variation in the degree to which walks traveled. 
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Figure 2. Visualization of Low-Skilled and High-Skilled 
Students' Random Walks 

We next examined the degree to which cohesive flexibility varied 
according to students’ writing proficiency. A median split was 
calculated on students’ pretest essay scores to produce two 
groups: low writing ability and high writing ability. A between-
subjects ANOVA revealed that high writing ability students had 
significantly lower cohesion distance scores (M = 4.49, SD = 
1.30) compared to low writing ability students (M = 5.80, SD = 
2.10), F (1, 42) = 6.28, p = .016. Figure 2 provides a visualization 
of these differences, with low writing ability students represented 
as green dots and high writing ability students represented by pink 
dots. As revealed in this visualization, low writing ability students 
(green dots) moved further from the origin than high writing 
ability students (pink dots) who clustered closer to the origin. 

4.1 Essay Components 
The correlation between cohesion distance scores and pretest 
holistic essay scores was marginally significant (r = -.30, p = 
.052), suggesting that students who were more flexible were more 
proficient writers. Additionally, distance scores were related to a 
number of the subscale scores on the writing rubric (see Table 2).  
Table 2. Correlations between Cohesion Distance Scores and 
Rubric Subscales  

Rubric Subscale r 

Lead .02 
Purpose -.29 (M) 
Plan -.29 (M) 
Use of Topic Sentences -.27 (M) 
Transitions -.20 
Organization -.26 (M) 
Unity -.42** 
Perspective -.35* 
Persuasion -.40** 
Accuracy -.29 (M) 

(M) = Marginal Significance; * = p < .05; ** = p < .01 

 

To determine which rubric subscale scores were most predictive 
of writing flexibility, we conducted a stepwise regression analysis 

with the significantly correlated subscale variables as predictors of 
cohesion distance scores. One variable was retained in the final 
model and predicted 17% of the variance in distance scores [F (1, 
42) = 8.85, p = .005; R2 = .17]: Unity [B = -.417, t(1, 42) = -2.98, 
p = .005]. Overall, these results suggested that students who 
produced more coherent and unified ideas were the students who 
exhibited greater flexibility in their use of cohesion, or cohesive 
cues. 

4.2 Individual Differences 
Students’ cohesion distance scores were significantly (or 
marginally significantly) related to a number of pretest measures 
(see Table 3).  

Table 3. Correlations between Cohesion Distance Scores and 
Individual Difference Measures  

Individual Difference Measure       r 

Reading Comprehension -.44** 

Vocabulary Knowledge -.19 

Prior Knowledge (Overall) -.31* 

   Science Prior Knowledge -.50** 

   History Prior Knowledge -.11 

   Literature Prior Knowledge .16 

(M) = Marginal Significance; p < .05*; p < .01** 

 
To examine which of the individual difference measures were the 
most predictive of cohesive flexibility, we conducted a stepwise 
regression analysis including the significantly correlated variables 
as predictors of cohesion distance scores. One variable was 
retained and predicted 25% of the variance in cohesion distance 
scores [F (1, 43) = 14.59, p < .001; R2 = .25]: Science Prior 
Knowledge [B = -.50, t(1, 42) = -3.82, p < .001]. Students who 
entered the writing task with greater knowledge about the world 
may have had an easier time adapting their writing style, as they 
could utilize various facts to develop their arguments.   

5. DISCUSSION 
One important consideration when assessing writing proficiency 
is the flexibility that students exert in their writing style across 
time. Although individual essay scores can provide valuable 
information about writing skills, they fail to consider the context 
of the writing assignments and consequently are not able to fully 
capture the construct of writing proficiency. 

We were able to capture cohesive flexibility through the use of 
two novel techniques: random walks and Euclidian distances. 
Random walk analyses allowed us to visualize students’ rigid or 
flexible use of cohesion across the essay assignments; 
additionally, it allowed us to visualize the differential patterns 
exhibited by high- and low-ability writers. Euclidian distance 
scores were then used to calculate cohesion distance scores. These 
scores confirmed the results of the random walk visualizations. In 
particular, they revealed that that students varied considerably in 
their cohesive flexibility, with low-ability students showing more 
consistency in their use of cohesion than high-ability students.   

The results support our hypotheses and provide evidence for 
assumptions that have been only anecdotally raised in the writing 
literature [2]. Namely, they suggest that students who are more 
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flexible in their writing style are also better writers, and vice 
versa. Additionally, these students outperform less flexible 
students on measures of literacy skills and prior knowledge. The 
results also suggest that cohesive flexibility was most strongly 
related to the unity (i.e., the coherence) of the pretest essay. Thus, 
coherence was not directly related to the presence or absence of 
cohesive features. Rather, students who produced more coherent 
essays were more flexible in their use of cohesive devices. Taken 
together, these results indicate that the link between textual 
features and writing quality may be inconsistent from assessment 
to assessment. Thus, more sophisticated writing assessments are 
needed to capture students’ proficiency within various contexts. 

This study extends previous work suggesting that the link between 
textual features and essay scores can vary across a number of 
contexts [9,14-15] by considering students’ performance across 
time. Although these analyses make strong progress towards 
developing our understanding of writing flexibility, a number of 
questions remain to be answered. For instance, how does 
flexibility of other linguistic features (e.g., narrativity) relate to 
writing proficiency? Can students be trained to exhibit greater 
flexibility in their writing? Such analyses will help shed light on 
the role that flexibility plays in the development of writing 
proficiency. Overall, this study provides a critical insight into the 
complexity of automated writing evaluation and provides a novel 
method for providing essay scores and feedback that are more 
sensitive to the surrounding context of the writing assessment.   
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ABSTRACT
The objective of specifying which skills are required in a
given task is fundamental for the accurate assessment of a
student’s knowledge and for personalizing tutor interaction
towards more relevant and effective assessment and learning.
We compare three data driven techniques for the validation
of skills-to-tasks mappings. All methods start from a given
mapping, typically obtained from domain experts, and use
optimization techniques to suggest a refined version of the
skills-to-task mapping. To validate the different techniques,
we inject perturbations in the Q-matrix and verify whether
the original Q-matrix can be recovered. Tests are run over
both simulated and real data. The analysis of the Q-matrix
refinements of each technique over ten data sets shows that,
in general, around 1/2 to 2/3 of the perturbations can be
restored to their original values, but a number of poten-
tially wrong perturbations are also introduced. The number
of correctly restored and falsely switched values vary across
the three techniques and between synthetic and real data.
For 1 to 10 perturbations injected, simulated data recov-
ery rate is around 2/3, and invalid alterations introduced
vary around 2 to 3. For real data, the two best techniques
generally recover about half the perturbations injected, but
introduce between 5 and 7 alterations inconsistent with the
original, expert defined Q-matrix, although some of them
may be real improvements.

Keywords
Student model, Skills modeling, Psychometrics, Q-matrix,
Matrix Factorization, Alternate Least-Squares, DINA

1. INTRODUCTION
Detailed assessment of skills rely on a fine grained map-
ping of tasks to skills. Student success and failures over
these tasks provide evidence of which skills are mastered.
Many intelligent tutors use such information to tailor their
behaviour (for eg. [9]).

However, defining the mapping of tasks to skills is non triv-
ial and error prone. The validation of such mapping from
student test results has been the focus of recent develop-
ments in the field of psychometrics and educational data
mining in recent years [3, 1, 11, 2, 6]. The ever growing
abundance of student assessment traces from e-learning en-
vironments further enhances our capacity to validate expert
defined mappings through data mining techniques.

This paper compares three families of techniques to refine

a given mapping of skills to tasks, which we will refer to as
items. All methods compared start with a given skill to item
mapping, and typically suggest a few changes. We define a
methodology to validate whether the proposed changes are
appropriate. This validation rests on a number of experi-
ments with artificial and real data to compare the quality
of the changes recommended by each technique. The back-
ground work of item to skills mapping is first reviewed, fol-
lowed by the description of the methodology and results of
the experiments.

2. Q-MATRICES, THEIR INTERPRETATION
AND VALIDATION

A mapping of item to skills is termed a Q-matrix [14]. If
all specified skills are required to succeed the item, the Q-
matrix is labelled conjunctive. If a any of the required
skill is sufficient to the item’s success, then it is labelled
disjunctive. The conjunctive/disjunctive distinction is also
referred to as AND/OR gates. A well known model, DINA
for “Deterministic Input Noisy AND”, corresponds to the
conjunctive version. A variant of DINA, the DINO model
(Deterministic Input Noisy OR) corresponds to a disjunctive
Q-matrix [8].

Two techniques for Q-matrix validation surveyed here rely
on the DINA model. A third one relies on a matrix factor-
ization technique called ALS (Alternative Least Squares).
We refer to them as (1) de la Torre (2008), (2) Chiu (2013),
and (3) ALS:

(1) de la Torre (2008). The method defined by de la
Torre [3] searches for a Q-matrix that maximizes the dif-
ference in the probabilities of a correct response to an item
between examinees who possess all the skills required for a
correct response to that item and examinees who do not.

(2) Chiu (2013). Chiu defines a method that minimizes the
residual sum of square (RSS) between the real responses and
the ideal responses that follow from a given Q-matrix [2].
The algorithm adjusts the Q-matrix by choosing the item
with the worst RSS over to the data, and replaces it with
the one has the lowest RSS, and iterates until convergence.

(3) Alternate Least-Square Factorization (ALS). The
(ALS) method is defined in [6]. Contrary to the other two
methods, it does not rely on the DINA model. Instead, it
decomposes the results matrix Rm×n of m items by n stu-
dents as the inner product two smaller matrices: R = QS,
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where R is the results matrix, Q is the m items by k skills Q-
matrix, and S is the mastery matrix of k skills by n students.
The factorization consists of alternating between estimates
of S and Q until convergence.

3. METHODOLOGY AND DATA SETS
The two first methods, de la Torre (2008) [3] and Chiu
(2013) [2], have been shown to perform well on artificial
data. On real data, their performance is more blurry. The
ALS factorization method [6] has only been tested on one
real data set. But the methodologies used to validate all
three techniques in each respective study vary considerably
and do not allow for a proper comparison.

To validate and compare the effectiveness of each technique
for refining a given Q-matrix, we follow a methodology based
on recovering the Q-matrix from a number perturbations:
the binary value of a number of cells of the Q-matrix is in-
verted, and this “corrupted” matrix is given as input to each
technique. If the technique recovers the original value of
each altered cell, then we consider that it successfully “re-
fined” the Q-matrix. This approach is similar to the studies
mentioned [3, 2, 6].

Ten levels of perturbations are defined, from 1 to 10. For
each level, we conduct up to 30 experiments that consists
in choosing Q-matrix cells to be altered. If the Q-matrix
contains 30 or less cells, all of them are altered in turn. If
it is larger, combinations of cells are chosen at random. We
refer to this procedure as a single perturbation run. The
runs are repeated for each of the 10 levels of perturbation,
and over the different data sets.

The measures of performance are the number of true posi-
tives and false positives:

• Mean true positives: a true positive corresponds
to an alteration that was injected in the input, and
was correctly switched back to its original value by
the method. The measure reported is the number of
correctly recovered alterations averaged over the 8 runs
and by level of perturbation.

• Mean false positive ratio: a false positive corre-
sponds to a changed Q-matrix entry returned by the
method, but that was not injected in the input. Hereto,
averages by perturbation runs are reported.

For real data, the definition of true/false positives rests on
the assumption that the original matrix is better than the
corrupted one, which is not necessarily the case with an ex-
pert generated Q-matrix. The expert may be wrong. How-
ever, we have no other means to inform us of the “real”
Q-matrix and it is reasonable to assume that most of the
cells in the Q-matrix are correct. Of course, for synthetic
data, this assumption is correct as the Q-matrix is at the
source of the generation of the data.

A total of 10 data sets are used for the validation. They
are freely available from two R packages: CDM (http://
cran.r-project.org/web/packages/CDM/index.html) [12]
and Chiu (2013) (http://cran.r-project.org/web/packages/

NPCD/NPCD.pdf). Table 1 contains a short description of
each data set. Note that for the last five data sets, the source
data is the same, but different Q-matrices are defined over
them and subsets of items are used in the last four: the frac-
tion data set data is used to create four variations through
subsets of questions and alternative Q-matrices (Fraction 1,
Fraction 2/1, Fraction 2/2, and Fraction 2/3). The artifi-
cial data sets are generated from the well known DINA and
DINO models.

For obtaining the results of the de la Torre (2008) method,
we used the R implementation found in the CDM pack-
age [12]. A DINA model and parameter estimation is first
built with the default arguments to the din function, and fed
to the din.validate.qmatrix function to obtain a refined
version of the Q-matrix. For the results of the Chiu (2013)
method, the R NPCD packaged is used (function Qrefine).

4. RESULTS
The three methods are evaluated over the 10 data sets and
for 8 runs. Each run is conducted over a set of 30 different
random combinations of perturbations, from 1 up to 10 per-
turbations. For the 1-perturbation condition, the total num-
ber of possible combinations is the size of the Q-matrix itself.

Figures 1 and 2 show the results broken down by real and
synthetic data sets respectively, as space does not allow to
report individual data set results.

Performance of each method is reported as a function of
the number of perturbations. Recoveries are labelled “True
Positives” (TP) whereas changes introduced by a method,
but which do not correspond to perturbations introduced,
are labelled “False Positives” (FP). The two graphs of fig-
ure 1 show the averages of the 6 real data sets, whereas the
graphs of 2 show the averages for the 4 synthetic data sets.
The “Total” line is shown to visually indicate the maximum
that can be reached by a TP curve.

The ALS method shows the greatest ability to recover alter-
ations, but at the cost of a higher rate of FP: changes that
do not correspond to perturbations. It is followed closely by
the Chiu (2013) method. The de la Torre (2008) method
has a very low rate of recovery (TP) that makes it imprac-
tical. In general, the ALS and Chiu (2013) methods recover
about 2/3 of the perturbations for synthetic data, and this
rate falls to 1/2 for real data with ALS, and about 1/3 for
Chiu (2013). For real data, the number of FP is around 5
for Chiu (2013) and around 6 for ALS, whereas it is respec-
tively 2 and 3 for synthetic data. The relative performance
of Chiu (2013) with respect to ALS is better for synthetic
data and this might be explained by the fact that the data
generation process is directly based on the DINA model.

A common pattern across methods is the relatively stable
number of FP as a function of the number of perturbations.
ALS does show an increase of close to 1 FP between 1 to 10
perturbations, whereas the increase for the Chiu (2013) and
de la Torre (2008) methods is closer to 1/2 for real data,
and even less for synthetic data (in fact it decreases for de la
Torre (2008)). As a result, the rate of TP over FP increases
with the number of perturbations.
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Table 1: Data sets

Name
Number of

Description
Skills Items Cases

Sim. DINA 3 9 400 Artificial data available from the (sim.dina) data set of the CDM package.
Sim. DINO 3 9 400 Same parameters as No. 1 but using the DINO model (sim.dino data set).
Sim. CDM
DINA

3 12 4000 Artificial data generated through the CDM function sim.din.

Sim. DCM 3 7 10000 Artificial data from chapter 9 of the book Diagnostic Measurement [13]
ECPE 3 28 2922 Dataset from [15] in [4]
Fraction 8 20 536 Tatsuoka’s fraction algebra problems [14] (see table 1 in [5] for a description

of the problems and of the skills).
Fraction 1 5 15 536 15 questions subset of Fraction with Q-matrix defined in [4].
Fraction 2/1 3 11 536 11 questions subset of Fraction with Q-matrix from [7].
Fraction 2/2 5 11 536 11 questions subset of Fraction with Q-matrix from [4].
Fraction 2/3 3 11 536 3 skills version of Fraction 1.
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Figure 1: Average recovery rate by number of per-
turbations (real data)
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turbations (synthetic data)
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5. DISCUSSION
The contribution of this work is to provide performance as-
sessments and compare existing methods of Q-matrix re-
finements based on a methodology and on metrics that al-
low meaningful comparisons. Previous work was limited to
showing their ability to make Q-matrix refinements on an
individual basis and in a restricted context.

The experiments conducted confirm that two methods, ALS
and Chiu (2013) can recover the original Q-matrix from an
altered one, as shown in previous work [2, 6], but the perfor-
mance of the de la Torre (2008) method is considerably lower
than the other two. The comparison of their performance
over a number of data sets, and based on a common mea-
sure of performance, reveals wide differences across data sets
(not reported here). As expected, all methods fare better on
synthetic data sets, for which a close to perfect performance
is reached with large samples. For real and synthetic data
sets alike, the ALS and Chiu (2013) methods overall perfor-
mances are comparable, but the advantage is spread between
the two across the different data sets.

Can the methods be useful for refining Q-matrices in prac-
tice? Some issues clearly arise in the results. One issue is
the size of the data sets required. For example, the Sim.
DINA set has 400 cases and yet the best method only finds
a single perturbation 1 time over 2. This result suggest that
small samples of 100 cases or less are likely to be too small
for being useful. In the days of big data from web deploy-
ment, for example, this is not such a major issue, but it does
rule out some context of validation of a Q-matrix.

Another potential issue is that the results generally show
more False Negatives than False Positives with real data.
Note that, for real data, we cannot assume that all False
Positives are wrong corrections. Some of them may rep-
resent potential improvements. Empirical evidence will be
required to verify whether the suggested corrections do lead
to real improvements when experts are presented with these
corrections. Further work will also be required to validate
if we can use the cross-evidence to filter out weak sugges-
tions. For example, the recurrence of the same False Posi-
tives across perturbations and across techniques may yield
stronger support to a suggestion.

Future work should also extend the comparison to more
techniques such as [10, 11]. Finally, we stress the need for
open access to the data and the code used in such studies.
This particular study was highly facilitated by the CDM [12]
and NPCD packages which provided both the code and the
data.
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2011.

[12] A. Robitzsch, T. Kiefer, A. George, A. Uenlue, and
M. Robitzsch. Package CDM. 2012.

[13] A. A. Rupp, J. Templin, and R. A. Henson.
Diagnostic measurement: Theory, methods, and
applications. Guilford Press, 2010.

[14] K. Tatsuoka, U. of Illinois at Urbana-Champaign.
Computer-based Education Research Laboratory, and
N. I. of Education (US). Analysis of errors in fraction
addition and subtraction problems. Computer-based
Education Research Laboratory, University of Illinois,
1984.

[15] J. Templin and L. Hoffman. Obtaining diagnostic
classification model estimates using mplus.
Educational Measurement: Issues and Practice,
32(2):37–50, 2013.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 311



www.manaraa.com

Tracing Knowledge and Engagement in Parallel in an 
Intelligent Tutoring System

Sarah E Schultz 
Worcester Polytechnic Institute 

100 Institute Rd 
Worcester, MA 01609 

seschultz@wpi.edu 

Ivon Arroyo 
Worcester Polytechnic Institute 

100 Institute Rd 
Worcester, MA 01609 

iarroyo@wpi.edu 

ABSTRACT 

Two of the major goals in Educational Data Mining are determining 

students’ state of knowledge and determining whether students are 

affectively engaged with the task and in positive affective states. 

These two problems are usually examined separately and multiple 

methods have been proposed to solve each of them. However, little 

work has been done on tracing both of these states in parallel and 

the combined effect on a student’s performance. In this work, we 

propose a model for tracing student engagement in parallel with 

knowledge as the student uses an Intelligent Tutoring System. We 

then compare this model to existing methods of tracing student 

knowledge and engagement. 

Keywords 

Knowledge tracing, engagement, performance, behavior, affect 

detection 

1.  INTRODUCTION 
Intelligent Tutoring Systems are meant to adapt to a students’ 

needs in order to better teach the student. In order to do this, they 

must have an estimation of student knowledge as the student 

progresses through the tutoring session. Systems might use their 

estimations of a student’s mastery of the subject to decide whether 

to change the difficulty of problems given or progress to a new 

unit. These models may also be used by teachers and researchers 

to estimate students’ mastery of skills or knowledge units. In the 

field of Educational Data Mining, the standard way to model and 

trace student knowledge is via knowledge tracing [1]. However, 

students often become disengaged as they use the software, as a 

result of boredom of frustration, confounding models which rely 

solely on performance data on individual questions to estimate 

knowledge, making it appear as though a student is forgetting. 

The ability to detect affect is useful for Intelligent Tutors as it 

allows for the possibility for the tutor to intervene when a 

negative affective state is detected and help the student become 

engaged and motivated to learn. Some systems make use of sensor 

data to determine affect [7], but this is often impractical in a real-

life learning scenario. Some researchers attempt to create sensor-

less affect detectors using human coders who will observe 

students’ apparent affective state during a session and then match 

these observations to behaviors that occur within the system at the 

same time in order to create a model, such as BROMP [11]. This 

is time-intensive, requiring a certain number of observations and 

highly trained coders. 

While research has been done on tracing affective engagement 

without sensors or coders [3], little research has been done in 

modeling both knowledge and affect in parallel, attempting to 

account for these biases in knowledge estimation. In particular, a 

student’s performance cannot be assumed to depend solely upon 

his or her knowledge of a skill, as how he or she is feeling will 

likely impact performance, as well. This is an area that is ripe for 

exploration. 

Given a set of behaviors regarding correctness, timing and help 

seeking, some behaviors may be attributed to affective states, and 

some of them may be attributed to cognitive states [6, 7]. A 

Bayesian Hidden Markov Model (HMM) that attempts to trace 

knowledge and affect in parallel within the same model could 

potentially be able to discern between low affect and low 

knowledge, given a set of student correctness, timing and help 

seeking behaviors. 

2.  PREVIOUS WORK 
The models explored in this work were inspired by previous 

successful Bayesian networks modeling students’ knowledge and 

affect. The first of these is Knowledge Tracing, which has become 

a standard [1]. The second is the HMM-IRT model by Johns and 

Woolf [4], which took first steps towards modeling affect and 

knowledge in parallel. 

2.1 Bayesian Knowledge Tracing 
Corbett and Anderson’s Bayesian Knowledge Tracing (BKT) [1] 

(Figure 1) is a hidden Markov model with two nodes at every 

time-step: the current (latent) knowledge state of the student and 

his or her performance on the current question (observed). Based 

on a student’s correctness at answering questions at each time-

step, the model estimates the probability that the student knows 

the current skill and then predicts the probability that the student 

will correctly answer the next question. The parameters for this 

model are P(L0), the probability that a student already knows the 

skill; P(T), the probability of learning the skill from one time-step 

to the next; P(G), the probability that a student who does not 

know the skill correctly guesses; and P(S), the probability that a 

student who does know the skill slips and gets the answer 

incorrect. 

Traditionally, the KT model does not allow for forgetting (or 

unlearning) and this parameter is set to zero; this is in some way a 

quick fix, as when the model allows for forgetting, it is very 

sensitive to students “gaming the system” [9]. Consequently, 

estimates of knowledge mastery could quickly decline when 

students start behaving in these ways, such as hint abusing or 

quick guessing, and appear as if students are unlearning. 

 

 

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 312



www.manaraa.com

 
Figure 1- Bayesian Knowledge Tracing 

2.2 HMM-IRT 

Johns and Woolf [4] proposed another model, called the Hidden 

Markov Model-Item Response Theory (HMM-IRT) model. In this 

model, rather than using BKT, they use a hidden Markov model 

for tracing affect (what we call affective engagement in this 

paper), but pair it with a model for predicting student knowledge 

that relies on Item Response Theory for the estimation of 

conditional probabilities between specific question items and 

knowledge. Unlike BKT, this model estimates a single knowledge 

node. The HMM-IRT model allows the estimation of students’ 

engagement at various time-steps (and relies on parameters of 

transitioning between affect/engagement states), but assumes a 

single mastery node, without learning or forgetting parameters.  

The result of that research was that adding the affect/engagement 

component (top part of Figure 2) to the knowledge estimation 

model (bottom part of Figure 2) allowed for less of a decline in 

knowledge estimations after each question, which was apparently 

due to gaming behaviors and not due to unknowing. 

 
Figure 2- HMM-IRT Model 

 

3.  THE KAT MODEL 

The Knowledge and Affect Tracing (KAT) model, shown in 

Figure 3, combines Knowledge Tracing with the HMM Affect 

Tracing portion of the HMM-IRT model, creating a model which 

allows for change in both students’ knowledge and affective 

states. Both of these states influence question correctness. 

The most important contributions, in our perspective, of both the 

HMM-IRT model and the KAT model, are the inclusion of  

transition probabilities between engaged states, in particular the 

probability of becoming disengaged in the next time step given 

that the student was previously engaged, and the probability of 

becoming re-engaged given that a student was previously 

disengaged. Knowing estimates of these probabilities for any 

learning system or for specific knowledge components should be 

very valuable to understand the impact of a learning system, or 

interventions. Similarly, it is valuable to know when estimates of 

engagement are low for personalization purposes, and knowing 

whether a student is likely game in the next problem or not.  

The main drawback of the HMM-IRT model was that it did not 

include probabilities of acquisition or retention, but instead 

modeled students’ knowledge as something stable and trait-like. 

Adding knowledge tracing to this model should enable researchers 

and systems to better predict both performance and behavior 

(gaming or not gaming) at the next step. 

 
Figure 3- The KAT Model 

The behaviors examined were the same as those used by Johns 

and Woolf [4]. These are quick guess (the student makes an 

attempt in less than four seconds), bottom out hint (the student 

uses all available hints), and normal (any other behavior). One 

additional behavior, called “many attempts”, was also added for 

this work. This was defined as a student making more than three 

attempts at answering a problem. As multiple choice problems 

typically include only five possible answers, a student making 

more than three attempts has likely simply clicked on most 

choices. Baker, et al. have also shown relatively few attempts to 

be a good predictor of engaged concentration [8]. In preliminary 

tests of the KAT model, including “many attempts” as a possible 

behavior led to better fit than using only three behaviors in both 

datasets. The three behaviors not classified as normal are grouped 

as “gaming” behaviors in order to allow the models to predict 

whether a student will game at each opportunity. Although 

gaming is traditionally thought of as disengaged behavior, 

students could act in a way that is defined here as a gaming 

behavior even when they are engaged. 

The new conditional probability tables of the observed nodes of 

the KAT model are shown in Tables 1 and 2. Knowing the skill 

(K), being affectively engaged (A), answering a question correctly 

(Q), and behaving normally (B) (i.e., not gaming) are indicated by 

“true” in their respective columns. The last column gives a name 

to these new probabilities to be estimated, which consist of 

guessing or slipping while being in a state of affective 

engagement or disengagement at the same time. 

Table 1- CPT for Performance (Q) Nodes of KAT Model 

Known 

(Latent) 
Engaged 
(Latent) 

Correct 
(Observed) 

Probability 

False False False 1-guess_not_eng 

True False False slip_not_eng 

False True False 1-guess_engaged 

True True False slip_engaged 

False False True guess_not_eng 

True False True 1-slip_not_eng 

False True True guess_engaged 

True True True 1-slip_engaged 

 

The probabilities associated to the Gaming Behavior nodes (B) 

are shown in table 2, and depend on affective engagement. These 

probabilities distinguish whether a student has gamed in a 

situation when he/she was actually truly engaged (some sort of an 
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‘affective slip’) corresponding to ‘game_engaged’ and its 

counterpart, where the student was actually affectively disengaged 

but apparently behaved normally this time (1-game_not_eng).  

Table 2- CPT for Gaming Behavior Nodes (B) of KAT Model 

Engaged 

(Latent) 

Non-Gaming-

Behavior (Observed) 

Probability 

False False game_not_eng 

True False game_engaged 

False True 1-game_not_eng 

True True 1-game_engaged 

 

San Pedro et al. showed that student knowledge of a skill is 

related to affect (for example, students who know a skill well are 

more likely to be engaged) [7], so a variation on the KAT model 

was created to take this into account. This model, KAT2, includes 

the link between knowledge and affect. 

4.  DATASETS 

The data was gathered from student logs of two mathematics 

tutoring systems, ASSISTments [2] and Wayang Outpost [7], for 

middle and high school students. All problems in Wayang are 

multiple choice, while problems in ASSISTments generally, 

though not always, require students to type in their answer, 

instead.  

The ASSISTments data used here is from the 2009-2010 school 

year. This data comes from a special type of problem in 

ASSISTments called “skill builders.” In skill builders, students 

practice a specific skill until they get three problems correct in a 

row, in which case the skill is considered “mastered,” or they 

reach a preset daily limit and are told to return later. The Wayang 

data set comes from the spring of 2009 and includes two hundred 

ninety five students in grades 7 through 10 from two rural-area 

schools in Massachusetts. 

Five knowledge components were chosen from ASSISTments and 

four from Wayang to test the models as they are all limited to 

examining each knowledge component separately. Table 4 shows 

the breakdown of the data used by knowledge component. 

Table 4- Knowledge Components Examined 

5.  METHODS 

All models were built using Murphy’s Bayes Net toolbox for 

MATLAB [5]. A student-level five-fold cross validation was run 

on all models, keeping folds consistent across models. Parameters 

were learned for the training data using expectation maximization 

and then tested on the test data. This was done five times for each 

knowledge component, where each time a different fold served as 

the test data while the other four served as training data. For all 

models, predictions of performance at the next step were 

compared with actual performance in order to calculate mean 

absolute error (MAE) and root mean squared error (RMSE). 

Additionally, for KAT and HMM-IRT, predictions of behavior 

were compared to actual behaviors. As struggling students will 

see more questions assessing the same knowledge component in 

both ASSISTments skill builders and Wayang Outpost, only the 

first five opportunities within each knowledge component are 

examined to avoid over-fitting to such students. Since these five 

opportunities are likely to be within one session, not allowing 

time for students to forget material, forgetting is still assumed to 

be zero. All data and code used can be found at the first author’s 

webpage [10]. 

6. RESULTS 

As both error metrics calculated, MAE and RMSE, resulted in 

patterns that were not significantly different, only RMSE is 

reported here. 

Tables 5 and 6 show each model’s predictive performance on the 

ASSISTments data and Tables 7 and 8 show how well the models 

did on the Wayang data. Tables 5 illustrates the RMSE for each 

model’s prediction of students’ performance, while 6 shows the 

error of prediction for students’ behavior. These tables show the 

mean average of RMSEs across folds for each skill. 

Table 5 – RMSE for Performance (Q) 

Skill KT HMMIRT KAT  KAT2 

Box and 

Whisker 
0.426 0.495 0.468 0.493 

Circle Graph 0.434 0.524 0.507 0.512 

Table 0.467 0.498 0.483 0.495 

Pythagorean 

Theorem 
0.480 0.498 0.484 0.503 

Perimeter 0.471 0.476 0.476 0.476 

Area 0.455 0.476 0.460 0.459 

Angles 0.454 0.466 0.466 0.465 

Triangles 0.483 0.487 0.4866 0.485 

 

Table 6 – RMSE for Gaming Behavior (B) 

Skill HMMIRT  KAT  KAT2 

Box and Whisker 0.350 0.326 0.325 

Circle Graph 0.196 0.178 0.179 

Table 0.462 0.422 0.433 

Pythagorean 

Theorem 
0.303 0.295 0.295 

Perimeter 0.357 0.357 0.356 

Area 0.377 0.362 0.361 

Angles 0.377 0.359 0.357 

Triangles 0.400 0.394 0.392 

 

These tables show that BKT is the best predictor of student 

performance-- the correctness at answering future questions. The 

two KAT models also generally outperform HMM-IRT at 

predicting performance. The original KAT model was 

significantly better at predicting performance than the KAT2 

model on the ASSISTments data (ttest p<0.05), except on the skill 

Knowledge 

Component 

System Number 

Students 

Total 

Number 

Opps 

% 

Gaming 

Box and 

Whisker  

ASSISTments 505 2020 13 

Circle 

Graph 

ASSISTments 616 2487 30 

Table ASSISTments 713 2894 4 

Pythagorean 

Theorem 

ASSISTments 283 1290 10 

Equations ASSISTments 408 1598 35 

Perimeter Wayang 285 1422 15 

Area Wayang 279 1385 17 

Angles Wayang 274 1355 16 

Triangles Wayang 260 1267 20 
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“Table” (p=0.09), and although the KAT2 model performed 

slightly better on the Wayang data, this difference was not 

significant (p>0.1). Both KAT models are also significantly better 

at predicting behavior than the HMM-IRT model, except on the 

Wayang topic “Perimeter,” where KAT2 is marginally better than 

HMM-IRT and KAT is marginally worse. The two KAT models 

were not significantly different with respect to predicting 

behavior, except for on the ASSISTments skill “Table,” on which 

the original KAT model performed better. 

7. DISCUSSION 
While traditional BKT appears to be the best model for predicting 

student future correctness performance at math questions, KAT 

seems to be best at predicting performance and gaming behaviors 

simultaneously. KAT better predicts performance than HMM-IRT 

in eight of nine knowledge components tested and gaming 

behavior in all nine knowledge components, including six where 

there was a significant difference between KAT’s predictions and 

HMM-IRT’s. As KAT was significantly better than KAT2 at 

predicting student performance at math questions in one system, 

the KAT model appears to be a better choice for modeling 

students than the KAT2 variation. 

The fact that KAT, which allows for student learning, was better 

able to predict performance means that it is quite likely that 

students are, in fact, learning while using these systems, so that 

the probability of acquisition and retention matter at the moment 

of predicting knowledge and performance in the next time slice. 

Assuming that a student’s knowledge state does not change during 

the session, as in HMMIRT, leads to a poorer model fit. 

It is interesting that KAT was also better at predicting behavior 

than HMMIRT, as both models use the same CPT for these nodes. 

When both affective transitions and learning are allowed, a 

change in performance can be attributed to either, or both, perhaps 

allowing a more accurate model of engagement, and therefore 

better predictions of gaming behavior. 

8. CONTRIBUTIONS AND FUTURE WORK 
This work introduced a new model, KAT, for tracing students’ 

knowledge and engagement in parallel while using an ITS. While 

the traditional KT alone was slightly better at predicting 

performance than any of the other models, KAT was better at 

predicting student performance and behavior than the previously 

existing HMM-IRT model. A variation, the KAT2 model, was 

also explored and shown to be slightly weaker than the original 

KAT model. 

While this work included the original form of the KAT model and 

one variation, many other variations could be valid. For example, 

research involving sensors and self-reports of affect has shown 

that performance on one question influences a student’s affect at 

the next time-step [7]. This could be added to the KAT model to 

create another variation. 

Future versions of the KAT model should also allow for more 

affective states, rather than measuring only engagement. For this 

study, it was useful to keep all variables binary in order to 

determine which model was best able to predict performance and 

behavior based on knowledge and engagement, but the KAT 

model is meant to be a model of knowledge and affect tracing. It 

is possible that allowing for more specific affective states could 

allow for better prediction of gaming. Perhaps being bored is 

more likely to lead to these behaviors than being frustrated, 

although both could fall under the category of “disengaged.” 

Additionally, allowing for forgetting would be an interesting 

avenue to explore in the future, looking at the knowledge 

predictions. It is possible KT will predict students are forgetting 

whereas knowledge estimations will not change in models 

allowing for gaming. 
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ABSTRACT 
This study investigates how variations in students’ trajectories 
within the tutoring system, Writing Pal, varied as a function of 
individual differences and ultimately related to changes in the 
quality and linguistic properties of prompt-based essays. Forty-
two college students interacted freely with the computerized 
writing tutor for approximately 4 hours. Using a novel statistical 
technique (random walks), we visualized students’ self-paced 
trajectories within the Writing Pal system interface. Analyses 
revealed that students’ self-reported perseverance was predictive 
of more systematic interaction patterns. Students’ interaction 
patterns did not directly influence the quality of their writing; 
however, students’ trajectories within the system was related to 
changes in the fine-grained linguistic properties of their essays. 
These findings demonstrate the potential for random walks to 
provide researchers with a wealth of information about students’ 
interactions and subsequent learning outcomes within adaptive 
learning environments.  

Keywords 
Intelligent Tutoring Systems, random walks, natural language 
processing, prompt-based writing 

1. INTRODUCTION 
Intelligent Tutoring Systems (ITSs) are sophisticated learning 
environments that provide students with individualized 
pedagogical instruction. This customized instruction is often 
based on variations in students’ performance and ability levels [1]. 
For instance, many ITSs use students’ previous knowledge and 
current skill levels to build user models specific to each student. 
These models are then tweaked and corrected through students’ 
interactions within the system [1].  

This level of customization affords students unique learning 
trajectories that often vary as a function of individual differences 
[2 - 3]. Indeed, researchers have shown that numerous individual 
differences can influence the way in which students interact and 
perform within ITSs [2 - 3]. One individual difference that has not 
been extensively studied in the domain of ITSs, and which may be 
important to the way in which students approach and interact with 
a system, is perseverance. This characteristic may be especially 
important for adaptive environments that provide students with an 

abundant amount of tasks that are scaffolded in a specific way. 
Previous work has shown that a student’s perseverance is related 
to their ability to regulate their behaviors and achieve long-term 
goals [4]. Thus, if a student has high perseverance, they are more 
likely to continue learning tasks until the work is complete.  

As students’ experiences and trajectories vary, researchers are 
afforded a unique opportunity to examine the optimality of 
various learning paths within adaptive environments. To examine 
the efficacy of different routes within an adaptive environment, 
methodologies are needed that capture the nuanced ways in which 
students interact with ITSs across time. Dynamical analysis 
techniques offer researchers a unique means of visualizing and 
characterizing students’ trajectories within these complex 
systems. These techniques focus on the fluid and complex 
interactions that are often missed by traditional static measures. 
Previous work with dynamical analyses has shown that these 
techniques can capture nuanced trends in students’ choices within 
various adaptive environments [2]. Thus, these methodologies 
may provide researchers with tools to capture various trajectories 
and their subsequent impact on learning outcomes.  

1.1 Writing Pal 
The Writing Pal (W-Pal) is an ITS designed to provide students 
with comprehensive writing strategy instruction [5]. Specifically, 
W-Pal focuses on providing students with various strategies for 
prewriting, drafting, and revising. W-Pal is broken up into eight 
separate modules. Each module contains animated lesson videos 
that are narrated by a pedagogical agent, as well as game-based 
practice and essay writing practice. The design of W-Pal scaffolds 
students through these eight modules systematically and provides 
a deliberate form of instruction and practice.  
 
1.2 Current Study 
ITSs adapt to individual users’ needs and abilities and often 
provide each user with a unique experience within the system. 
These varying experiences afford researchers an opportunity to 
examine optimal vs. non-optimal learning paths. The current study 
uses a novel dynamical methodology (random walks) to capture 
and evaluate students’ trajectories within the writing tutor, W-Pal. 
Students were given free choice to interact with the system 
however they chose. W-Pal remained modular with an apparent 
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organization or sequence of lessons; however, no feature was 
locked within the system. Thus, students could “jump around” 
within the interface if they so chose. Using random walks, we 
investigated how variations in students’ choice patterns varied as 
a function of individual differences in perseverance. We also 
examined how variations in trajectories impacted changes in the 
quality and properties of students’ writing.  
2. METHODS 
2.1 Participants 
The participants included 42 college students from a large 
university campus in the Southwest United States. The students 
were, on average, 19.2 years of age, with the majority of students 
reporting their grade level as college freshman. Of the 42 students, 
57% were female, 53% were Caucasian, 14% were Asian, 9% 
were African-American, 14% were Hispanic, and 10% reported 
other nationalities.  

2.2 Procedure 
The participants completed 4 sessions (6 hours total) including a 
pretest, strategy training within W-Pal, and a posttest. During the 
pretest (session 1), students completed questionnaires including 
measures of motivation, perseverance, and expectations of 
technology. Within the pretest, students were also asked to 
compose a timed (25-minute) essay in response to an SAT-style 
prompt. During training (sessions 2 and 3), students spent 
approximately 4 hours interacting freely within the system 
interface. The interface of the W-Pal system was entirely 
unlocked during training. The modules within W-Pal were still in 
an instructional scaffolding format; however, students were free to 
interact in the system however they saw fit. Finally, at posttest, 
students completed a battery of questionnaires similar to those in 
the pretest and composed a timed (25-minute) essay in response to 
an SAT-style prompt. Essay prompts were counterbalanced across 
pretest and posttest.    

2.3 Measures 
2.3.1 Writing Performance 
During pretest and posttest, students were asked to write a timed 
(25-minute) SAT-style essay in response to a prompt. The quality 
of each student’s essay was assessed through the use of an NLP 
algorithm [6]. This algorithm assigns essay scores on a 1 to 6 
scale ranging from “Poor” to “Great.” 

2.3.2 Linguistics Features 
To assess the linguistic features of the pretest and posttest essays, 
we utilized Coh-Metrix. Coh-Metrix is a computational text 
analysis tool that calculates linguistic indices at lower and higher-
levels of given texts. The lexical indices in Coh-Metrix include 
word-level information, such as lexical diversity and word 
frequency. Syntactic measures comprise indices related to the 
complexity of sentences constructions, such as the number of 
modifiers per noun phrase and the incidence of agentless passive 
constructions in a text. Cohesion measures indicate connections 
between ideas in a text; some relevant measures include: 
incidence of connectives and content word overlap (for adjacent 
sentences and all sentences). Finally, Latent Semantic Analysis 
(LSA) is used to provide information about the semantic 
similarity of texts.  

2.3.3 Perseverance 
Students’ perseverance was measured using the Duckworth et al. 
(2007) Grit scale [4]. This measure comprises 8 short questions 
designed to capture students’ willingness to persist at tasks and 
persevere in the face of failure. 

2.3.4 System Interaction Choices 
Within the W-Pal system, students can chose to interact with a 
variety of features that fall into one of three categories. Each of 
these categories represents a different type of functionality within 
W-Pal; these functionalities are lesson videos, game-based 
practice, and essay practice.  
 
2.5 Data Processing 
Students’ data logs from their interactions with W-Pal were used 
to trace and categorize every interaction into one of the three 
previously mentioned category types: lesson videos, educational 
games, and essay practice.  Tracking students’ choices with these 
three distinct features affords the opportunity to investigate 
patterns in students’ choices during their time within the system. 
This is especially important given that the system interface was 
completely unlocked during training. Thus, this categorization 
provides a stealth means of assessing students’ behaviors and 
corresponding trajectories when they are free to claim agency 
over their experience.   

3. QUANTITATIVE METHOD 
To examine variations in students’ behavior patterns within W-
Pal, random walks were conducted. This analytical tool provides a 
means to visualize students’ trajectories within the system. The 
following section provides a brief description and explanation of 
random walks. 

It can be difficult to visualize fine-grained patterns that emerge 
within categorical data. One mathematical tool that can provide 
researchers with a spatial representation of such patterns is a 
random walk [2]. Random walks were used within the current 
study to visualize and capture the fluctuations within students’ 
interaction patterns in W-Pal. These patterns emerged through the 
sequential order of students’ interactions with the three feature 
categories (i.e., lesson videos, educational games, and essay 
practice). To create a spatial representation of students’ 
trajectories within the system, each category is given an arbitrary 
assignment along an orthogonal vector in an X, Y scatter plot. 
These assignments were as follows: educational games (0,1), 
lesson videos (1,0), and essay practice (0,-1). These vectors are 
random and not associated with any qualitative value; instead, 
they simply provide an orthogonal grid where we can view 
patterns of system interactions. Random walks have previously 
been used to trace students’ interaction patterns within the game-
based ITS, iSTART-ME [2].  

To generate a visualization of students’ time in the system, we 
created individual walks for each student by placing an imaginary 
particle at the origin (0,0). Then, using log data we moved the 
particle in a manner consistent with the vector assignment, which 
effectively assigns a movement to students’ interaction choices 
within the system. The resulting walk is a combination of 
students’ “movements” and thus gives us a fine-grained look at 
each student’s trajectory within the W-Pal system.  

To illustrate what a random walk might look like for a student 
within the W-Pal system, see Figure 1. The starting point for all 
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students’ walks is (0,0) where the horizontal and vertical axes 
intersect. In the example provided in Figure 1, the student’s first 
interaction was a lesson video; so, the particle moves one unit to 
the right along the X-axis (see # 1 in Figure 1). The student’s 
second interaction was with an educational game; thus, the 
particle moved one unit up along the Y-axis (see # 2 in Figure 1). 
The student’s third interaction was another lesson video, which 
again moves the particle one unit right along the X-axis (see # 3 in 
Figure 1). The student’s fourth and final interaction choice was 
essay practice, which moved the particle one unit down along the 
Y-axis (see # 4 in Figure 1). These simple rules allowed us to 
generate unique random walks for each of the 42 students. 

Figure 1. Example Random Walk within W-Pal 

4. RESULTS 
Students in the current study were free to interact with the W-Pal 
system in any way they saw fit. Using log data, we classified 
students’ interactions into one of three possible categories (i.e., 
lesson videos, educational games, and essay practice). To examine 
how students interacted with the system, we calculated the total 
frequency of students’ interactions with each of these three 
categories. On average, students made 19 interaction choices and 
spent the majority of the time watching lesson videos (73%) and 
playing games (26%). Only two students chose to interact with the 
essay practice; however, neither wrote more than two sentences 
before choosing to interact with a different feature (i.e., lesson 
video or educational game). As a result of these frequency 
analyses, we condensed our random walks to only include the X 
and Y coordinates associated with the lesson videos and 
educational games. 

To examine students’ patterns of interactions within the W-Pal 
system, log data were used to create a unique random walk for 
each student. These walks construct a visual representation of 
each student’s unique interaction trajectory. We then calculated a 
slope for each student using the x and y coordinates embedded 
within their unique random walk (M=.23, SD=.14, Range= .00 - 
.46). Students’ interaction trajectories (i.e., their slopes) inform us 
about the way in which students engaged in the system when 
everything was unlocked and they could “jump around” from 
module to module. These slopes serve as a coarse measure of each 
student’s unique trajectory within the W-Pal system. Although 
slope analysis can obscure some of the variability in each 
student’s unique walk, this metric provides valuable insight into 
the development of students’ trajectories across time. 

  
W-Pal was originally designed to be modular in nature thereby 
scaffolding students through systematic strategy instruction. Thus, 
this ordered design creates its own unique system trajectory. 
Using only lesson videos and educational games, we calculated a 
random walk for the system that represented the designed 
instructional scaffolding. We then computed a slope analysis to 
obtain the trajectory of the random walk that would be generated 
if students went through the system as designed (i.e., no skipping 
around). Thus, through the use of random walks we were able to 
look at differences between designed scaffolding trajectories (i.e., 
how researchers intended the system to be used) and students’ 
trajectories (i.e., the way students’ chose to use with the system).  

Results from the slope analysis revealed that the system trajectory 
had a slope of .52. Interestingly, the highest slope value for any 
student was .46; thus, no one student went through the system 
exactly as it had been designed, although many students came 
close, thus skipping around the interface very rarely. In the current 
study, we hypothesized that students’ self-report ratings of 
perseverance would be related to the way in which they 
approached the system. Utilizing these slopes, we examined the 
relation between slope magnitude and individual differences in 
perseverance. A correlation analysis revealed that the magnitude 
of walk slopes was positively related to students’ self-reported 
perseverance (r=.332, p=.032). Thus, students who reported a 
higher likelihood to persevere (i.e., high Grit) demonstrated a 
more vertical trajectory, which more closely matched the system 
trajectory. A median split was calculated on students’ pretest self-
reports of perseverance (i.e., grit) to produce a visualization of the 
differences in system trajectories based on students’ self-reported 
perseverance (Figure 2). This split produced two groups: low grit 
and high grit students, with low grit students represented as the 
red slopes and high grit students represented by green slopes. 
Within Figure 2, the black slope represents the system trajectory. 
This visualization supports the correlational results by revealing 
that high grit students (green slope) were much more likely to 
interact in a pattern similar to the designed instructional 
scaffolding (black slope).  
 

 
Figure 2. High and Low Grit Trajectory Comparison 
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To assess the relation between students’ system trajectories and 
essay quality, Pearson correlations were conducted using students’ 
random walk slope and their pretest, posttest, and total gain essay 
scores (i.e., posttest – pretest). Results from this analysis indicated 
that students’ trajectories within the system showed a marginal 
negative relation to the quality of their pretest essays (r=-.291, 
p=.061). However, there was no significant relation between 
students trajectories in the system and the quality of their posttest 
essays (r=-.072, p=.649) or their holistic gain scores in essay 
quality (r=.188, p=.234).  
Although there was no relation between students’ trajectories and 
essay quality, we hypothesized that variations in students’ 
trajectories within the W-Pal system might be related to changes 
in their essays at a more fine-grained size. We utilized Coh-
Metrix to analyze the linguistic features of students’ pretest and 
posttest essays. We then calculated a change score in the linguistic 
features (i.e., posttest – pretest) that indicated the extent to which 
linguistic features within the essays changed across the two 
assessments. Four Coh-Metrix change variables were significantly 
correlated to students’ trajectories within the system. These 
variables were incidence of pronouns (r=-.381, p<.05), paragraph 
length (r=.331, p<.05), LSA paragraph to paragraph (r=.312, 
p<.05), and content word overlap (r=.371, p<.05). 

To examine these relations further, a stepwise regression analysis 
was calculated to predict students’ system trajectories from 
changes in the four Coh-Metrix variables that exhibited significant 
correlations with students’ interaction trajectories. Two linguistic 
variable change scores were retained in the final model and 
combined to predict 27% of the variance in students’ trajectories 
[F(1,39)=6.69, p=.014; R2=.27]: noun incidence change [B=-.359, 
t(1,39) = -2.61, p=.012] and content word overlap change 
[B=.353, t(1,39)=2.57, p=.014]. Overall, this analysis indicated 
that when students’ system trajectories resembled the actual 
system design, they were more likely to increase their local 
cohesion and substantive content of their essays.  

5. DISCUSSION 
ITSs are designed to provide customized instruction to students 
based on their individual needs and abilities [1].  This 
individualized instruction can often lead to students experiencing 
different learning trajectories within a given system. The 
emergence of these various learning trajectories has led 
researchers to begin to examine ways to investigate optimal 
versus non-optimal learning paths. One way to examine 
optimality within an adaptive environment is to examine how 
learning gains vary as a function of the trajectories students take 
within a system. 

The current study made use of a novel methodology by employing 
random walks to capture and visualize students’ unique 
interaction patterns within W-Pal. Random walk analyses revealed 
that students who interacted with the system in a more systematic 
way (i.e., closer to the designed instructional scaffolding) were 
also students who had higher perseverance scores. This indicates 
that students who jumped around the system more and did not 
follow the intended instructional scaffolding were individuals who 
reported having less perseverance. These results fall in line with 
previous work that has shown that individual differences influence 
learners’ trajectories within adaptive environments [2 - 3]. 

Results from this study also revealed how learners’ trajectories in 
the system influenced the quality and linguistic features of their 
writing. Overall, writing quality was not related to students’ in-
system trajectories. Interestingly, some changes in linguistics 
were related to students’ trajectories within the system. Most 
notably, as students engaged in a trajectory that more closely 
resembled the designed system instructional scaffolding, their 
essays became more cohesive. Thus, these students’ essays at 
posttest increased in the connecting of ideas. 

Overall, the analyses presented here provide some promise that 
random walks are valuable data analytic and visualization tools 
that can shed light upon various behavioral trends exhibited by 
students. Indeed, through the use of dynamic methodologies, 
researchers may be able to better trace and ultimately recognize 
optimal versus non-optimal learning trajectories. These techniques 
also afford researchers the opportunity to investigate the 
efficiency of their system design.  
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ABSTRACT 
In this paper, we describe techniques to use multimodal learning 
analytics to analyze data collected around an interactive tangible 
learning environment. In a previous study [4], we designed and 
evaluated a Tangible User Interface (TUI) where dyads of 
students were asked to learn about the human hearing system by 
reconstructing it. In the current study, we present the analysis of 
the data collected in form of their gestures, and we describe how 
we extracted meaningful predictors for students’ learning from 
this datasets. We explored how KinectTM data can inform “in-situ” 
interactions around a tabletop (i.e. using clustering algorithms to 
find prototypical body positions). We discuss the implications of 
those results for analyzing data from rich, multimodal learning 
environments. 
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1. INTRODUCTION 
Students’ gestures have been extensively researched in the 
learning sciences: numerous studies on embodied cognition have 
unraveled links between learning and students’ gestures. More 
generally, there has been a plethora of studies about people’s 
intuitive representations of everyday situation and bodily 
language [3]. This line of research has provided new ways to 
understand the way students integrate new concepts to their 
everyday understanding of science phenomena.  

Yet, this field of research suffers from serious methodological 
limitations. Most studies are qualitative by nature, or require 
researchers to manually annotate hours of video recordings. Now 
that the theoretical underpinnings of the field are established, it 
would be the right time to speed up discovery and data analysis, 
but the pace at which new results are generated is slower than 
desired, especially for highly granular data. The emerging field 
learning analytics and educational data mining, and especially the 
field of multimodal learning analytics [9] might provide just the 
right data collection and analysis tools to tackle this problem. 
Thus, the goal of this paper is to address this methodological gap 
by suggesting new ways to conduct research on students’ body 
language, as well as providing news lenses to look at students’ 
micro-behaviors while learning. In our study, we collected data on 
user’s actions by using a Microsoft Kinect™. We then used data 
mining techniques to make sense of those two datasets. 

2. THE CURRENT STUDY 
In a previous study, we were interested in pursuing the work 
started with two other TUIs developed in our lab. In our research, 
we have found that TUIs can be advantageously used in a 
discovery-learning situation when students approach an unfamiliar 
topic compared to a standard “tell-and practice” instruction (i.e. 

using a TUI before, rather than after, a standard kind of 
instruction such as reading a textbook chapter or attending a 
lecture). In a controlled experiment [6], we showed that students 
who first used a TUI and then read a textbook chapter 
outperformed students who completed the same activities but in 
the reverse order (text followed by TUI). To show that being 
physically engaged doesn’t fully explain our results, we designed 
the following experiment, where students were asked to discover 
how the human hearing system works (N=38). Pairs of students 
worked on a tangible interface called EarExplorer (Fig. 1) where 
they learned about the human hearing system by reconstructing it. 
In one condition, students rebuilt the hearing system by trial and 
error, using resources provided by the system. In a second 
condition, they used the same setup except that a video of teacher 
demonstrated how to rebuild the hearing system and explained the 
function of each organ as students progressed through the activity. 
Students in both conditions then read a textbook chapter 
explaining sound transduction in a more formal way. We found 
that students in the first group achieved a higher learning gain as 
measured by the pre and post-test. A MANOVA showed that 
participants in the “discover” group learned significantly more 
after the first activity: F(1,35) = 22.11, p < 0.001 and after the 
second activity F(1,35) = 16.15, p < 0.001 compared to the 
participants in the “listen” condition. 
 
 

 
Figure 1: The EarExplorer Interface. Students use the infobox 
(1) to learn about the different organs; they then generate 
sounds at different frequencies with a speaker (2); sound 
waves travel from the emitter through the ear canal to the ear 
bones (3); finally, the sound reached the basilar membrane 
inside the cochlea, activates a specific neuron and replayed the 
sound if the configuration is correct (4). 
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Those results suggest that hands-on activities alone don’t fully 
take advantage of educational TUIs; rather, discovery should be 
an integral part of designing interactive hands-on activities. Given 
those findings, our goal is to take a new look at this dataset by 
applying data mining and multimodal learning analytics 
techniques to students’ body language: we will analyze the logs 
generated by a Kinect™ sensor that recorded students’ actions.  

2.1 Kinect data 
As described earlier, a Kinect sensor captured the body 
movements of both students during the learning activity (30 data 
points per second). For the sake of simplicity, we only analyzed 
the students’ body language during the hands-on activity (i.e. 
when reconstructing the hearing system, as opposed to reading the 
text which is the second activity). This step lasted 15 minutes, 
which gives us 15 * 60 * 30 = 27000 data points for each 
participant. Since 38 students took part in the study and two were 
removed for missing data, we have approximately 1 million data 
points from the Kinect sensor. This is a relatively large dataset 
that needs to be drastically simplified in order to make sense of it.  

2.2 Movements 
The most straightforward (and admittedly naïve) approach to 
analyzing the Kinect dataset is to compute the amount of 
movement generated by each participant. The hypothesis is that 
more engaged students move their body more than less engaged 
ones, and that physical movement is a proxy for general 
engagement; this general engagement in turn is related to learning 
gains. There are two ways to compute this metric: the first one is 
by calculating the Euclidean distance between each joint and 
averaging the result over time. This approach is not ideal, because 
it does not take into account the natural variations in students 
limbs’ lengths. An arguably better way to compute movements is 
to look at variations in angles between joints in body positions. 
We tried both approaches and sliced the data over time to get a 
measure for each minute. We also computed an overall score, as 
well as a score for each joint. We did not find any significant 
correlation between the measures described in this paragraph and 
learning gains. For instance the amount of movement computed 
with joint angles produced the following correlation: r(34) = 
0.079, p = 0.648. On the one hand, this result is somewhat 
surprising: we would expect at least some of those measures to be 
associated with higher engagement and thus more learning. On the 
other hand, a movement of the hand, for instance, can mean a 
range of different things (e.g. a sign of boredom, interest, a deictic 
gesture, and so on), so ultimately the results make sense. Many 
simple gestures are ambiguous by nature, and in our particular 
case we did not have enough information to correctly 
contextualize them. In the next sections, we look at more refined 
measures of students’ activity, such as bimanual coordination, 
body synchronization and postures. 

2.3 Bimanual Coordination 
In a related study, Worsley & Blikstein [9] have shown that 
bimanual coordination was predictive of participants’ expertise in 
solving an engineering problem. Based on these results, we 
decided to compute a similar metric. More specifically, the idea is 
to compute and compare the amount of movement generated by 
each hand. Figure 2 shows two examples generated by this 
approach: on the right, the student barely used his left arm and the 
student on the left is used both arms during the entire activity. 
However, to make sense of this metric, we need to introduce 
additional results that we found on the initial dataset.  

 

Figure 2: hand coordination of two students during the 
activity. Participant #39 is bimanual and uses both hands. 
Participant #4 uses predominantly his right hand (blue line). 
Previous research has shown that each student working in groups 
can often be categorized as either being the “driver” or the 
“passenger” of the interaction [7]. Several indicators can be used 
to categorize each dyad’s members: 1) who started the discussion 
when the experimenter leaves, 2) who spoke most, 3) who 
managed turn-taking (e.g., by asking “what do you think?”, “how 
do you understand this part of the diagram?”), and 4) who decides 
the next focus of attention (e.g., “so to summarize, our answers 
are [...]. I think we need to spend more time on X”). This measure 
can be considered as an aggregate estimation over the whole 
activity of the dyad’s dynamic profile. We acknowledge that 
subjects are likely to shift roles during the activity. We also 
recognize that this categorization is more likely to be a 
continuum, and that in a few cases the difference between drivers 
and passengers may be subtle.  

In our case, after making this distinction for students, we further 
separated them by computing a median-split on their GPA. This 
resulted in four categories: a student could either be a driver or a 
passenger with a high or low GPA (Fig. 3). Surprisingly, having a 
proficient driver in the group does not lead to higher learning 
gains: F(1,16) = 0.04, p = 0.84, Cohen's d = 0.17 (low GPA 
driver: mean=7.63, SD=1.84; high GPA driver: mean=7.87, 
SD=2.57). On the other hand, having a passenger with a high 
GPA does lead to increased learning gains: F(1,18) = 3.51, p = 
0.08, Cohen's d = 1.4 (low GPA passenger: mean=6.22, SD=2.26; 
high GPA passenger: mean=8.36, SD=2.43). 

 
Figure 3: Boxplots of the four kinds of dyads described above: 
driver / passenger with high / low GPA.  
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Figure 4: Bimanual coordination from Drivers and Passengers 

in dyads of students. 
This result is not totally unexpected: proficient students who do 
not “take control” of the activity tended to leave more space for 
trial and error to their partner and suggested hints when needed. 
This situation resulted in increased participation and engagement 
from the low GPA student. In the opposite situation, the same 
student would stay passive and let the driver solve the problem on 
her/his own. The distinction between proficient / non-proficient 
drivers / passengers allowed us to find interesting patterns in our 
data. More specifically, we found that drivers tend to use both 
hands while the passenger uses at most one hand. Figure 4 show 
the aggregated evaluation over time of the hand movements of 
those two types of students. Using an ANOVA, we found a 
significant differences between the amount of movements of each 
hand for the passengers at the end of the activity: F(1,35) = 7.66, p 
= 0.01 (left hand mean=280.00, SD=86.30; right hand 
mean=205.55, SD=69.62). This difference was not significant for 
the drivers: F(1,35) = 1.24, p = 0.27 (left hand mean=315.38, 
SD=152.32; right hand mean=257.21, SD=152.27). 

This result shows that we can potentially discriminate between 
drivers and passengers by looking at their hand movements. As a 
possible implication of this result, we can imagine future systems 
where machine-learning algorithms will make predictions about 
the “status” of each member of a dyad. Using many more features, 
we can imagine a learning environment where personalized 
scaffolding is provided depending on the groups’ dynamic: 
proficient leaders can be encouraged to take a more passive role, 
while less proficient students would be provided with more 
scaffoldings and more opportunities to participate.  

2.4 Going Beyond Movements 
While the previous results provide us with interesting metrics to 
predict learning, they are rather unsophisticated. In this section we 
describe how we used clustering algorithms to automate the 
creation of coding schemes on body postures. Recall that most 
previous work in this area was conducted manually, by analyzing 
videos frame by frame in a highly time consuming process. If we 
can show that an algorithm can accomplish a similar task, it will 
provide researchers with an easy and efficient way to quickly 
analyze students’ body language. Our approach was to take our 
entire dataset (1 million entries), and transform it into (joint) 
angles instead of positions in a three-dimensional Cartesian 
coordinate system. We then fed this matrix into a simple 
clustering algorithm (K-means) that provided us with prototypical 
body positions. As a first step, we decided to keep our analyses as 
simple as possible and limited the number of clusters to three. The 
results are shown in Figure 5. We found the three clusters to have 
interesting properties: the first one (top left) represents an “active” 
position: both arms are on the table, supposedly manipulating 

something or at least ready to act; the head is tilted toward the 
table in an attentive position. The second cluster (top right) shows 
a “semi-active” posture: one arm is flexed, while the other one is 
straight on the table, probably manipulating a tangible. The last 
one (bottom left) represents a “passive” posture, where both arms 
are crossed and the body looks relaxed. We then used those three 
clusters to classify each data point into one of those three clusters 
based on proximity to cluster centroids and counted how many 
times each student was in each posture. The way we interpret 
those three clusters seem to correlate with our previous measures: 
the first posture is positively associated with students’ learning 
gains r(34) = 0.329, p < 0.05 while the third one is negatively 
correlated with students learning gains r(34) = -0.420, p < 0.05. 
Additionally, we found that the number of times students 
transitioned from one posture to another was also significantly 
correlated with their learning gains: r(34) = 0.335, p < 0.05. This 
suggests not only that some postures are indicative of learning, 
but certain sequences of postures are too.  

Previous work [8] has shown that “ideal” cycles of cognition (i.e. 
planning, executing and evaluating an action) are usually 
associated with higher performances and higher learning gains. It 
is possible that the results of our clustering algorithm produced a 
similar construct: an increased number of cycles where students 
think for a while (posture 1 and 2) and then execute an action 
(posture 3) could be interpreted as something akin to an ideal 
cycle of cognition described by [8]. We should mention that we 
tried several approaches before finding the optimal way to cluster 
our dataset. We first tried to use joint positions in a three-
dimensional space, as measured by the Kinect (i.e. the x,y,z 
coordinates of each joint of the kinect skeleton: head, neck, 
shoulders, elbows, arms). We found two main issues with this 
method: first, clusters were influenced by students’ orientation 
toward the tangible interface (right or left side). Second, the size 
of their limbs interfered with the clustering algorithms: longer 
limbs were more likely to be clustered together. 

 
Figure 5: The results of the k-means algorithm on students’ 

body posture (1 million data points).  
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2.5 Analyses at the dyad level 
We describe here additional results conducted at the dyad level, 
i.e. when taking both bodies into consideration.  

2.5.1 Body Synchronization 
In a previous study [5], Schneider & Pea found that students’ 
visual synchronization (as measured by eye-trackers) was 
correlated with their learning gains. That is, more moments of 
joint attention was beneficial to establishing a common ground, 
which in turn positively influenced how much students learned 
during an activity. Other lines of research suggest that body 
synchronization is associated with productive collaborations [1]. 
We were inspired by those results and decided to compute a 
metric for gestures synchronization using the Kinect data. Our 
approach was to first take pairs of data points (one from each 
student) and computes the distance between them. Distance was 
calculated by taking the absolute value of the difference between 
the joint angles of each participant. An ANOVA did not reveal 
any significant effect of this measure on our experimental 
manipulation: F(1,17) = 0.92, p = 0.35, Cohen's d = 0.14 
(“discover” mean=0.46, SD=0.09; “listen” mean=0.42, SD=0.05). 
We also did not find a significant correlation between body 
synchronization and learning gains: r(16) = 0.189, p = 0.453. It 
suggests that even though gaze synchronization is a strong 
predictor for students’ quality of collaboration, body 
synchronization does not hold the same properties in our dataset.  

2.5.2 Body Distance 
A last metric that we assessed was inspired by the theory of 
Proxemics developed by Edward T. Hall [2]. In this seminal work, 
he proposed to categorize the distances around a person into 
different zones: the intimate area (less than 15 cm to 46 cm), the 
personal space (46 to 122 cm), the social distance (122 to 370 cm) 
and the public distance (370 to 760cm or more). Interestingly, in 
our study students were seated at a distance that varied between 
the intimate and personal distance. Moving from a personal to an 
intimate distance is considered a violation of someone’s territory 
if there is not implicit agreement that someone can do so. Thus, a 
small distance between two students can potentially characterize a 
productive collaboration and thus higher learning gains. Similarly, 
a larger distance can be an indicator of a poor collaboration. We 
computed the distance between students at each data point (i.e. 30 
times per second) by taking the rightmost joint from the student 
on the left side and the leftmost joint from the student on the right 
side of the table; we then calculated the Euclidean distance 
between those two points and averaged a global score for the 
entire activity (27000 data points). We did not find a correlation 
between learning and the distance between students’ bodies: r(16) 
= 0.377, p = 0.123. However we found that this metric was 
correlated with students’ pre-existing knowledge on the topic 
taught (i.e. score on the pre-test): r(16) = -0.548, p = 0.019. While 
there could be multiple interpretations of this result, it suggests 
that students who are unfamiliar or uncomfortable with the subject 
matter tend to establish a larger distance with their peers and 
possibly be more defensive during a collaborative activity. 

3. DISCUSSION 
In this paper, we developed several metrics that can be used to 
predict students’ learning around an interactive tabletop. We 
found that the raw amount of movement was not a relevant 
predictor for our purposes; however, bimanual coordination was 
predictive of students’ leadership in a group. Additionally, 
clustering body position with k-means provided us with three 

categories: we found that “active” positions were correlated with 
learning gains, “passive” positions were negatively correlated 
with learning gains, and that transition between those states was 
predictive of learning. Third, we explored students’ body 
language on a social level: contrary to common social psychology 
theories, we found that body synchronization was not correlated 
with any of our measures. Fourth, the distance between students’ 
bodies during the activity was associated with their pre-existing 
knowledge on the topic taught: students with low scores on the 
pre-test tended to be further away from their partner compared to 
students who obtained a high score.  

4. CONCLUSION 
Our goal was to show the potential of rich datasets for advancing 
our understanding of students’ learning trajectories. We contrast 
our approach with online settings where the data is drastically 
more limited (e.g. click-stream data). We believe that insights are 
more likely to be generated in these “in-situ” settings, because 
researchers can more easily collect relevant educational data: for 
instance gestures captured with a Kinect sensor, eye gaze 
movements collected with (mobile) eye-trackers, and arousal 
measures gathered using galvanic skin response sensors. There are 
multiple implications stemming from our results. One of them is 
that seemingly erratic events such as gestures can be objectively 
correlated with learning gains in ecologically-valid tasks -- i.e., 
students were using an interactive tabletop which had no 
constrains for gestures -- everything was allowed. The task itself 
was very open-ended -- there were multiple paths to success. This 
is a departure from research that uses data mining in very 
constricted and well-structured tasks.  
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ABSTRACT
In the educational context, it is important to provide stu-
dents with learning resources, such as tutorials, video lec-
tures, and educational games to help their learning process,
especially when they are not in the school and have diffi-
culties or doubts. In these situations, recommendation sys-
tems may be used to suggest learning resources for students,
avoiding, for instance, the task of making the manual pro-
cess of searching and selecting resources. Most generic rec-
ommendation systems for video lectures use viewing history
of the user to make recommendations of videos, which are
in according of the user interests. In the educational con-
text, other factors must be considered, the video should not
only be of interest to the student, as it will be used as a
learning resource for the main purpose of helping the stu-
dent to learn a particular subject or clarify doubts. Hence,
in this paper we evaluated three classifiers and propose a
predictive model to classify video lectures according to their
quality. We applied machine-learning algorithms on a set of
video lectures by classified students according to some qual-
ity requirements. We conducted an experiment and prelim-
inary results indicate good quality of the selected prediction
model.

1. INTRODUCTION
The search for relevant information on the Web is a well
known problem that has been addressed by several studies
in the literature. Recommendation systems have been con-
sidered one important way to address this problem. In the
educational context, recommendation systems are used to
recommend learning resources for students, saving the stu-
dents the time by manual process of searching and selecting
resources. One of the most used resources by students are
the video lectures. Websites like Youtube1 and Vimeo2 have
many videos within various themes, including video lectures
of various topics.

1http://www.youtube.com/
2http://vimeo.com/

The amount of videos on the Internet is growing at an ex-
plosive rate [1], making it harder the search for good and
appropriate video lectures. When students have to learn
a subject or they are in doubt, they generally perform the
following steps: 1. Search on a website of videos using key-
words from the subject; 2. Choose one of the first videos
ranked to watch; 3. If the video is not good enough for them,
then they stop watching it and try another video. It may
occur students selecting several bad videos followed, until
they find a video that they classifies as good and watch the
full video to learn what they need. This happens because
many students have no way to predict the quality of video
lecture selected.

Most generic recommendation systems for videos uses view-
ing history from previous users to suggest videos [3]. In the
educational context, other factors must be considered, the
video should not only be of interest to students, as it will be
used as a learning resource for the main purpose of helping
students to learn a particular subject or clarify doubts. In
this paper we evaluated three classifiers to classify video lec-
tures according to their quality. The classifiers Navie Bayes,
SVM and C4.5 were used. The classifier with better perfor-
mance compared to others was selected.

2. EXPERIMENT
The purpose of the experiment was to evaluate the predic-
tive ability from classifiers towards video evaluation. For
perform the experiment the Weka software was used [2].

To perform the experiment 120 video lectures from YouTube
were collected in the mathematic domain. The video lectures
belong to the following topics: logarithms, Cartesian plane,
set theory, polynomial functions, geometric progression and
matrices. A total of 15 undergraduate students volunteered
to evaluate videos. Each video lecture was assessed by 5
students who had attended courses that have mathemati-
cal knowledge as a prerequisite, such as calculus and linear
algebra. Students evaluated the video lectures by apply-
ing grades from 0 to 10, median grade from this evaliation
was used to generate the overall assessment of video lecture.
Students were instructed to review the video lectures on the
following criteria: clarity, teaching method, depth in the
proposed issue, audio quality and image, teacher’s didactic,
among others. A video lecture is composed of the following
attributes: title size, description size, duration, date of pub-
lication, view count, like count, dislike count and comment
count. The attributes were normalized and then discretized.
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All attributes have been discretized using histogram analy-
sis. Each video has a class called “evaluation” that can take
the labels: inadequate, bad, average, good, excellent.

The experiment was performed using 10-fold stratified cross-
validation. This procedure divides the sample into k mutu-
ally exclusive parts (folds), for each step, k − 1 folds are
used for training and the induced hypothesis is tested on
the remaining fold. In order to get statistically meaningful
results, the number of iterations used was 10. In case of
10-fold cross-validation this means 100 calls of one classifier
with training data and tested against test data. The cur-
rent experiment performs 10 runs of 10-fold stratified cross-
validation on the dataset using Navie Bayes, SVM and C4.5
scheme, this means 300 calls. The experiment consists in
to confirm if the video lectures were automatically labeled
correctly (in the sense of assigning a evaluation).

2.1 Evaluation Metrics
Given an algorithm A and a set of instances denominated
T , assume that T is divided into k partitions. In the case
of 10-fold cross-validation, k = 10. For each partition i, the
hypothesis hi is induced and the error denoted by err(hi),
where i = {1, 2, ..., k} is calculated. The mean, variance
and standard deviation for all partitions are calculated us-
ing the following formulas: i) mean(A) = mean(A, T ) =
1
k

∑k
i=1 err(hi); ii) var(A) = var(A, T ) = 1

k

[
1

k−1

∑k
i=1(err(hi)−mean(A, T ))2

]
;

iii) sd(A) = sd(A, T ) =
√

var(A, T ).

When comparing two inductors in the same domain T , the
standard deviation can be seen as a picture of the robustness
of the algorithm: if the errors (calculated on different test
sets) derived from induced hypotheses using different train-
ing sets are very different from one experiment to another,
this indicates that the inductor is not robust to changes in
the training set, coming from the same distribution. To
compare two machine learning algorithms and decide which
one is better (with confidence level of 80%), just take the
general case to determine whether the difference between
two algorithms (Ai and Aj) is significant or not, assuming
a distribution normal. For this, the mean and standard de-
viation combinations are calculated according to the follow-
ing equations: i) mean(Ai − Aj) = mean(Ai)−mean(Aj);

ii) sd(Ai − Aj) =

√
sd(Ai)2+sd(Aj)2

2
; iii) ad(Ai − Aj) =

mean(Ai−Aj)

sd(Ai−Aj)
. The absolute difference (ad) is given in stan-

dard deviations.

If ad(Ai − Aj) > 0 then Aj overcomes Ai and if ad(Ai −
Aj) >= 1.29 then Aj overcomes Ai with 80% degree of
confidence.

If ad(Ai − Aj) <= 0 then Ai overcomes Aj and if ad(Ai −
Aj) <= −1.29 then Ai overcomes Aj with 80% degree of
confidence.

3. RESULTS AND DISCUSSION
In the results of the experiment, the classifier that showed
the best performance was the SVM. Table 1 shows the re-
sults of the comparative analysis of used classifiers.

In the comparison between Navie Bayes and SVM, where Ai

Table 1: The comparative analysis of used classifiers.
Ai Navie Bayes SVM C4.5
Aj SVM C4.5 Navie Bayes

mean 0,08 -20,09 20,09
sd 0,05 56,96 56,96
ad 1,41 -0,35 0,35

= Navie Bayes and Aj = SVM, we have ad(Ai − Aj) > 0
and ad(Ai − Aj) > 1.29, therefore the SVM outperforms
Navie Bayes with confidence level of 80%. In the compar-
ison between SVM and C4.5, where Ai = SVM and Aj =
C4.5, we have ad(Ai − Aj) < 0, therefore the SVM outper-
forms C4.5, but does not overcome the level of confidence
of 80%, because ad(Ai − Aj) > −1.29. In the comparison
between C4.5 and Navie Bayes, where Ai = C4.5 and Aj =
Navie Bayes, we have ad(Ai − Aj) > 0, therefore the Navie
Bayes outperforms C4.5, but does not overcome the level of
confidence of 80%, because ad(Ai −Aj) < 1.29.

Although we have achieved good results with our experi-
ments, we verified three treats to validity of our work: i)
The small number of volunteers (15) for evaluate the video
lectures; ii) The limited domain and limited dataset; iii)
The limited number of attributes - in our work we used only
nine attibutes. We pretend to perform new experiments in-
creasing the number of attributes, such as: analysis of the
subtitles, audio and image quality, type of lesson (theoreti-
cal or problem solving), resources used in the video lecture
(blackboard, slides or pen and paper), among others.

4. CONCLUSION AND FUTURE WORK
In this work we present an analysis of classifiers to predict
the quality of video lectures. We conducted experiments
with the classifiers: Navie Bayes, SVM and C4.5. The clas-
sifier that showed the best performance was the SVM, that
was selected as a predictive model. We conducted an exper-
iment and preliminary results indicate good quality of the
SVM as prediction model. In our future work, we will con-
duct experiments with more users and videos. The analysis
performed in this paper is part of an initial work to build a
predictive model to determine the quality of video lectures.
We plan to improve the prediction model with other factors
such as context, viewing history, audio quality and relation-
ships between user can be used to provide better results.
In the future, the authors plan to integrate this predictive
model in a recommendation system of video lectures.
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ABSTRACT 

In this paper we propose a methodology based on data mining and 

self-evaluation in order to predict whether an instructor will or 

will not accept the students’ proposed marks in a course. This is 

an on-going work in which we have evaluated the usage of 

classification techniques and cost-sensitive corrections. We have 

carried out several experiments using data gathered from 53 

computer science university students. 

Keywords 

self-grading, self-evaluation, cost-sensitive classification. 

1. INTRODUCTION  
Assigning appropriate grades to students is an arduous and 

difficult process for instructors. Grades are, by their nature, 

somewhat subjective; every instructor uses different criteria to 

assign them and place a different emphasis on them. And with 

trends in higher education moving toward large class sizes, yet 

simultaneously toward more personalised and individualised 

instruction, self-grading may facilitate the achievement of these 

two objectives [3]. However, the main disadvantage of self-

grading is grade inflation, that is, normally, more students, 

particularly among younger students, grading themselves higher 

than what they should get [4]. Roughly speaking, students’ self-

gradings are satisfactory substitutes for teacher gradings, if these 

two measures are comparable. If a student’s grades were very 

different from the teacher’s judgment, then the teacher should 

supervise and thoroughly evaluate the work, activities, and/or 

exams. Following this idea, in this paper we are interested in 

predicting what the instructor’s decision is concerning the 

possible acceptance of the students’ proposed final marks in a 

course. To do that, we use a methodology based on classification 

and self-evaluation checklists [1]. 

2. METHODOLOGY 
The methodology that we have used in this study is as follows. 

During the course, students are evaluated by means of a multiple 

choice testing that is an effective assessment technique. Before the 

final exam date, all students are requested to self-grade. Students 

propose the mark/grade that they think they should get for the 

course. Then, the instructor accepts or declines the proposed mark 

of each student as the final mark for the course. This way, only 

students whose score was declined by the instructor will have to 

sit the final exam. Finally, we try to predict the instructor’s 

decision of accepting or declining the score proposed by students. 

We have used two different (initial and new) data mining 

approaches (see Figure 1). 

 

 
Figure 1. Approaches for predicting instructor’s decision. 

The initial approach uses three numerical variables: the score 

obtained by students in the course’s activities, the proposed scores 

by students and the difference between these two previous scores. 

Then, it applies traditional classification algorithms for predicting 

the instructor’s decision about whether to accept the proposed 

students’ scores (YES) or not (NO). The new approach uses the 

three previous variables as well as a self-evaluation questionnaire 

as another source of information. Then, it applies cost-sensitive 

classification [2] that is normally used for obtaining better 

performances than traditional classification with unbalanced 

datasets. In fact, in our particular problem we are much more 

interested in the correct classification of NO (normally the 

minority class) than YES (the majority class). To do that, costs 

can be incorporated into the algorithm and considered during 

classification. In the case of two classes, costs can be put into a 2 

× 2 matrix in which diagonal elements represent the two types of 

correct classifications and the off-diagonal elements represent the 

two types of errors. This matrix indicates that it is N times more 

important to correctly classify NO than YES students. 

3. DATASET 
We have used a dataset collected from second year university 

Computer Science students in 2012-13. During a traditional, face-

to-face course on artificial intelligence, the instructor gave the 

students the option to self-grade. Out of the 86 students enrolled 

in the course, 53 accepted to self-grade, approximately 60%. For 

each one of these 53 students, we gathered the next attributes: 

 Activities score. This is the average score obtained by 

students in three activities undertaken during the course. The 

three activities were Moodle multiple-choice tests with 10 

questions, available at different moments of the course. The 

activities score of each student is a number between 0 and 10 

points that is the average of the three activities. 
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 Proposed score. This is the final mark/score that the students 

believe that they should get in the course. Students 

themselves proposed their marks (number between 0 and 10). 

 Difference between scores. It is the difference between the 

two previous scores. It is a positive or negative value 

(between -10 and +10) obtained automatically as the 

activities score minus the proposed score.  

 Self-evaluation questionnaire score. This is the score 

obtained in a self-evaluation questionnaire. We have used a 

self-evaluation questionnaire developed at the University of 

Ohio (USA) [5]. It contains 50 yes/no questions for 

determining whether a student is a good or poor student. The 

students completed the questionnaire two weeks before the 

final exam date. The University of Ohio also provides a 

template with the responses of good students. Using this 

template we have calculated a score for each student as the 

number of answers equal to those of the good students. 

The output attribute or class to predict in our problem is the 

instructor’s decision. It is a binary value: YES or NO, that 

indicates whether the instructor accepts or declines the students’ 

proposed scores. The instructor provided us with this value for 

each one of the 53 students: 37 YES (70%) and 16 NO (30%).  

4. EXPERIMENTS  
We have carried out several experiments in order to test our 

proposed methodology for predicting the instructor’s decision. In 

these experiments we have used 35 classification algorithms 

provided by Weka 3.7: NaiveBayes, NaiveBayesSimple and 

NaiveBayesUpdateable, Logistic, RBFNetwork, SimpleLogistic, 

SMO, SPegasos, VotedPerceptron, MultilayerPerceptron, IB1, 

IBk, KStar, LWL, ConjunctiveRule, DecisionTable, DTNB, JRip, 

NNge, OneR, PART, Ridor,  ZeroR, ADTree, BFTree, 

DecisionStump, FT, J48, J48graft, LADTree, LMT, NBTree, 

RandomForest, RandomTree, REPTree and SimpleCart. We 

executed all the algorithms using 10-fold cross-validation and 

their default parameters. Three classification performance 

measures were used to test the algorithms’ results: Accuracy, True 

Positive rate (TP rate) or sensitivity, and True Negative rate (TN 

rate) or specificity. Figures 2 shows the obtained average values 

of all algoritms when using the initial and new approach with 

different values of cost (N = 1, 2, 3, 4 and 5).  

 
Figure 2. Traditional/Initial classification versus New/Cost-

sensitive classification performance. 

We can see in Figure 2 that the new approach improved the initial 

approach in the three evaluation measures and so, the self-

evaluation questionnaire has shown to be a good source of 

information. However, TN rate continued at a very low values and 

so, we applied different costs for improving it. In Fact, Figure 2 

also shows that when we increase the cost/weight of correctly 

classified NO students, it increases the TN rate. However, it also 

decreases the accuracy and TP rate. So, it is necessary to select the 

best N value in our problem in which TN rate improves without 

affecting accuracy and TP rate very much. For example, in our 

case, we can see that in Figure 2 an agreement/good solution is for 

N=3 in which the three measures cross its values. 

Finally, we show an example of a model obtained with one of the 

classification algorithms. We have selected the output of the J48 

algorithm (see Figure 3) because it obtained one of the best 

performances and it is also a well-known white-box classification 

algorithm. Using the discovered IF-THEN rules, instructor can 

make decision about which students accept or not their scores. 

IF Difference-Between-Scores >= 0 THEN Decision=YES  

ELSE IF Difference-Between-Scores < 0 

 AND Proposed-Score <= 5 THEN Decision=YES 

 ELSE IF Proposed-Score > 5  

       AND Self-evaluation-Score >=5.9 THEN Decision=YES 

      ELSE IF Self-evaluation-Score <5.9 THEN Decision=NO 

Figure 3. Example of obtained decision tree. 

5. CONCLUSIONS 
Regarding the performance of the prediction of the instructor’s 

decision, the results obtained show that the use of self-evaluation, 

and cost-sensitive classification improved the accuracy, sensitivity 

and specificity in our dataset. Our final objective is to use it as a 

time-saving scheme because only the rejected students (whose 

score the instructor does not accept) have to sit the final 

examination at the end of the course. Currently, we are carrying 

out more experiments with a greater number of students of 

different university courses. In the future, we want also work in 

the calibration task, which refers to how accurately individuals 

can predict how well they do on a task. 

6. ACKNOWLEDGMENTS 
This work was supported by the Spanish Ministry of Science 

Technology project, TIN-2011-22408, and FEDER funds. 

7. REFERENCES 
[1] Andrade, M.R. Monitoring student performance with self-

evaluation checklists: an ongoing case study. 

http://www.jrc.sophia.ac.jp/courses/pdf/kiyou2701.pdf 

[2] Elkan, C. The foundations of cost-sensitive learning; 

International Joint Conf. on Artificial Intelligence, 1-6. 2001. 

[3] Strong, B., Davis, M., Hawks, V. Self-grading in large 

general education classes. Colleague Teaching, 52(2), 52-57. 

2004. 

[4] Tan, K. Qualitatively different way of experiencing students 

self-assessment. Higher Education Research&Development. 

52: 52-57. 2008. 

[5] Test de Autoevaluación para Estudiantes Secundarios y 

Universitarios.http://www.tecnicas-de-

estudio.org/general/sabes-estudiar.htm  

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 328



www.manaraa.com

Analysis and extraction of behaviors by students
in lectures

Eiji Watanabe
Konan University

Kobe, Japan
e_wata@konan-u.ac.jp

Takashi Ozeki
Fukuyama University

Fukuyama, Japan

Takeshi Kohama
Kinki University

Kinokawa, Japan

ABSTRACT
In this paper, we discuss the influence the following behav-
iors on the behavior by a specific student in lectures; (i)
the behavior by the lecturer, (ii) the behaviors by other stu-
dents, and (iii) the behavior by oneself. First, we detect fea-
tures for behaviors by lecturer and students by using image
processing methods. Next, the relations among the above
features are approximated by neural networks. Finally, we
analyze the interaction between behaviors by lecturer and
students based on the internal representations and show the
synchronization between students.

Keywords
Lecture, Lecturer, Student, Behaviors, Time series model

1. INTRODUCTION
In lectures, the change of behaviors (writing on the black-
board and explaining) by the lecturer play important roles
on the interests and the understanding by students [1]. Au-
thors have already discussed the relationship between behav-
iors by lecturers and students by using a neural network [3]．
However, since students can see behaviors by other students,
we should focus on the relations among students.

In this paper, we construct time-series models for the inter-
action between behaviors by lecturer and students by using
neural networks [2]. Concretely, we detect behaviors by us-
ing image processing methods and construct a time-series
model for their behaviors. Finally, we analyze the interac-
tion between behaviors by lecturer and students based on
the internal representations in neural networks.

2. ANALYSIS OF BEHAVIORS BY
STUDENTS

Students listen to the explanation by the lecturer and look
at contents on the blackboard. Moreover, a student can see
behaviors by neighbor students and students are influenced
by behaviors by other students. Furthermore, students are

listening to the lecturer and taking notes at their own paces.
As shown in Figure 1, we can summarize the influences on
behaviors by students as follows; (i) behaviors (explanation
and writing) by lecturer, (ii) behaviors (listening and writ-
ing) by other students, (iii) behavior by oneself.

Lecturer

 Student 

(i)
(ii)

(iii)

(ii) (ii)

(ii)

Figure 1: Influences on behaviors by students

2.1 Analysis of behaviors by students
Features for behaviors by lecturers and students can be ex-
tracted by image processing methods based on the color in-
formation [3]. Here, we define features as follows; the head
position of the lecturer: xL

head(t), the number of skin-colored
pixels in the face region of the lecturer: xL

face(t), and the
number of skin-colored pixels in the face region of the p-the
student: xS,p

face(t).

2.1.1 Input-output relation of behaviors by students
Based on Figure 1, we approximate the number xS,p

face(t) of
skin-colored pixels in the face of the p-th student by the head
position (horizontal) xL

head(t) of the lecturer, the number
xL

face(t) of skin-colored pixels of the lecturer, and the number

xS,q
face(t) of skin-colored pixels of the q-th student as follows;

xS,p
face(t) = αL

facef(
X

`

wL
face,`x

L
face(t − `))

+ αL
headf(

X

`

wL
head,`x

L
head(t − `))

+ αS,p
facef(

X

`

wS,p
face,`x

S,p
face(t − `))

+
X

q 6=p

αS,q
facef(

X

`

wS,q
face,`x

S,q
face(t − `)) + e(t), (1)

where q 6= p and ` denotes the time delay. We assume
that e(t) is a sequence of Gaussian noise. Here, {α} denote
weights for features by the lecturer and students and {w}
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denote weights for the time-delay of features. Moreover, f(·)
denotes a sigmoid function.

2.1.2 Learning of the input-output relation by using
a neural network model

For the approximation of Eq. (1), we use a neural network
model as shown in Figure 2. Obviously, the connection be-
tween input and hidden units is sparse and such a connection
intends to the clarification of the role of weights α for each
feature. Moreover, weights {w} between input and hidden
layers play the role of the clarification of the time-correlation
among features. The object for the learning for a neural net-

Number of Pixels
in Face Region
by lecturer

Horizontal Position
of head by lecturer

Number of Pixels
in Face Region
by p-th student

Number of Pixels
in Face Region
by q-th student

Number of Pixels
in Face Region
by p-th student

xL
face(t− ℓ)

xL
head(t− ℓ)

x
A,p
face(t− ℓ)

x
A,q
face(t− ℓ)

αL
face

αL
head

α
S,p
face

α
S,q
face

f(
∑

wL
face,ℓx

L
face(t− ℓ))

f(
∑

wL
head,ℓx

L
head(t− ℓ))

f(
∑

w
S,p
face,ℓx

S,p
face(t− ℓ))

f(
∑

w
S,q
face,ℓx

S,q
face(t− ℓ))

xS
face(t)

wL
face,ℓ

wL
head,ℓ

w
S,p
face,ℓ

w
S,q
face,ℓ

Figure 2: Neural network for approximation of the
input-output relation defined by Eq. (1)

work model in Figure 2 is to minimize E.

E =
X

t

Et =
X

t

(xS,p
face(t) − x̂S,p

face(t))
2, (2)

where x̂S,p
face(t) denotes the prediction value for xS,p

face(t). The

learning law for weights αL
face can be represented by

αL
face = αL

face − η
∂Et

∂αL
face

, (3)

where η denotes the learning coefficient. On the other hand,
the learning law for weights wL

face,` can be represented by

wL
face,` = wL

face,` − η
∂Et

∂wL
face,`

. (4)

3. EXPERIMENTAL RESULTS
We have recorded images (640×360 [pixels], 10 [fps]) for
four lecturers and five students in lectures concerning on
the derivation of the formula for some trigonometric func-
tions. Table 1 shows weights α between hidden and output
layers. These weights denote the strength for each feature
in Eq. (1) and we can show the followings;

• The behavior by Student-1 is strongly influenced by
the change of the face of oneself from the relation be-
tween αL

head = 0.73 and αS,p
face = 1.35 for Student-1.

• Weights αS,1
face by Student-1 satisfy |αS,1

face| > |αS,q
face| for

all lecturers. This means that the behavior by Student-
1 is not influenced by behaviors by other students.

• Weights αS,3
face by Student-3 satisfy |αS,3

face| < |αS,2
face| for

all lecturers. This means that the behavior by Student-
3 is strongly influenced by the behaviors by Student-2.

• Weights αS,p
face satisfy the relations |αS,p

face| > |αL
face| and

|αS,p
face| > |αL

head| for all students. This means that the
behaviors by students are strongly influenced by them
rather than the behaviors by lecturers.

Table 1: Weights between hidden and output lay-
ers (Results for other lecturers are omitted due to
limitations of space)

(a) Lecturer-1

Student αS,p
face αL

head αS,p
face

A B C D E
A -1.57 -0.26 0.43 -0.02 0.40 0.73 1.35
B -0.68 -1.39 -0.46 -0.33 -0.43 0.04 0.32
C 0.32 2.31 0.34 -0.27 -0.39 -0.36 -0.35
D 0.50 0.28 1.20 -2.60 -0.47 0.32 0.66
E -0.25 0.31 -0.45 -2.16 -1.13 -0.11 0.31

(b) Lecturer-2

Student αS,p
face αL

head αS,p
face

A B C D E
A 1.87 0.33 -0.05 0.30 -0.24 -0.25 -0.31
B 0.81 1.43 0.30 -0.26 0.26 0.52 0.26
C 0.29 1.62 0.40 0.08 0.29 0.23 0.06
D -0.26 0.29 1.13 -1.06 -0.36 -0.24 0.31
E -0.34 0.43 0.27 -3.24 -0.64 -0.23 -0.30

4. CONCLUSIONS
In this paper, we have analyzed the interaction between be-
haviors by lecturer and students by using neural networks
and shown the followings; (i) a specific student is strongly in-
fluenced by only the behavior by oneself, (ii) other students
are strongly influenced by other students, (iii) all students
are strongly influenced by the behavior by oneself and other
students rather than lecturers.
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ABSTRACT
Student  retention is an important  measure for  higher  education 
institutions.  Exploration  and  interactive  visualization  of 
multivariate data without significant reduction of dimensionality 
remains  a  challenge.  Visual  analytics  tools  like  Motion  Charts 
show changes  over  time  by presenting  animations  within  two-
dimensional space and by changing element appearances. In this 
paper,  we  present  a  new  visual  analytics  tool  intended  for 
exploratory analysis of educational data. We also utilized the tool 
for analyzing the data in order to verify the hypothesis concerning 
student drop-out behavior. The hypothesis assumes the existence 
of a correlation between the changes of fields of study and the 
student retention. 

Keywords

Student  retention,  student  drop-out,  visual  analytics,  motion 
charts, animation.

1. INTRODUCTION
Higher education institutions have a major interest in improving 
the quality and the effectiveness of the education. In [1], hundreds 
of higher education executives were surveyed on their analytics 
needs.  Authors  resulted  that  the  advanced  analytics  should 
support  better decision-making,  studying enrollment  trends,  and 
measuring  student  retention.  They  also  pointed  out  that 
management commitment and staff skills are more important than 
the  technology.  In  [2],  authors  concluded  that  the  increasing 
accountability requirements of educational institutions represent a 
key to unlocking the potential for analytics to effectively enhance 
student  retention and graduation  levels.  The application of data 
mining techniques in higher education systems have some specific 
requirements not present in other areas, as pointed out in [3].

Effective analysis depends on the consistent and high-quality data. 
Exploration  and  interactive  visualization  of  multivariate  data 
without  fundamental  dimensionality  reduction  remains  a 
challenge. Animations represent a promising approach to facilitate 
better perception of changing values. In [4],  authors pointed out 
that  animations  help  to  keep  the  viewer’s  attention.  Correctly 
designed animations significantly improve graphical perception at 
both the syntactic and the semantic levels, as concluded in [5]. 
However,  visualizations are often engaging and attractive but  a 
naive approach can confuse the analyst. Motion Charts represent 
an  animated  data  presentation  method  which  shows  multiple 
elements  and  dimensions  on  a  two  dimensional  plane,  as 
described in [6]. 

Motion  Charts  allow  exploring  and  formulating  additional 
hypotheses, as well as it helps to easily identify hidden patterns 
and trends in the data. The variable mapping is one of the most 

important  parts  of  the  exploratory data  analysis.  Both  the  data 
characteristics and the investigative hypothesis should influence 
the selection of a variable mapping.  

In this paper, we briefly describe the motivation and design of the 
enhanced  version  of  the Visual  Analytics  (VA) tool  EDAIME, 
firstly introduced in [7].  In  the next section,  we present several 
papers  concerning  with  data  analysis  using  Motion  Charts. 
Subsequently, we describe the design of the tool. Then, we make 
use of the tool for analyzing educational data in order to verify the 
hypothesis  concerning  student  dropout  behavior.  Finally,  we 
conclude  the  paper  with  future  work  and  summarize  the 
conclusion of the results.

2. RELATED WORK
Number of papers concerning the Motion  Charts  has  increased 
recently.  In  [6],  authors  incorporated  examples  using  recent 
business  and  economic  data  series  and  illustrated  how Motion 
Charts can tell dynamic stories. For the first analysis, they utilized 
data  about  Current  Employment  Statistics  and  presented 
differences between the perception of common static tables and 
graphs,  and  the  dynamic  manner  of  Motion  Charts.  They 
concluded that static presentation style serves well the purpose of 
relaying accurate and non-biased quantitative data to the analyst.  
They also emphasized that the benefit  of Motion Charts lays in 
displaying rich multidimensional  data through time on a single 
plane with the dynamic and interactive features. Users are allowed 
to easily explore,  interpret,  and analyze information  behind  the 
data. They concluded that the Motion Charts are an excellent and 
interesting  way  of  presenting  valuable  information  that  may 
otherwise be lost in the data.

Beneficial feature for better visual perception of changes in time-
series analysis  is presented in [8].  Author  emphasized both  the 
benefits  and  the  drawbacks  of  common  data  visualization 
methods,  namely  line  chart  and  bar  chart.  Then,  the  author 
focused  on  dealing  with  issues  with  the  time-series  analysis. 
Subsequently,  he presented capabilities of Motion Charts which 
are  more  suitable  for  this  kind  of  analysis.  Moreover,  author 
stressed  that  patterns  of  change  through  time  can  take  many 
meaningful forms and introduced new feature, called visual trails, 
designed for Motion Charts which allows seeing the full path that 
elements  take  from  one  point  in  time  to  another.  He  also 
demonstrated proposed improvements.

3. THE EDAIME TOOL
Two main  challenges  are  addressed  by the  presented  VA tool 
EDAIME. The tool enables visualization of multivariate data and 
the interactive exploration of data with temporal characteristics. 
Moreover, it is optimized to process educational data. 
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The  main  purpose  of  the  tool  is  to  increase  the  education 
effectiveness  and  the  quality  of  the  study.  The  motivation  to 
develop an enhanced version of Motion Charts was to extend their 
abilities  and  to  improve  the  expression  capability  to  facilitate 
analysts  to depict  each student  as the central  object of interest. 
Moreover,  the  implementation  enhances  the  portfolio  of 
animations that express the student’s behavior during their study 
more  precisely.  The  main  technical  advantages  over  other 
implementations of Motion Charts are its flexibility, the ability to 
manage  many animations  simultaneously.  Optimizations  of  the 
animation  process  were necessary,  since even  tens  of  animated 
elements significantly reduced the speed and contributed to  the 
distraction of the analyst's visual perception.  

The Force Layout component of D3 (http://d3js.org/) provides the 
most  of the  functionality  behind  the  animations,  and  collisions 
utilized  in  the  interactive  visualization  methods.  Linearly 
interpolated values are calculated for missing and sparse data.

3.1 Analysis of Educational Data
The main aims to improve student retention and graduation levels, 
are closely connected with analyses of changes of the mode and 
changes of the field of study.  We utilize  the EDAIME tool  for 
analyzing  educational  data  in  order  to  verify  hypothesis 
concerning  with  student  dropout  behavior.  The  hypothesis 
supposes the existence of a correlation between the changes of 
fields of study and student retention.

The large elements that represent a particular field of study consist  
of  small  elements  that  represent  individual  students.  Therefore, 
the  size  of  the  large  elements  corresponds  to  the  number  of 
students  enrolled in a particular field of study.  The size of the 
small elements corresponds to the number of credits gained in a 
particular semester of study.

Besides the study progress, animations are also utilized to express 
the study termination,  the change of the mode of study and the 
change of the field of study.  Dropout students turn red and fall 
down the chart  in  the semester when they left  the  studies.  The 
stroke-width of the elements represents the state of the study and 
the element color represents the attributes of the study.

To verify the aforementioned hypothesis we examined educational 
data about students admitted to bachelor studies of the Faculty of 
Informatics Masaryk University between the years of 2006 and 
2008. The semester number is mapped to time variable. The grade 
point average is mapped to x-axis. The average number of credits 
is mapped to y-axis. The number of gained credits is mapped to 
element size.

Motion Charts show that the number of students decreases in all 
fields of study besides applied informatics (BcAP) because it is 
frequent  target  of  change  for  the  students  in  the  first  two 
semesters. After that, the number of students decreases uniformly 
for  all  fields  of  study.  It  is  visually  clear  that  the  majority  of 
students change the field of study to BcAP. More precisely, the 
highest migration between two fields of study is from computer 
graphics  (GRA) to BcAP.  Analysis  show that  the most  student 
dropouts occur in the freshmen year, but over the time the number 
of  unsuccessful  students  decreases  significantly.  Motion  Charts 
also reveal that the ratio of the number of successful students to 
the  number  of  unsuccessful  students  is  significantly higher  for 
students  that  changed  their  field  of  study.  The  supposed 
correlation exists, but a further analysis with a different mapping 

is  needed  to  better  express  the  relation  between  the  migration 
target and the study success.

4. CONCLUSION
Common data visualization methods have limitations in terms of 
the  volume  and  the  complexity  of  the  processed  data.  Motion 
Charts are transparent methods that can present a good overview 
of the complex data and also enable analyst to observe interesting 
elements  while  the  previous  ones  are  still  fresh  in  his  or  her 
memory. 

In the paper, we have described the motivation and design of the 
VA tool EDAIME which is intended for exploratory analysis of 
educational data. We enhanced the concept of Motion Charts and 
successfully expanded it to be more suitable for such analyses. We 
have successfully employed it to verify the suggested hypothesis. 
A further in-depth analysis with different mapping of variables is 
needed to quantify the correlations more accurately. Despite the 
fact that common data visualization methods are quite beneficial,  
there are types of questions that cannot be examined using them. 
Since the questions  involve  quantitative relationship  other  than 
change through time. 

The additional representation of the data gives the analyst  more 
possibilities in exploring the data, but the additional functionality 
can  also  confuses  the  analyst.  To  verify  user  friendliness  and 
usability of the tool,  we will  carry out  a controlled  experiment  
with two groups of users.  They will  use different  VA tool  and 
methods trying to understand the same dataset.
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ABSTRACT  
This paper describes our research on automatically scoring 

students’ summaries for comprehension using not only text 

specific quantitative and qualitative features, but also more 

complex features based on the computational indices of cohesion 

available via Coh-Metrix and on Information Content (IC, a 

measure of text informativeness). We assessed whether human 

rated summary scores could be predicted by indices of text 

complexity and IC. The IC metric of the summaries was a better 

predictor of human scores than word count or any of the Coh-

Metrix text complexity dimensions. This finding may justify the 

implementation of IC in future automated summary rating tools to 
rate short summaries.   

Keywords Information Content, summarization, reading 

1. INTRODUCTION  
Summarizing content after reading a text is a well-established 

method of assessing comprehension [1]. Assessing students’ 

reading comprehension through summarization has many 

advantages over other methods, because summarization requires 

readers to actively reconstruct their mental representation of the 

text [2]. The purpose of the current study is to examine a method 

of automated summary grading using a small corpus of summaries 

written for a variety of texts. We explored the use of the 

computational linguistic tool Coh-Metrix [3], as well as 

informativeness of words to predict human rater’s scores of 

summaries.    

 

Coh-Metrix is a computational linguistic tool developed to 

measure hundreds of indices related to syntactic complexity, text 

cohesion, lexical diversity, and other features of language and 

discourse [3]. Coh-Metrix’s five major dimensions of text 

complexity predict a number of psychological findings associated 

with comprehension, such as reading time and recall [4]. In this 

study we used CohMetrix to measure: narrativity, syntactic 

simplicity, word concreteness, referential cohesion, and deep 

cohesion (http://cohmetrix.memphis.edu) [4].  

 

 

 

 

 

 

Information Content (IC) is a measure used by Resnik [5] to 

compute the informativeness of a concept in a hierarchical 

taxonomy such as WordNet [6]. IC relies on the assumption the 

informativeness of a concept is inversely dependent on its 

occurrence frequency: the more frequent a concept, the less 

informative it is.  Resnik [5] computes the frequency of a concept 

c as the sum of the occurrence frequencies of the words defining 

the concept c and all the other words defining the subordinates. 

Once the occurrence frequency of a concept is defined, the IC 

value for each concept c is computed as the self-information 

measure of c: 

          𝐼𝐶(𝑐) = log (
1

𝑃(𝑐)
) = −log (𝑃(𝑐)) − 𝑙𝑜𝑔

#𝑐

∑ #𝑐𝑖𝑖
 

A method for transferring the IC values from concepts to words 

has been proposed [7]: a word is assigned the IC value 

corresponding to the most general concept that word can 

represent, which is the concept with the minimum IC value: 

          𝐼𝐶(𝑤) = min
𝑐|𝑤∈𝑐

𝐼𝐶(𝑐) 

This ensures that high IC values are only associated with 

informative words. We compute the IC of a text fragment as the 

sum of the IC values for the individual words occurring in that 

fragment. The resulting sum value can be used as a measure of 

informativeness of the entire text, or it can be normalized by the 

total number of words in that text. We experimented with both 

methods.   

 

In this study, we asked human experts to rate a total of 225 

summaries written after reading texts from different genres. Our 

goal was to use Coh-Metrix dimensions of text complexity and IC 

computed from WordNet to predict the human ratings beyond 

simple verbosity (word count). If successful, such an approach 

will allow us to estimate summary qualities without a gold 

standard or a large summary corpus. Thus, our algorithm would 

contribute to assessing summaries written for a variety of subject 

matters and text types.   

 

2. METHOD  
Seventy-five undergraduates from the University of Memphis 

participated in this study. We collected 73 texts of different genres 
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on different topics, containing between 1000 and 1500 words (M 

= 1301.3, SD = 186.0). There were 24 Informational, 24 

persuasive and 25 Narrative texts selected from various websites 

on the internet. The texts were measured on different levels of 

textual complexity and Flesch-Kincaid readability. The texts were 

each separated into multiple pages (screens) of 75-100 words 

each, keeping the original paragraphs and always ending on a 

sentence. Each participant read three texts, one from each genre. 

Each text was randomly selected from each genre. After reading 

each text, participants wrote a 75 to 100 word summary of the text 

that they just read. Thus, each participant wrote 3 summaries, one 

per genre. Three expert raters independently rated the summaries 

on a 1-4 scale for comprehension. Chronbach’s alpha scores 

suggested high inter-rater agreement of α = .802 (N = 225).  

4. RESULTS AND DISCUSSION   
A Pearson-correlation analysis was conducted between the 

summary rating score, word count, and IC. Word count was 

included because previous research suggests a strong positive 

relationship between word count and perceived quality of writing. 

IC strongly correlated with word count, r = .952, n = 224 p < .001. 

Word count and summary score were strongly correlated, r = .562, 

n = 224, p < .001, with an r2  of .316. A linear regression revealed 

that approximately 31.3% of the variance in comprehension score 

can be accounted for by the variance in word count (β = .559, SE 

= .001. F = 100.635, p < .0001). We found a strong correlation 

between IC and summary score, score, r = .617, n = 224, p < .001, 

with an r2 of .377. A linear regression revealed that approximately 

37.7% of the variance in comprehension score could be accounted 

for by the variance in IC (β = .614, SE = .004, F = 133.715, p < 

.0001). We found that IC explained 5.5% more of the variance in 

comprehension score than word count.  

 

It was interesting to note that Coh-Metrix’s dimension of deep 

cohesion was significantly correlated with IC (r = .22, n = 224 p < 

.01), but not with word count (r = .078, n = 224, p = .248). 

However, a multiple regression using word count and deep 

cohesion as predictors did not show significant contribution of 

deep cohesion as a predictor. The result suggests that although IC 

is highly correlated with word count, it is a better predictor of 

comprehension than word count, which suggests that summary 

scores are more than mere summary length. In the future, IC could 

possibly be implemented in automated summary grading tools to 

increase their accuracy in scoring summaries.   

 

Table 1. Correlations between summary score, IC, word count 

and Coh-Metrix’s indices of text complexity   

Measure   Comprehension   IC   Word Count   

Summary score   -         

IC   .617**   -      

Word Count   .562**   .952**   -   

Deep Cohesion   .121   .222*   .078   

Referential Cohesion   .001   .057   -.103   

Syntactic Simplicity   -.045   -.008   -.180*   

Word Concreteness   .019   .099   -.076   

Narrativity   .006   .095   -.056   

p<.01* p<.001**            

 

5. CONCLUSION  

In this study we attempted to use IC and the five dimensions of 

text complexity from Coh-Metrix to predict human ratings of 

summaries. Our results showed that surprisingly, the five 

dimensions of text complexity did not predict human ratings of 

comprehension from summarization. On the other hand, although 

IC was also highly correlated with word count, it explained more 

of the variance in comprehension score than word count. In future 

research we will explore using other linguistic indices as well as 

IC to predict summary scores on a larger corpus of summaries.   
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ABSTRACT 

In this poster, we describe a new research project involving the 

analysis of nearly 250,000 human-human tutorial dialogue 

transcripts (in Algebra and Physics) supplied by Tutor.com, a 

leading provider of online tutorial services for children and 

young adults. This project involves training a panel of Subject 

Matter Experts (SMEs) recruited from among Tutor.com’s 

expert tutors to hand-tag a “gold standard” training set of as 

many as 1,500 transcripts, involving hundreds of different 

tutors, and potentially totaling more than 100,000 separate 

utterances. The SMEs will use a theory-based coding scheme to 

classify utterances into dialogue acts and mode switches, i.e., 

dialogue acts that serve to initiate a change in dialogue mode. 

The resulting training set will be used to train a dialogue act 

classifier to automatically tag dialogue acts and modes in the 

remaining transcripts. Machine learning techniques will be used 

to discover patterns (e.g., sequences, clusters, Markov chains) 

associated with successful and less successful sessions, where 

success is measured by internal evidence of learning and also the 

learner and tutor ratings available in the transcript metadata. Due 

to the large number of sessions and tutors studied, this research 

promises to expand our understanding of the prevalence and 

types of strategies and tactics used by human tutors. Preliminary 

findings from this data set will be presented during the poster 

session.1 

Keywords 

Tutorial dialogue; Human tutoring; Data mining; Intelligent 

tutoring; Computational linguistics; Machine learning; Big data.  

1. INTRODUCTION 
In recent years, artificial intelligence researchers have begun to 

apply machine-learning techniques to the analysis of interaction 

logs generated by online, chat-based (keyboard-to-keyboard) 

tutorial systems, e.g., [1]. Generally speaking, this approach 

involves some combination of human tagging of session features 

(e.g., utterance types), automatic feature detection, and 

identification of sequential feature clusters. For example, in [1] 

the researchers tagged the various dialogue acts in a relatively 

small corpus of tutorial dialogue sessions, then used Hidden 

Markov Modeling to discover mixtures of dialogue acts 

                                                                 

1 Corresponding Author: Donald M. Morrison 

(chipmorrison@gmail.com) 

associated with identifiable tutorial “modes” [2]. 

The work described here extends this research, focusing on a 

large database of nearly 250,000 transcripts of chat-based 

tutorial dialogues, a subset of a rapidly expanding database of 

more than 10 million sessions conducted to date by Tutor.com 

tutors. Our approach features hand-tagging of dialogue acts and 

mode switches in a training set consisting of more than 1,000 

transcripts, the development of an automatic context-sensitive 

dialogue-act classifier, and a “top-down, bottom-up” cluster 

analysis aimed at identifying dialogue features associated with 

positive outcomes, as measured both by the participant quality 

ratings (available in the transcript metadata).  Internal evidence 

of learning during sessions will also be considered, such as the 

tutor’s feedback on student contributions or student expressions 

of new understanding, (“Oh, I get it now.”) 

2. CONCEPTUAL FRAMEWORK 
The theory-based coding scheme we are developing views a 

tutorial dialogue as a special form of human conversation, a 

joint activity [3] consisting of a sequence of back and forth 

utterances, each of which represents one or more dialogue acts 

[1].  

 

Figure 1. Anatomy of a tutorial dialogue  

Dialogue acts are viewed as tactical choices, representing the 

interlocutors’ hidden intentions and strategies, subject to 

biocultural constraints such as the need to establish common 

ground [4] and make contributions “relevant” [5]. As such, the 

significance of a given utterance must be understood in respect 

to previous utterances (e.g., adjacency pairs—[7]), and other 

higher-level organizational structures such as dialogue modes. 

Some dialogue modes, such as openings and closings [7], are 

common to most human conversation; others, such as lecturing 

and collaborative problem-solving, are characteristic of 

particular kinds of conversation, including the tutorial dialogues 

we focus on in this study. Successful tutorial dialogues, we 

hypothesize, are those in which the participants, both tutors and 

learners, manage to cooperatively align and accomplish their 

individual goals, drawing on sets of tactics (specific dialogue 

moves), strategies (algorithms or “policies” for selecting from 

among available tactics based on unfolding circumstances), and 

metastrategies (algorithms for selecting from among available 

strategies). This conceptual framework is explored more fully in 

related work [6]. 
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3. TUTORIAL TRANSCRIPT CORPUS 
Our corpus consists of a set of 245,192 tutorial session 

transcripts shared with us by our partner, Tutor.com, a leading 

provider of online (chat-based) tutorial services.  While this is 

only a subset of the 10 million (and counting) sessions available, 

we believe it is orders of magnitude greater than most prior 

analyses of human tutoring. The sessions represent attempts to 

help students solve problems and understand related concepts 

involving selected subtopics in Algebra (65% of the transcripts), 

and Physics (35%). The transcripts consist of more than 25 

million time-stamped lines (corresponding roughly to 

utterances), representing more than 80,000 hours of dialogue, 

and containing more than 1,200,00 unique tokens (words and 

mathematical expressions). Each transcript is linked to a set of 

metadata, including both tutor and student ratings of session 

quality. 

Table 1: Summary transcript statistics 

Subject  Mean Std. Dev Total 

Physics Minutes 24.6 21.6 2,123,429 

 Tutor lines 68.0 52.4 5,875,944 

 Student lines 49.7 39.8 4,530,487 

Algebra Minutes 18.3 18.1 2,897,482 

 Tutor lines 55.3 40.0 8,773,353 

 Student lines 41.9 30.7 6,355,446 

4. RESEARCH PLAN 
This research involves five distinct development tracks, as 

summarized in Figure 1. 

 

Figure 1: Research Plan Tracks 

At this writing we are in the process of data cleaning and 

descriptive analysis, as well as development of the toolset we 

will use for session searches, annotation and visualization. One 

critical task is the development of a web-based annotation 

environment that will be used to train the human taggers, to 

hand-tag selected transcripts, and to review and revise 

transcripts tagged using automated tools. 

We have also conducted an online survey of 250 Tutor.com 

tutors and tutor mentors, consisting of a set of open-ended 

questions aimed at eliciting the respondents’ expert opinions 

regarding choices of particular tactics and strategies in different 

circumstances. We are using this data for two purposes: (1) to 

select a “blue ribbon” panel of tutors and mentors to serve as the 

Subject Matter Experts (SMEs); and (2) to ensure that our 

theory-based coding scheme is consistent with how the SMEs 

themselves think about the dynamics of the tutorial process. 

A panel of 15 to 20 SMEs are being recruited to help modify the 

coding scheme, test the annotation environment, and hand-tag as 

many as 1,500 session transcripts for both dialogue acts and 

mode switches, i.e., dialogue acts that have the effect of turning 

on a particular mode (“Welcome to Tutor.com”) or switching 

from one mode to another (“So, have you tried to do this 

problem yourself?”). 

Based on this training set, a dialogue act classifier will be tuned, 

which we will then use to auto-tag the remaining transcripts in 

the database. Finally, we will use sequencing and clustering 

algorithms to discover hidden patterns (interpretable as tactics 

and strategies) associated with successful and less successful 

sessions.  Sequence-mining is one method we will use to detect 

patterns within sessions.  Since Hidden Markov Modeling has a 

history of success for this type of analysis, we expect this to be 

one key technique [1][2]. Clustering will be applied to identify 

traits that characterize certain types of successful (or  less 

successful) sessions. 

The results of this data mining are intended to inform the design 

of future tutoring and adaptive learning systems.  The project is 

the first phase in a planned multiyear research and development 

effort funded by the U.S. Department of Defense Advanced 

Distributed Learning (ADL), aimed at developing hybrid human 

and artificially-intelligent tutoring systems compatible with 

ADL’s Personal Assistant for Learning (PAL) architecture. 
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ABSTRACT 
Educational games have the potential to be innovative methods of 
assessing learning. This research combines video analysis and 
educational data mining to measure the implicit science learning 
that takes place in games. By studying the video data from high 
school learners playtesting the game Impulse, we observed 
strategic moves that are consistent with an implicit understanding 
of relevant science concepts and reliably coded those moves in a 
sample of 69 high school students. This paper reports on work in 
progress to use educational data mining analyses that leverage 
coded video segments to build automated detectors of strategic 
moves from game log data.  

Keywords 

Automated detectors; Game-based learning; Implicit Science 
Learning; Game Strategies 

1. INTRODUCTION 
Nearly all youth and most adults participate in Internet-based 
games [1]. Games have been shown to foster scientific inquiry 
and problem-solving, and have enabled the public to participate in 
breakthrough scientific discoveries [2, 3]. As a result, many 
educators and researchers see digital games as key potential 
learning and assessment environments for the 21st century [4]. 

Our research group is designing web and mobile games that focus 
on high-school science concepts drawn from the U.S. standards 
for science education. These games use simplified game 
mechanics that emphasize the laws of nature and the principles of 
science. Players are able to dwell in scientific phenomena, 
building and solidifying their implicit knowledge over time.  

It is not our intent that these games teach science content 
explicitly, but rather that they engage the learner with scientific 
phenomena in the effort to build their implicit understandings 
about these phenomena. To measure implicit learning in games, 
we explore the extent to which we can relate the development of 
strategies we see players building in the games to classroom 
learning of similar content. Thus, we address the question: Do 
learners’ strategic moves in the game correspond to increased 

implicit understanding of the science content driving the game 
mechanics? Success in this design will result in a new way to 
think about game-based assessments, starting not from prescribed 
learning outcomes, but from watching what types of strategy 
development actually takes place. The first step of this research, 
reported in this paper, is to accurately predict the strategic moves 
that emerge in a physics-based game from the click data that is 
generated during gameplay. 

2. THE GAME: IMPULSE 
Our team designed the game Impulse to scaffold and measure 
players’ implicit knowledge of forces and motions (Figure 1). In 
Impulse, particles have different masses and thus behave 
differently under the corresponding gravitational forces. Players 
use an impulse (made through a click) to apply a force to 
particles, with the goal of moving a specific particle to the goal 
while avoiding other ambient particles. If the player’s particle 
collides with any ambient particle, she loses that round. In terms 
of the science, the player is immersed inside an N-body 
simulation with accurate gravitational interactions and elastic 
collisions among up to 30 ambient particles with varying mass.  
 
 
 
 
 
 
 
 
 
 
 

As players reach higher levels, they need to “study” the particles 
behavior to predict the motion of particles so that they can guide 
their particle to the goal, not run out of energy, and avoid collision 
with other particles. 

Since there is no known best way for learners to build implicit 
understanding of these physics phenomena in games, our research 
captures the myriad of strategies players develop during 
gameplay. As a first step of this work, we have identified an initial 
set of strategic moves that we observe players making in the game 
Impulse that we theorize constitute evidence of implicit 
understandings of the underlying physics. 

 

 

 
Figure 1: Impulse game 
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3. METHODS 
Data were collected over six workshops conducted in March-June 
2013 with 69 high school students (29 female) from urban and 
suburban schools in the Northeastern United States. Players were 
recorded with Silverback [5] that captures players’ onscreen game 
activities and video of their faces and conversations. Students 
were asked to “think aloud” and explain their activities.  

Two coders, a designer of Impulse with a physics background and 
a researcher without, independently watched the videos and coded 
two randomly selected three-minute segments from each player. 
The coding system was developed through repeated coding of 
hundreds of clicks with different play styles. A third coder with no 
physics background was trained using the coding system and 
coded randomly selected three-minute segments from all 69 
videos. Two additional coders and one of the designers of the 
coding system double coded the segments from 10 videos. Table 1 
includes definitions of the codes with Kappas exceeding 0.70. 

Table 1. Video codes, definitions, and Kappas. 

Code Definition Kappa 

Float 
The player particle was 
not acted upon for more 
than 1 second 

0.759 

Direction 
The direction the learner 
intended the player 
particle to move  

0.778 

Target 
Type of particle (player, 
other, both) the learner 
intended to move 

0.920 

Same as Last 
Target 

The learner intended to 
move the same target as 
the last action 

0.869 

Intended strategy: 
Move toward goal 

The learner intended to 
move the player particle 
toward the goal 

0.809 

Intended strategy: 
Stop/slow down 

The learner intended to 
stop or slow the motion of 
the player particle 

0.720 

Intended strategy: 
Keep player path 
clear 

The learner intended to 
move non-player particles 
to keep the path of the 
player particle clear 

0.819 

Intended strategy: 
Keep goal clear 

The learner intended to 
move non-player particles 
to keep the goal clear 

0.832 

Intended strategy: 
Buffer 

The learner intended to 
create a buffer between 
the player and other 
particles to avoid collision 

0.772 

Learner intentions are judged based not only on their screen 
actions, but also audio commentary and mouse over behaviors.  
Often players hold their mouse over spots, ready to click if 
needed, providing visible clues of their intended path. While not 
directly visible in the clickstream data, these behaviors are 
observable in video and aid interpretation. 

The strategies identified through video analyses may provide 
evidence of players’ implicit understanding of the mechanics 
related to Newton’s first and second law. When a player uses a 
Float strategy, particularly when accompanied by a mouseover 
trailing along with the particle, the player is aware that an external 
force is not needed to keep the particle moving at a constant speed 
(Newton’s First Law). Similarly, as evidence of an implicit 

understanding of Newton’s Second Law, we are examining 
whether learners click more times when they are targeting 
particles of greater mass than they do of particles of lesser mass.  

4. BUILDING AUTOMATED DETECTORS 
OF STRATEGIC MOVES  
For each player action, a set of 66 features of that action are 
automatically distilled and aggregated at the click level to map to 
the labels provided by the video coders [6]. Classifiers for each 
code were created within RapidMiner 5.3 that map the student 
behaviors in the features distilled from the clickstream data to the 
training labels, using J48 decision trees with 4-fold cross-
validation at the student level. (Kappa and A’ values in Table 2).  

Table 2: Detector Kappa and A’ values 
Code Kappa A’ 

Float 0.727 0.914 

Intended strategy: Move toward goal 0.759 0.914 

Intended strategy: Stop/slow down 0.522 0.804 

Intended strategy: Keep player path clear 0.864 0.968 

Intended strategy: Keep goal clear 0.772 0.943 

Intended strategy: Buffer 0.756 0.928 

5. CONCLUSIONS 
During the playtesting of Impulse, we saw several strategic moves 
that are consistent with an understanding of Newtonian 
mechanics. Using the codes as ground truth, we are attempting to 
identify patterns in the clickstream data that predict players’ 
strategic moves. These are early steps in developing an evidence 
model of implicit physics knowledge demonstrated via gameplay. 
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ABSTRACT
Modelling student knowledge is a big challenge for online
learning environments(OLEs). One of the state-of-the-art
models is the Bayesian Knowledge Tracing (BKT), which es-
timates the probability of a student having learned a knowl-
edge concept (KC) based on observable item answers over
time. Nevertheless, BKT is based on a few assumptions that
some real-world applications often struggle not to break,
such as having homogeneous items presented to students in
homogeneous contexts. Amongst other challenges pointed
hereby, this poster focuses on the problem of having hetero-
geneous learning contexts. An experiment estimates multi-
ple sets of parameters, one per learning context. The dataset
is sampled from GeekieLab, an adaptive learning platform
that is being used by more than 1 million Brazilian stu-
dents.

Keywords
Bayesian Knowledge Tracing, Student Knowledge Modelling,
Online Learning Environments, Adaptive Learning

1. INTRODUCTION
An online learning environment can be defined as a place
where students can interact with content and/or people in
order to achieve learning goals such as diagnosing knowledge
gaps, learning new KCs and practicing those already known.

One major challenge in an OLE is how to measure the la-
tent proficiency of each student in a given KC at some point
in time. One could try to measure whether the student
learned a KC or not, while other could try to measure how
much the student knows of it. In both cases, the proficiency
model should be continuously updated, that is, every inter-
action between the student and the platform might reflect
on his proficiency, and most recent observations should have
a stronger effect on calculating it. Finally, this model should
estimate the probability of a student answering correctly the
next item from some KC.

The BKT model[2] complies with the described requirements.
Nevertheless, it comes with the expense of holding a few
strong assumptions such as: (i) having a fine grained cur-
riculum with KCs as specific as possible and dense answers
data for each of them; (ii) providing homogeneous items
that are related to only one specific KC; and (iii) collect-
ing student answers from within homogeneous learning
contexts, among many other. These are a few challenges
that real-world tutoring systems face. This poster presents a
brief discussion on (iii) and how online environments might
not be able to hold this assumption.

2. HETEROGENEOUS CONTEXTS
The contextual effect on the BKT model has been broadly
discussed in other studies, such as in [1] and [3]. In this
poster, contexts refers to heterogeneous environments focus-
ing on different stages of student learning, such as diagnos-
ing, teaching and reinforcing.

The study case chosen for this paper is the online learning
environment of GeekieLab[4], an online adaptive learning
platform used by 1+ million Brazilian students. GeekieLab
is a good example to illustrate the challenge discussed in
this poster, since it is comprised of heterogeneous contexts
where a student can answer to items. Some of its contexts
are the following:

C1 lecture short questions alternated with videos and slides;
C2 exercise list set of questions without deadline, mainly

for practice purposes;
C3 assessment set of questions with short time-to-live. Exam-

like environment accounted for grading.

2.1 Why should parameters be different?
As described in [2], BKT model estimates the probability
p(L) of a student having learned a KC by observing stu-
dent answers based on a set P of the following parame-
ters(probabilities):

p(L0): student having learned a KC a priori;
p(Transition): transition from unlearned to learned a KC

between observations;
p(Guess): unlearned state, but answer is right;
p(Slip): learned state, but answer is wrong.

At first, a BKT application would estimate only one set
PC1,2,3 of these 4 parameters for all observations of some
KC. However, it looks more reasonable to update p(L) with
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specific sets of parameters values (PC1 , PC2 and PC3) while
observing item answers collected from their respective con-
texts C1, C2 and C3. In order to investigate that, we will
estimate parameters for each of the 3 contexts by training
the model only with their respective observations.

3. EXPERIMENT
This experiment focuses on analyzing how parameters might
vary among contexts. Upfront, the following hypotheses are
proposed for further reflection:

H1 regarding p(S), it may get higher in C3 since items get
more tricky and due to the pressure of an assessment;

H2 concerning p(G), it may get higher in the case of a
context where items provide easily detectable distrac-
tors. It could also increase in case one could have just
watched a video or hint in C1;

H3 p(T ) might be higher for C1 since a student is presented
with an item resolution/hint in between two items.
Moreover, assuming a student is supposed to learn a
KC before the assessment (C3), p(T ) might be lower
within the latter;

H4 assuming students face the contexts in the sequence C1

lecture, C2 exercise list and C3 assessment, we expect
to have an increasing p(L0) throughout these them.

Based on those 3 contexts, a simple experiment was run
aiming at testing the previously stated hypotheses. Further
information on the data sample, estimation algorithm and
method can be found in the following subsections.

3.1 Material
A sample has been extracted from GeekieLab[4]. 4 KCs
were selected, each from a different domain field (Math, Por-
tuguese Language, Natural Sciences and Human Sciences).
For each of these 4 we have a data sample of 100k answers,
in average ∼3 answers per student, and 1 answer per item.
Parameters estimation were run with BKT Brute Force al-
gorithm shared by authors from [1].

3.2 Method
For each of the 4 KCs, its ∼100k observations were divided
into C1, C2 and C3. BKT parameters were estimated per
context and a full training set containing data from all con-
texts C1,2,3 was used for training another set of parameters.
All the search space, for earch parameter, is discretized by
0.01. Only p(S) and p(G) are upper-bounded by 0.1 and
0.3, respectively.

4. RESULTS AND DISCUSSION
Table 1 presents the results for estimating parameters per
KC per context.

Results seem to be inconclusive for evaluating H1 and H2.
On most scenarios, p(S) and p(G) are getting to the upper
bound defined by the brute force implementation, intended
to avoid model degeneracy. There are many possible causes
to this symptom, such as noisy data from students answering
without thinking fastidiously or items with easily recogniz-
able distractors.

H3 is somehow reflected in lecture (C1) for KC1 and KC3,
although KC2 does not indicate the same. KC4 can be
discarded since there was only one item answer per student
within C1. This analysis draws attention to how important
it is to filter answers for a KC from a student without some

context p(L0) p(T) p(S) p(G) obs.
C1 0.06 0.20 0.1 0.3 36k

KC1 C2 0.46 0.03 0.1 0.3 36k
C3 0.34 0.15 0.1 0.20 36k

C1,2,3 0.27 0.13 0.1 0.29 109k
C1 0.77 0.041 0.1 0.3 36k

KC2 C2 0.33 0.001 0.1 0.3 35k
C3 0.33 0.231 0.1 0.3 37k

C1,2,3 0.58 0.001 0.1 0.3 109k
C1 0.73 0.09 0.1 0.3 36k

KC3 C2 0.46 0.02 0.1 0.3 35k
C3 0.13 0.08 0.1 0.3 36k

C1,2,3 0.47 0.04 0.1 0.3 107k
C1 0.79 0.001 0.02 0.16 8k

KC4 C2 0.51 0.18 0.1 0.3 36k
C3 0.21 0.54 0.1 0.3 21k

C1,2,3 0.54 0.24 0.1 0.3 65k

Table 1: BKT parameters estimation per context(C)
for each knowledge concept(KC).

minimum number of answers, in case there should be some
minimum value.

H4 was rejected. Actually, it seems to be the contrary for
KC2, KC3 and KC4. C1 has higher p(L0) than C2, which in
turn has higher p(L0) than C3. This might be caused since
students have better performance in C1, tending to allow
p(L0) increase, indicating that the student already learned
some KC.

A future investigation concerning this experiment scope could
involve defining some heuristic for filtering and preprocess-
ing the training dataset and executing this analysis on a
larger dataset, with more answers per student, in order to
achieve better results.

5. CONCLUSION
In general, results show that every context might need an
exclusive set of parameters. In order reinforce this conclu-
sion, an extension to the current experiment would be to
evaluate model accuracy on estimating the correctness of
the next answer for estimated parameters per context. This
was left out of this poster due to size constraints.

All conclusions made hereby are based on simple criteria, but
they manage to illustrate one of the challenging questions
that one might face when implementing BKT.
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Abstract 
The research project EVELIN aims at incrementally improving 
the quality of software engineering education. To this end, soft-
ware engineering courses and their contents regularly need to be 
evaluated in order to provide meaningful feedback to lecturers 
with on the quality and its evolution. While statistical analyses of 
evaluation questionnaires with closed scaled questions can easily 
be done by most evaluation tools, open questions still need to be 
analyzed manually. Computer-based approaches to text analysis 
are still in their infancy and do not take advantage of software 
engineering domain knowledge. Although students’ feedback is 
important, it is only one data source among many others such as 
transcribed interviews, exam statistics, or a course’s entire context 
information. We argue that the combination of these data sources 
– especially natural language ones – in conjunction with innova-
tive and semi-automated analysis techniques from, e.g., data 
mining and natural language processing will open up new oppor-
tunities for the improvement of software engineering courses. 

Keywords 

Software engineering education, multi-source analysis, natural 
language processing 

1. Introduction 
Software engineering offers a huge variety of methods and tools 
to design and realize complex software systems. Yet, software 
development also requires skilled individuals. Therefore, software 
engineering education and its improvement are paramount for 
being able to develop complex software systems successfully. 

The research project EVELIN (Experimental improVEment of 
Learning software engINeering) tries to clarify which competen-
cies students should possess and which didactical approaches are 
suitable to foster particular competencies. This includes continu-
ous evaluation, reflection, and iterative adjustment and enhance-
ment of software engineering courses. 

Even though students’ feedback – e.g. obtained by standardized 
questionnaires – is important for measuring educational quality, it 
is not the only data source to be considered. On the one hand, 
there are many statistical factors, like pass rate of a course, aver-
age, median, and standard deviation of exam grades, and scores of 

a given exam question. On the other hand, there are additional 
semantic data sources such as interview transcripts of graduates 
and industry partners, knowledge bases, or free-text feedback 
reports from students. It is also necessary to observe the evalua-
tions’ context with respect to positive or negative impact, as de-
scribed in [2]. 

We aim at creating meaningful insights into the quality and quali-
ty evolution of a course by combining currently isolated heteroge-
neous data sources such as the ones mentioned above. In particu-
lar, we are searching for better ways to analyze and integrate 
natural language data sources for the iterative improvement of 
software engineering courses. 

2. Related Work 
Data mining approaches like [8] only focus on scaled questions 
when trying to find correlations between students’ feedback and 
the lecturers teaching performance. Yet, they tend to neglect 
qualitative data sources. 

Recent approaches like [1] try to analyze text-based questions, 
e.g. by determining the number of positive and negative state-
ments related to different teaching aspect categories. While the 
classification of positive and negative statements is done automat-
ically, the assignment to the corresponding teaching aspect cate-
gories is done manually. 

Learning management systems may offer additional statistical 
data about students, their demographic background, their learning 
behavior, and engagement [5]. Especially in combination with 
online quizzes and exams, very detailed analytics are possible. 

3. Methodology 
It seems to be insufficient to focus only on a single data source 
like standardized questionnaires or drop-out quotes in order to 
measure the quality of a given course, especially when multiple 
additional sources are already available. 

Due to legal and privacy reasons and our focus on in-situ courses, 
we can neither observe individual learning process of students at 
this level, nor do we have access to their personal data and social 
background, even though many promising research attempts on 
the latter are under way, trying to integrate data from social media 
platforms in the course evaluation. 

Nevertheless we have access to exam questions and overall statis-
tical parameters on results. Still, these data are very useful for 
analyzing the success of a course because exams and their ques-
tions may be linked to specific teaching goals and competencies. 

Questionnaires and interview transcripts of different stakeholders 
are around for many years and evolve slowly, but constantly over 
time. Questionnaires contain a variety of open and scaled ques-
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tions about the lecturer, the teaching method, the course material, 
the workload imposed on students, and possible improvements. 
Interviews aim at uncovering which competencies and skills are 
expected from students. These data sources are anonymous but 
can be attributed to the same student across multiple courses or 
project feedbacks by using an alphanumeric key. This offers the 
possibility of generating trend analyses over an extended period of 
time while respecting the students’ privacy. Since a couple of 
semesters, we also collect post-mortem feedback reports of stu-
dents in a software engineering capstone project. These short 
essays contain individual experiences including personal difficul-
ties they encountered, gains, and feelings. 

While common evaluation tools support statistical evaluations of 
scaled questions, only a few approaches like [1] and [7] tackle the 
computer-based evaluation of open questions. Qualitative feed-
back can be transformed into quantitative feedback by analyzing 
the relationships between statistical data and students’ written 
responses [9]. 

Generic algorithms for text mining use word statistics and word 
correlations to identify meaningful propositions. Due to our focus 
on software engineering education, better results and a broader 
range of applications will be likely when domain knowledge is 
actually incorporated as guidance into text mining. To provide this 
domain knowledge we need to combine the terminology of soft-
ware engineering with the terminology of educational processes, 
forming a suitable ontology for our needs. Promising sources of 
domain knowledge are – among many others –SWEBOK [3], the 
IEEE glossary of software engineering terminology [6], as well as 
ontologies for aspects like teaching programming. Manual or 
semi-automatic reviews of lecture notes should also be considered 
as additional knowledge source [4]. 

Even though the combination of multiple data sources – especially 
natural language based ones – is recommended and necessary to 
obtain a complete picture of a course, quantitative scores taken 
alone should not be underestimated and contain useful infor-
mation about the relationships between students’ feedback and 
teaching performance as described in [8]. 
Inspired by the approach described in [1], we want to automatical-
ly identify positive and negative statements of text-based feedback 
answers and assign them to a suitable category in the educational 
context. As a basis, the predefined categories of [1] may be used, 
namely Course in General, Instructor, Assessment, Material, 
Delivery, Equipment, Program, Schedule, and Teaching. While 
categories are assigned manually in [1], we want to automate this 
step by using available domain knowledge of the specific course. 
At least we want to automatically suggest a category by using 
domain knowledge – e.g. in form of a software engineering educa-
tion ontology – and provide the ability of learning from manual 
assignments, especially when the system was not able to automat-
ically suggest a suitable category. These cases may be also inter-
esting with respect to revealing new rating aspects that were 
neglected or overlooked before. A fine-grained hierarchical cate-
gorization system based on the mentioned ontology may support a 
drill-down analysis, helping to find causalities for successes or 
failures, when necessary. 
The categorized positive and negative statements may be used to 
supplement, validate, or even automatically adjust the statistical 
information gained from closed questions. 

In addition, the detection of statements in feedbacks and exams 
that deviate significantly from the average or median can be very 
useful on multiple levels of the course evaluation. 

4. Summary and Future Work 
Teaching software engineering is difficult and needs to be contin-
uously improved to stay current. However, this requires careful 
analysis of a variety of data sources, many of which are in textual 
format. In this contribution, we analyzed the potential that lies in 
of available course evaluation data sources and outlined how these 
sources might be combined with each other to yield meaningful 
insights into the quality of a course. In particular, we sketch how 
data mining might help to automatize this process. 

In the future we will refine and realize our concepts. We will also 
consider designing our approach as generic as possible to be able 
to support other educational domains. 
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ABSTRACT 

We studied student learning in the MOOC “Mechanics ReView”, 

run on the edX.org open source platform as 8.MReV. We 

administered 13 conceptual questions both before and after the 

instructional period, analyzing the results using standard 

techniques for pre - post testing. Our students had a normalized 

gain slightly higher than typical values for a traditional course but 

lower than typical values for courses using interactive engagement 

pedagogy. All questions in the MOOC, including the pre-post test 

questions were analyzed using Item Response Theory (IRT). Both 

the normalized gain and the IRT results showed that initially low-

skill cohorts learned as much as all cohorts with higher initial 

skills. We were able to compare MIT freshmen taking an on-

campus course with the 8.MReV MOOC students because many 

common problems were administered to both groups. The 

freshmen were considerably less skillful than the 8.MReV 

students and showed no signs of closing the gap with the more 

experienced 8.MRev students while covering topics in common 

with the MOOC. 

Keywords 

MOOC, edX, Item Response Theory, learning gain 

1. INTRODUCTION 
The recent release of hundreds of free online courses in MOOCs 

(Massive Open Online Courses) by organizations such as 

coursera.com, edX.org, and udacity.com has been so dramatic that 

an article in the New York Times proclaimed 2012 the “Year of 

the MOOC” [4]. A central question remains: “is there learning in 

MOOCs?” 

In this paper, we report an initial study of learning in a MOOC, 

8.MReV – Mechanics ReView – offered from June 1 to August 

27, 2013 on the open source platform edX.org. The course 

materials were written by the RELATE education group 

(REsearch in Learning, Assessing, and Tutoring Effectively, 

http://RELATE.MIT.edu). This is a “second course” in 

introductory Newtonian Mechanics, designed to help students 

familiar with the topic at a high school level gain a more expert-

like perspective on the subject. In addition, we made a concerted 

effort to attract high school physics teachers to enroll in our 

course. 

We used two major approaches to evaluate learning in a MOOC: 

(1) a pre- and posttest analysis on an identical set of, mostly 

conceptual, questions [5] and (2) an analysis of the overall and 

topic-by-topic performance using Item Response Theory (IRT). 

Given that the on-campus students also benefitted from four hours 

of instruction in a flipped classroom, we addressed the question of 

whether their skills increased week by week relative to those of 

the MOOC students. 

2. DATA 

2.1 Description of MOOC: 8.MReV 
The 8.MReV course grew from a short Mechanics ReView course 

run at MIT, which used an online eText and pre-class homework 

questions. For the MOOC, these online materials were augmented 

by additional problems and weekly quizzes. The 8.MReV course 

studied here involved was delivered via the edX.org platform and 

in the summer of 2013 with both general and teacher-targeted 

publicity. The 1080 students who attempted more than half of the 

problems were included in this study. 

2.2 Description of On-Campus Course: 8.011 
The on-campus course, 8.011, is the spring version of 

Introductory Newtonian Mechanics at MIT. This subject, together 

with the subsequent Electricity and Magnetism course, are 

required of all MIT graduates, and most take it in their first 
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semester. Students who earned less than a C in mechanics course 

required to retake the course before moving on to Electricity and 

Magnetism; these students make up about 80% of the population 

of 8.011. In Spring 2013, there were 47 students in 8.011, the first 

time the online segment of the course was run on the edX.org 

platform rather than LON-CAPA. Of these 47 students, 35 

attempted more than half of the online problems. These 35 

students were used in this study. 

3. Pre-Post Testing in the MOOC 
The pre- and posttests consisted of 15 questions, three of which 

came from the Mechanics Baseline Test [3] and four were from 

the Mechanics Reasoning Inventory [4]. These fifteen questions 

focused on conceptual knowledge more heavily than algebraic 

ability. The results were analyzed in terms of the fractional 

reduction in the number of incorrect answers on the pretest as 

measured by the posttest. This quantity is referred to as the 

normalized gain by Hake [1].  

4. Item Response Theory (IRT) 
IRT places students and items on the same scale, taking into 

account a student’s specific performance on each item [2], even 

when students do not take the same set of items. Each item’s 

difficulty and discrimination is taken into account. IRT stands in 

contrast to classical test theory whose unit of analysis is the entire 

test, usually graded by the total number of items correct. 

5. PRE AND POST TEST RESULTS 
The pre-posttest analysis was performed on several sets of 

questions, here we will report on two: (1) six questions involving 

force and motion that could be compared with Hake’s study [1] 

and (2) five questions on more advanced topics. 

Traditional analysis of pre-post testing requires students to have 

done all questions in that set on both tests, which limits the 

number of students in each cohort. The IRT-based pre to posttest 

change was a statistically significant increase for the 579 students 

who took at least 7 pre and posttest items. 

We observed learning as measured by normalized gain that are 

greater than the traditional courses studied by Hake [1] (0.23) and 

less than the interactive courses (0.48). While both of our gains, 

0.30 and 0.33 (+/-0.02) are closer to the traditional on-campus 

courses, they lie above all of the 14 traditional classes studied by 

Hake, suggesting that our students learn conceptual topics slightly 

better than in a traditional, lecture-based, class. When we 

examined the normalized gain for various cohorts, it is significant 

that we saw no cohorts significantly below or above the 

normalized gain for the whole group. This certainly should allay 

concerns that less well prepared students can’t learn in MOOCs.  

6. COMPARISON OF SKILLS BY 

COHORT 
The skill distribution for all 8.MReV students has a mean of 0 and 

a standard deviation of 1, for convenience. Using the same scale, 

the teachers have a mean of 0.39 and a standard deviation of 0.97. 

The on-campus 8.011 students’ skill averaged about one standard 

deviation below (-1.05) the overall average in 8.MReV and had 

less variation with a standard deviation of 0.50. In retrospect, this 

may not be surprising as the average 8.MReV student is better 

educated, older, and not juggling three or four other MIT courses. 

We compared the topic-by-topic skills of various cohorts: 

teachers, on-campus students, strong background in mathematics, 

for example. In this analysis we were not looking at their absolute 

skills, which we knew to be different, but rather the pattern of the 

change in skills from one topic to the next. We wanted to know if 

perhaps a weaker cohort in terms of their overall skill, showed 

marked improvement throughout the course, for example. 

However, none of the cohorts showed a significant linear 

improvement across the topics.  

7. CONCLUSIONS 
It is also important to note the many gross differences between 

8.MReV and on-campus education. Our self-selected online 

students are interested in learning, considerably older, and 

generally have more years of college education than the on-

campus freshmen with whom they have been compared. The on-

campus students are taking a required course and also had many 

ways to obtain help on the problems in addition to four hours of 

highly interactive class time. Moreover, there are more drop-outs 

in the online course (but over 50% of students making a serious 

attempt at the second weekly test received certificates) and these 

may well be students learning less.  

In this MOOC, there was significant learning for the students 

studied here, in fact, slightly more than students in a traditional, 

lecture-based, on-campus classroom. It is also noteworthy that 

analyses of the pre-post testing using normalized gain and IRT 

approaches both provide evidence that students throughout the 

wide range of abilities in our course, including those of low 

ability, learn a comparable amount. 
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ABSTRACT 

Costs of educational measures and interventions have important 
real-world implications, made more pertinent when used at scale. 
Traditional measures of engagement (e.g., video and field 
observations) scale linearly, so that expanding from 10 classrooms 
to 100 can incur 10 times the cost. By contrast, the cost of 
applying an automated sensor-free detector of student engagement 
is independent of the size of the data set. While the development 
and validation of such detectors requires an initial investment, 

once this cost is amortized across large data sets, the cost per 
student/hour is quite modest. In addition, these detectors can be 
reused each year at minimal additional cost. In this paper, we 
provide a formal cost analysis of automated detectors of 
engagement for ASSISTments. 

Keywords 

Affective computing, sensor-free detection, ASSISTments, 
STEM, student engagement, cost-effectiveness 

1. INTRODUCTION 
Automated sensor-free detectors of student engagement are now 
available for several systems [3, 6], shifting the debate from 

whether this detection is possible to a discussion of the upper 
limits of its performance and generalizability (see [5]). Automated 
detectors have been used to drive interventions [1] and in 
discovery with models analyses [6, 8]. As researchers and policy-
makers seek to identify the teaching methods and online learning 
systems that promote greater engagement, studies at considerable 
scale have become a priority [2]. Unfortunately, this scale is often 
achieved at considerable cost. An alternate option is to use EDM 

models on log files. With appropriately validated detectors, 
engagement among large numbers of students can be gauged 
rapidly, and as students continue using the same learning system, 
extensive, individualized data can be applied to interventions and 
to long-term predictions through discovery with models.  

In this paper, we examine the cost of developing detectors of 7 
constructs of student engagement for ASSISTments, outlining 
current expenses and applications. We include a brief description 

of their applicability towards discovery with models research, a 
technique that leverages such existing models, substantially 

increasing their worth. 

2. ASSISTments 
Detectors in this study were developed for ASSISTments [7], a 
formative assessment system that provides scaffolded math 
instruction and targeted hints. ASSISTments was developed at 
Worcester Polytechnic Institute and is available to educators at no 
cost. Typically, students spend 1 regular class period per week 
using ASSISTments, and some also use it for homework [3]. 
Currently, approximately 60,000 students use ASSISTments in 

schools throughout the Northeastern United States.  

3. Methods 

3.1 Overview of Detector Construction 
For this study, we consider the cost of producing detectors for 7 
different constructs, including 4 affective indicators of 
engagement (boredom, confusion, engaged concentration, and 
frustration) and 3 behavioral indicators of engagement (gaming 
the system, off-task behavior, and carelessness). As reported in 
previous research, different methods were used to obtain the 
ground truth labels used to develop these detectors. 

For the 4 affective detectors and for 2 of the behavioral detectors 

(gaming the system and off-task behavior), ground truth labels 
were generated by BROMP-certified field observers [4]. 
Observers spent 379 hours in field, obtaining 5,564 observations 
of 590 students at 6 different schools. These observations were 
then used to train separate detectors for each construct, each of 
which was cross-validated at the student-level to ensure 
generalizability to new populations (e.g., [6]). Research shows 
that rural students’ affect manifested differently in their 

interactions with ASSISTments compared to urban and suburban 
students, so affect detectors were constructed to reflect these 
demographic differences [5].      

The construction of the carelessness detector was different than 
the other six detectors as no fieldwork was required. Instead, 
programmers used Bayesian Knowledge Tracing (BKT) 
algorithms to calculate Contextual Slip (e.g., [1]). Each time a 
student makes an incorrect answer on a problem, the probability 

that a student is making a careless error is calculated based on his 
or her previous performance on the same skill [8].   

3.2 Calculation of Cost 
Two major sources of funding were used to create the 
ASSISTments detectors. The first was a National Science 

Foundation award to the Pittsburgh Science of Learning Center 
for $100,000, used to develop initial detectors for ASSISTments 
and 4 other systems.  The second, a grant from the Bill & Melinda 
Gates Foundation for $277,044 funded further enhancement and 
validation of the ASSISTments detectors and models for 2 other 
systems. Roughly, this means that the initial investment for cross-
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validated models of all seven constructs in ASSISTments (also 
tested across 3 populations) totaled $117,348 ($16,050 per 
construct or $7,823 per detector). A list of these detectors, their 
algorithms, and their performance metrics are provided in Table 1. 

 

Table 1. Table captions should be placed above the table 

 

 

However, since opportunities to apply both interventions and 
discovery with analyses are predicated on the number of labels 
(not just the number of detectors), the cost per label is perhaps a 

better indicator of the value of this research. At present, these 
detectors have been applied to 231,543 hours of ASSISTments 
data produced by 54,401 students. For BROMP-trained detectors, 
a label has been applied to every 20 seconds of interaction within 
the system (41,677,740 intervals x 6 constructs = 250,066,440 
labels), and carelessness labels have been applied to every 
problem incorrectly completed during that time (3,163,616 
labels). This puts the current cost per label well under 1 penny 
($0.00046/label), a price that will continue to drop over the years 

as these detectors are applied to new data.     
 
The cumulative cost per student/hour, a calculation important to 
allocating financial resources in education, is also extremely low 
($1.97) and becomes even lower when calculated as a cost per 
construct ($1.97/7 = $0.28). By comparison, even if we 
(incorrectly) assumed a single observer, paid the 2014 federal 
minimum wage of $7.25/hour, could replicate the granularity of 

this data, the cost would top $1.6 million. In reality, the minimum 
rate of a trained observer is likely closer to $25/hour (plus 
approximately 37% in benefits), totaling almost $8,000,000, and a 
1-1 coder-student ratio would be needed. Such conditions would 
likely destroy the value of any data collected since classroom 
conditions would be so disrupted as to make any data 
meaningless, and using video coding to attempt to replicate this 
level of granularity would incur even further expenses. 

4. DISCUSSION/IMPLICATIONS 
Cost is not the sole criteria for evaluating educational research, 
but it is a necessary consideration when developing resources to 
be implemented at scale. In this report, we have discussed the 
costs involved in developing detectors for 7 measures of student 

engagement, demonstrating that their relative cost is quite low, 
particularly when amortized across the use of the detectors to 
label data. These costs will drop further still in the coming years. 

Further research with these detectors demonstrates the long-term 
predictive prognostic power of these constructs, which can predict 
standardized test scores [6] and college attendance several years 

later [8], showing the importance of this granular data. Currently, 
we are working to make these predictions more accessible to 
educators, providing them with actionable reports about who most 
needs intervention and which student behaviors are most 
problematic. As such, these models are likely to be of value both 

for research and for practice, and as these detectors scale easily, 
interventions based on them will also.  
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Detector Algorithm Kappa A' r

Boredom (Urban) Jrip 0.23 0.6 na

Boredom (Rural) K* 0.24 0.7 na

Boredom (Suburban) REPTree 0.19 0.7 na

Confusion (Urban) J48 0.27 0.7 na

Confusion (Rural) JRip 0.14 0.6 na

Confusion (Suburban) REPTree 0.38 0.7 na

Engaged Concentration (Urban) K* 0.36 0.7 na

Engaged Concentration (Rural) REPTree 0.37 0.7 na

Engaged Concentration J48 0.27 0.6 na

Frustration (Urban) REPTree 0.29 0.7 na

Frustration (Rural) JRip 0.2 0.6 na

Frustration (Suburban) REPTree 0.17 0.6 na

Gaming the System K* 0.37 0.8 na

Off-Task Behavior REP-Tree 0.51 0.8 na

Carelessness Linear na na 0.50
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1. INTRODUCTION
In this paper, we take a new look at an old problem of analyzing
course evaluation data. We present an information-theoretic study
to characterize courses whose ratings have high entropy, i.e., those
which some classmates rate highly and some poorly. Our data set
comes from the Engineering faculty of a large Canadian university,
and, to the best of our knowledge, is an order of magnitude larger
that those analyzed in previous work (see, e.g., [1, 2, 3]). After re-
moving evaluations with fewer than 15 responses, we have 257,612
student evaluations of 5,740 undergraduate courses taught by 2,112
distinct instructors from 2003 till 2012.

Table 1 lists the 17 questions on our evaluation forms; we will refer
to them by their abbreviations (e.g., Q1). Q1 through Q9 refer to
teaching attributes and Q11 through Q16 refer to course attributes.
Q10 and Q17 are the overall appraisals. Each question has five pos-
sible answers from A (best) to E (worst), where an A is assigned
100, B is 75, C is 50, D is 25 and E is zero. For each question, we
have the frequencies of each possible answer and an average. We
also have the course level, semester, and an anonymized instruc-
tor ID. Additionally, we obtained the following attributes by scrap-
ing online course calendars: class size, course type (compulsory or
elective), time of lecture (we define morning classes as those which
start before 10:00, day classes as those which start between 10:00
and 17:00, and evening classes as those which start after 17:00),
and the number of lectures per week (one three-hour lecture, two
90-minute lectures or three one-hour lectures). Finally, we derived
the following attributes for each course offering: teaching experi-
ence of the instructor (total number of times he or she taught in
the past), attendance (the number of evaluations received divided
by course enrolment–i.e., we assume that attendance on the evalu-
ation day is a good indicator of average attendance throughout the
course), and specific teaching experience (the number of times this
instructor has taught this particular course).

2. RESULTS
For each course evaluation, we compute the entropy of each of the
17 questions as follows. Let pA, pB , pC , pD and pE be the rela-
tive fractions of the students who chose options A, B, C, D and E,

Table 1: Questions on course evaluation form
Q1 Instructor’s organization and clarity
Q2 Instructor’s response to questions
Q3 Instructor’s oral presentation
Q4 Instructor’s visual presentation
Q5 Instructor’s availability and approachability outside of class
Q6 Instructor’s level of explanation
Q7 Instructor’s encouragement to think independently
Q8 Instructor’s attitude towards teaching
Q9 Professor-class relationship

Q10 Overall appraisal of teaching quality
Q11 Difficulty of concepts covered
Q12 Workload required to complete this course
Q13 Usefulness of textbooks
Q14 Contribution of assignments to understanding of concepts
Q15 How well tests reflect the course material
Q16 Value of tutorials
Q17 Overall appraisal of the course

Table 2: Average entropy of each question
QID Avg QID Avg QID Avg QID Avg
Q1 1.39 Q2 1.49 Q3 1.18 Q4 1.5
Q5 1.43 Q6 1.29 Q7 1.63 Q8 1.25
Q9 1.3 Q10 1.47 Q11 1.57 Q12 1.5
Q13 1.95 Q14 1.72 Q15 1.66 Q16 1.92
Q17 1.63

respectively. Then the entropy is

−pA log2 pA−pB log2 pB−pC log2 pC−pD log2 pD−pE log2 pE .

Higher entropy means that there is more variability in the responses
among the students in a given class.

We start by calculating the average entropy of each question, shown
in Table 2. According to the t-test, Q17 has a statistically signif-
icantly higher average entropy than Q10, meaning that classmates
tend to agree more on teaching quality than overall course quality.
Of the teaching-related questions, quality of oral presentation (Q3)
has the lowest entropy, which makes sense: good or bad speakers
are uniformly perceived as such. Encouragement to think indepen-
dently (Q7) has the highest entropy, which also makes sense since
different things may make different students think. Of the course-
related questions, usefulness of textbooks (Q13) and usefulness of
tutorials (Q16) have the highest entropy. This is likely due to the
different learning styles of different students: some learn on their
own and/or from lectures, while others need a good textbook or ef-
fective tutorials. Workload (Q12) has the lowest entropy: a heavy
course is perceived as heavy by the majority of students.
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Table 3: Regression results
Q10 RMSE Q17 RMSE

Related survey attributes 0.15 0.24
All survey attributes 0.15 0.19

All survey attributes + other attributes 0.15 0.19

2.1 Predicting the Entropy of Q10 and Q17
We now turn our attention to predicting the entropy of Q10 and Q17
using linear regression. We compute the Root Mean Square Error
(RMSE) of three models: First, we predict the entropy of Q10 and
Q17 using only the entropy of the teaching or course-related sur-
vey attributes, respectively (“Related survey attributes”). Next, we
use the entropy of all survey attributes (“All survey attributes”), fol-
lowed by adding the values of other attributes we collected such as
class size, instructor experience, etc. Results are shown in Table 3.

The entropy of teaching quality ratings (Q10) is explained by the
entropy of the teaching-related survey questions (Q1-Q9); adding
other attributes to the model does not improve the RMSE. The en-
tropy of response to questions (Q2) and organization and clarity
(Q1) have the largest regression coefficients of 0.28 and 0.27, re-
spectively. Thus, classmates disagree on the overall teaching qual-
ity largely because they disagree on the organization and clarity of
the instructor or his or her effectiveness in responding to questions.

The entropy of the overall course appraisal (Q17) can be explained
by the entropy of all the survey questions, both teaching-related and
course-related (using only the course-related questions has a higher
RMSE, showing that teaching quality significantly influences the
overall course appraisal). The entropy of usefulness of assignments
(Q14) has the largest regression coefficient of 0.35, whereas the
entropy of usefulness of tutorials (Q16) has the smallest coefficient
of 0.01. This suggests that if classmates disagree on the overall
course appraisal, they do so because some enjoy working on the
assignments but others do not. On the other hand, disagreement in
the rating of tutorials does not lead to disagreement in the overall
rating of the course. One possible explanation is that students who
do not find tutorials useful may choose not attend them, but if they
like other aspects of the course, they will still rate it highly.

As for the other attributes, class size is positively correlated with
the entropy of Q10, and teaching experience is slightly negatively
correlated with the entropy of Q10 and Q17. Interestingly, optional
courses have higher entropy of teaching quality, but lower entropy
of course quality. We hypothesize that students who take an op-
tional course are interested in the material and may rate the course
uniformly well regardless of how it turns out; at the same time,
some of these students may rate the instructor more highly than
they normally would have, just because they liked the topic of the
course, while others may rate the instructor normally. In terms of
the time of lecture, evening classes have higher entropy of their ap-
praisals. We hypothesize that some students who attend evening
classes may sit in the back and do their homework instead of pay-
ing attention, and may give lower ratings; however, students who
make an effort to wake up early and attend morning classes tend
to pay attention and provide more consistent feedback. Finally, in
terms of the course level, the entropy of the overall course appraisal
is lower in first year, and then it increases significantly in the sec-
ond and third years, and drops in the fourth year. The increase from
first year might be because as students take more courses, they de-
velop a better idea of what they like and do not like in a course, and
as a result they express stronger opinions. The fourth-year drop is

likely due to the fact that many fourth-year courses are optional,
which we found to have lower course appraisal entropy.

2.2 Detailed Analysis
Our entropy analysis does not fully capture the polarity of opinions
expressed by different students in the same class. For example, a
course appraisal with 50 percent A’s and 50 percent B’s (and no
other ratings) has the same entropy as an appraisal with 50 percent
A’s and 50 percent E’s (and no other ratings). Clearly, the latter
is more “controversial” as some students love it and others hate it.
Motivated by this observation, we now further investigate how the
responses to Q10 and Q17 are distributed over the five possible op-
tions. In general, we found that highly-rated courses have low en-
tropy (mostly A’s and perhaps a few B’s) but poorly-rated courses
have high entropy, meaning that they may have a non-zero num-
ber of all five possible responses. This suggests that good courses
and instructors are rated highly by the majority of students, but
mediocre ones may be rated highly or poorly, depending on the
student.

We informally define a teaching or course appraisal (Q10 or Q17)
with no gaps as one that has at least one of every possible option
(A through E). Intuitively, courses with no gaps elicit the most vari-
able opinions, ranging from best (A) to worst (E). Upon further in-
vestigation, we found that many courses rated between 50 and 60
contain no gaps, meaning that the average appraisal is C, but there
is also at least one A, B, D and E. More surprisingly, even some
courses rated as poorly as 20 have no gaps (some students liked
them), as do some courses rated as highly as 80 (some students
hated them)! One possible explanation for the former is that some
students in bad courses may not take the evaluations seriously and
they will simply choose the first answer for every question—which
happens to be A—so they can complete the survey as soon as pos-
sible and leave. If true, this means that the real average appraisal of
such courses is even lower than reported. For the latter, we hypoth-
esize that even highly-rated courses may have a handful of unhappy
students for various reasons.

Finally, there are no courses whose appraisals only contain A’s and
E’s, and no other ratings in between. However, there are 13 courses
whose teaching appraisals only have A’s, B’s and E’s, and no C’s
and D’s. The teaching quality scores of these 13 courses range
from 76 to 96. Thus, these are courses that obtained mostly A and
B ratings, with only a few E’s. Digging deeper, we noticed that the
lowest-rated questions for these courses are encouraging to think
independently (Q7) and how well test reflect the course material
(Q15); both of these contained many D’s and E’s. We hypothe-
size that these courses had good instructors but poorly-designed
tests (or perhaps unfairly-graded tests that did not reward indepen-
dent thinking); most students rated the instructor highly despite the
problems with tests, but a few may have found these problems so
serious that they felt the instructor deserved to be rated poorly.
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ABSTRACT 

The Educational Data Mining (EDM) community has experienced 

many benefits from the open sharing of data. Efforts such as the 

Pittsburgh Science of Learning Center Datashop have helped in 

the development of learning data storage and standards in the 

educational community. In other fields, standards of comparison 

have been created through publication, sharing, and competition 

on identical datasets. This ability to share, compare, and grow as a 

field has proven to be a success. This paper presents a new and 

unique dataset, and shares it with the EDM community. Initial 

offline analysis results and secondary online analysis results are 

presented as benchmarks for comparison by future researchers. 

Keywords 

Data mining, machine learning, data sharing, affect, cognition 

1. INTRODUCTION 
The Army Research Laboratory (ARL) Learning in Intelligent 

Tutoring Environments (LITE) Lab has an interest in Intelligent 

Tutoring Systems (ITS) research, and has developed the 

Generalized Intelligent Framework for Tutoring (GIFT) [10] as an 

architectural output for research. GIFT is composed of several 

interoperable modules for the communication of sensor, learner, 

instructional, and performance information, with projects 

involved in each area. As part of a project involving sensors and 

learner data, an interesting and unique dataset was collected. 

The purpose of this work is to share this collected data for the 

purpose of ITS development with the research community at 

large. Among the goals of the GIFT project is to be able to rapidly 

transition research into the community. Transition tools, authoring 

tools, and multiple programming language plugins have been 

constructed for this purpose, are curated to ensure overall stability 

and use, and are freely and publicly distributed [2].  The purpose 

of the research described as part of this data-sharing paper was to 

determine the effectiveness of low-cost sensors, and to test 

alternative modeling techniques. It is clear that this dataset can 

answer additional research questions of interest to the EDM 

community, and will be shared publicly at 

http://litelab.arl.army.mil/public.  

2. HARDWARE 
In total, measurements were collected via two 

Electroencephalography (EEG) systems (from Neurosky and 

Advanced Brain Monitoring (ABM)), a custom-made eye tracker, 

a Zephyr heart rate monitor, embedded Phidget pressure sensors 

within the chair, a Venier sonar sensor for distance from the 

computer, and emotional self-report measure. The self-report 

measure of EmoPro and the ABM headset have previously been 

validated to produce accurate measures of affective and cognitive 

states, respectively [5; 7]. A summary of the measures which these 

sensors produce is included in Table 1. Larger discussion on the 

relevance of each of these states to learning outcomes and 

validation of the baseline measurements is available in prior work 

[3; 4; 8]. 

Table 1. Summary of sensors used and states measured. 

Sensor Affective State Cognitive State 

ABM EEG*   
  

Attention, 

Engagement, 

Distraction, 

Drowsiness, Workload 
Neurosky EEG 

Eye-tracker   Attention, Drowsiness, 

Workload 

EmoPro* Anger, Anxiety, 

Arousal, 

Boredom, Fear, 

Stress 

Attention 

Heart Rate 

Monitor 

Chair Pressure 

Sensor (posture) 

Arousal, 

Boredom, 

Frustration 

 

Engagement, Flow 

Motion Detector 

(posture) 

* Indicates Ground Truth Measurement 

3. INITIAL ANALYSIS 
The Logistic Model Tree (LMT) method of analysis [9] was 

selected for classifier construction on this data from among a 

series of methods considered [8]. Ten-fold cross validation at the 

class level was used in an effort to avoid overfitting. The created 

trees were found to have a single node, rendering this method 

similar to logistic regression. The measure of Area Under the 

Curve (AUC) of the Receiver Operator Characteristic (ROC) [6] 

is used to evaluate overall model quality. In general, the AUC 

ROC method produces a value in the range [0,1], with 1.0 

representing perfect classification accuracy and 0.5 representing 

baseline levels. The overall finding is that there is significant 

room for improvement of generalized model quality, but that data 

trends are available to do so. These findings are summarized with 

Table 2 and Table 3. 

Table 2. Summary of which sensor data was used to create 

Initial Emotional Models 

Low-Cost 

Sensor 

EmoPro Measurements 

Anger Anxiety/Fear Boredom 

HR   X 

Eye Track    

EEG  X X 

Chair  X  

Distance  X X 

AUC ROC N/A 0.83 0.79 
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Table 3. Summary of which sensor data was used to create 

Initial Cognitive Models 

Low-Cost 

Sensor 

ABM Measurements 

Engagement Distraction Workload 

HR X X  

Eye Track    

EEG    

Chair X X X 

Distance X  X 

AUC ROC 0.80 0.81 0.82 

 

Later projects investigated a realtime signal approach to data 

processing for the classification of emotional states in realtime. 

There is some evidence that adaptable approaches among 

cognitive state data are able to model more accurately, but there 

remain few attempts to model states in this way [1]. Additionally, 

there is evidence that models created from bodily sensor data may 

fail generalization tests for reasons such as electrode drift, 

changes in default impedance, and other non-linear behavioral 

factors [1]. The core idea of this approach is that highly adaptable 

and individualized approaches to modeling would be better able 

to model emerging states at the student level. This was found to 

be true for affective measurements, but not for cognitive 

measurements (without further feature detection). 

The total of these efforts is the development of realtime 

algorithmic approaches which are able to classify with very little 

labeling information. These approaches can be compared side-by-

side to the binary classification, regression-based, logistic model 

trees created in the earlier study. Using methods for 

individualized realtime model construction on multiple 

individuals provides evidence to how well the model is likely to 

transfer to a new population, while having a comparison 

benchmark assures that it is possible to create a model at all. 

Attempts to model these cognitive states have thus far met with 

failure, while affective ones have been met with success [3]. There 

is interesting research in the improvement of the cognitive 

models, but this research line has been abandoned in exchange for 

other projects. 

4. CONCLUSION 
The dataset in this paper has been collected at expense to the 

Army, but is useful to a wider public. An initial project analyzed 

this dataset in order to determine if low cost sensors are able to 

mimic the performance of high cost sensors when supplemented 

with classification improvements. The finding was that they were 

able to, but that more work was needed in order to mimic the 

performance of the high cost sensors in a generalized fashion with 

the data available. 

A secondary look at this dataset investigated a different research 

question. This study sought to examine whether highly 

individualized (not generalized) affective/cognitive models could 

be created with the same data available to previous classifiers. The 

answer to this question was that it could be done for affective 

models, but not be done with the raw cognitive data alone. Further 

work would need to be done to develop filters, feature extraction, 

and other, differing, methods of processing for these models. 

Future efforts in this line of research will likely have to abandon 

the limitation on the initial streams of data through the 

development of feature detectors and other means of data 

processing. Future datasets for this line of research should look to 

include a checklist of features (Table 4) which would render it 

relevant to the learning problem area. 

Table 4. Checklist of features for Low Cost Sensor dataset 

(recommended for other studies) 

Does the dataset have… ? 

Relevant states to learning  

Ability to be transferred, without modification, to 

another domain of instruction 

 

Relevant population  

Relevant cost for classroom inclusion  

Labeled data  

Initial benchmarks for research comparison  
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ABSTRACT
Students’ solution processes can offer significant insight into
their misunderstandings. However, freeform solutions can
be difficult to interpret, leading many educational technolo-
gies to examine only students’ final answers or to structure
problem solving to make it more interpretable. We develop a
new approach using Bayesian inverse planning for diagnosing
algebra skills that interprets students’ step-by-step problem
solving, placing no restrictions on how students transform
equations to reach solutions. We formalize understanding as
several distinct skills, allowing us to identify the causes of
errors; for instance, arithmetic skills are separated from sys-
tematic misapplications of algebra rules. In simulation, the
algorithm recovers the true parameters of simulated learners
relatively accurately. Using human data, we show that the
algorithm can interpret over 98% of people’s actions and its
inferences about arithmetic skills are consistent with an as-
sessment of arithmetic ability in isolation. Our work demon-
strates that Bayesian inverse planning can successfully scale
to the space of algebra and provides new technical solutions
that may be relevant in other complex educational domains.

1. INTRODUCTION
The way that students approach and solve problems can
provide significant insights into their understanding. Class-
room teachers encourage students to “show [their] work,”
allowing them to gain insight into the students’ difficulties.
In principle, computers should be able to make such infer-
ences automatically, drawing fine-grained inferences about
students’ skills based on their choices about problem-solving
and the types of errors they make. However, many auto-
mated tutoring systems cannot interpret students’ worked
solutions. We focus on the case of teaching and remedi-
ating algebraic equation solving. Existing computer-based
systems for helping students learn algebra typically take one
of two approaches to assessing and modeling students’ alge-
bra understanding. They may structure the problems such
that students enter their work in discrete parts, with each
part corresponding to a different algebra skill; students gen-

erally must enter the current part correctly prior to moving
on. Alternatively, these systems may use only final answers
to infer understanding, with many systems solely checking
whether an answer is correct.

While it may be pedagogically useful in some cases to struc-
ture students’ behavior or interrupt their work to point out
errors, it should not be necessary to do these things to infer
students’ understanding from their worked solutions. We de-
velop a Bayesian inverse planning model that can diagnose
a student’s understanding from observing how she solves
linear equations. This approach allows data from multiple
problems to be incorporated into the diagnosis, and nat-
urally accounts for inconsistent behavior across problems.
The model extends existing work on algebra understanding
by using freeform problem solving behavior to diagnose what
a student understands and in what ways she misunderstands
without requiring that individual steps be correct before the
student continues.

2. MODELING ALGEBRA SKILLS USING
BAYESIAN INVERSE PLANNING

Bayesian inverse planning uses Markov decision processes
(MDPs) to model how people plan their actions in order to
achieve their goals, and infers a diagnosis of their under-
standing as a distribution over possible hypotheses [5]. For
linear equation solving, the hypotheses represent the possi-
ble misunderstandings that people might have about solving
algebraic equations and carrying out mathematical opera-
tions. By detecting patterns in a person’s equation trans-
formations, the algorithm can determine which hypothesis is
most likely to represent the person’s knowledge. To develop
a Bayesian inverse planning algorithm for linear equation
solving, we must define how to model equation solving as an
MDP and specify the space of possible hypotheses.

MDPs provide a decision-theoretic method for modeling se-
quential action planning (for an overview, see [7]). MDPs
are defined by the set of states that characterize the envi-
ronment in which the agent is acting and the actions the
agent may take. The transition model in an MDP defines
the conditional probabilities distributions p(s′|s, a) that the
next state will be s′ given that the current state is s and the
chosen action is a. The reward model then encodes the goals
and incentive structure for the agent; in this case, the goal
of solving an equation, with fewer actions favored over more
actions. We represent the state in linear equation solving as
the list of terms on each side of the equation, ignoring the
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ordering of these terms. The actions are the possible trans-
formations that a student might apply to an equation. We
include six types of actions: moving a term, dividing by a
coefficient, multiplying by a constant, combining terms, dis-
tributing over a parenthesized term, and terminating solv-
ing. These actions are sufficient to represent typical problem
solving behavior, with the final action occurring each time
a student completes a problem or gives up.

To use Bayesian inverse planning to diagnose students’ un-
derstanding, we must define the hypothesis space of possible
knowledge states. In this case, the knowledge states corre-
spond to possible transition models: how does a student
believe the state should be transformed when she chooses
a particular action? We represent each knowledge state as
a vector θ of six parameter values. Four of these values re-
late to error tendencies in applying specific actions, based on
mal-rules discovered in prior work [4, 6]. For example, one
parameter represents the probability a student will make a
sign error in which she moves a term from one side of the
equation to the other without changing the sign: 2x+ 3 = 6
becomes 2x = 6 + 3. The other two parameters relate to
equation solving behaviors not tied to a specific action. The
arithmetic error parameter is the probability that a stu-
dent will make an arithmetic error in each operation in a
transformation. Separating out this error term differenti-
ates students who get problems wrong due to misunder-
standings about the rules of algebra from students who have
difficulties with arithmetic. The final parameter relates to
the efficiency with which the student solves equations. Fol-
lowing prior work modeling human action planning [1, 5],
we assume students choose their actions noisily optimally:
p(a|s) ∝ exp(βQ(s, a)), where Q(s, a) represents the long-
term expected value of taking action a in state s. β controls
the noisiness of the policy, with increasingly large β cor-
responding to more optimal action selection. We infer the
value of β that best models an individual student’s action
planning, allowing us to detect how well a student is choos-
ing her actions. Very low inferred values of β might also
indicate that the student’s data is not well fit by our model.

We represent the diagnosis of a student’s algebra under-
standing as the posterior distribution p(θ|d1, . . . , dN ) over
the possible parameters given N observed problem solutions.
This distribution can be calculated using Bayes’ rule, mak-
ing use of the fact that each θ corresponds to a particular
MDP. Because θ contains continuous parameters, we ap-
proximate the posterior via Markov chain Monte Carlo sam-
pling [3]. For each sample, we must calculate a Q-function
of long-term expected values given the current θ. Since the
state and action spaces are infinite, this function can also
only be approximated. We use discretization to aggregate
both the state and action spaces, a common strategy in large
or continuous MDPs (e.g., [2, 7]).

3. DIAGNOSING UNDERSTANDING
To evaluate the effectiveness of Bayesian inverse planning for
diagnosing algebra understanding, we first tested the frame-
work in simulation. Simulations allowed us to assess whether
there was sufficient information in the problem traces (i.e.,
the series of equations representing the transformations from
the initial equation to the final solution) to recover the true
parameters of a learner. We found that recovery of these

values was relatively accurate, with the median difference
between actual and inferred values for five of the six param-
eters less than 0.1. The planning parameter had a median
difference of less than 0.25; the larger difference is likely due
to its increased range. This suggests that while the diagno-
sis computed by Bayesian inverse planning is approximate,
it still provides accurate information about the learner and
might be used to guide remediation.

We then evaluated our model’s performance on human data
by recruiting participants on Amazon Mechanical Turk to
complete an online worksheet and solve twenty problems
on the Berkeley Algebra Tutor website, which we designed
to collect step-by-step equation solving data. Over 98% of
equation transformations could be interpreted by our model,
and through manual annotation of a subset of the equations,
we found that the model’s interpretation of the transforma-
tions were generally consistent with human observers’ inter-
pretations. By comparing the model’s inferred parameter
values for individual participants with these participant’s
worksheet performance, we found that the inferred arith-
metic error parameter was correlated with scores on the
arithmetic portion of the worksheet. These results demon-
strated that the model can interpret real equation-solving
data and compute diagnoses of individual algebra skills.

4. CONCLUSION
Developing a Bayesian inverse planning algorithm for alge-
bra offers promise for both extending the scalability of the
inverse planning framework and helping to remediate learn-
ers’ algebra skills. Our work demonstrates that inverse plan-
ning can be applied to a complex educational domain, and
provides solutions for common technical problems that may
arise, such as infinite state and action spaces. Our simu-
lation and experimental results suggest that the algorithm
can effectively recover the parameters of simulated learners
and interpret people’s equation solving. We plan to further
evaluate the model using data from current algebra learn-
ers and to test the effectiveness of personalized guidance for
learners based on our diagnosis of their understanding.
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ABSTRACT
Given a large number of incorrect responses to mathematical
exercises, we ask, “What errors might the learner have made
to arrive at their answer?” Even though our data does not
contain intermediate steps, we find that we are able to infer
well over 50% and sometimes over 90% of the types of er-
rors learners make on an exercise when they only supply final
answers. Our approach capitalizes on the sheer volume of
data to highlight patterns and the fact that these exercises
come from item banks of mathematical templates. Since
items generated from mathematical templates deliver differ-
ent parameters to different learners (e.g., one learner might
see y = 2x+ 3 while another learner might see y = 3x+ 5),
misconceptions and mechanical errors are more easily rec-
ognized. We enumerated different errors for simpler-stated
problems and utilized other forms of signal analysis in other
cases to uncover error types. Our results show that there
are many types of errors even for seemingly simple prob-
lems, and we can quantify their relative degrees of preva-
lence. We can also determine bias in the templates that
make a problem easier or more difficult depending on which
parameters are used. Since error categories correlate with
knowledge components, our work highlights the relative de-
gree of knowledge components embedded within a problem
and exposes some knowledge components that may other-
wise remain unconsidered.

Keywords
Error Analytics, Misconceptions, Knowledge Components,
Template Bias, Automatic Item Generation

1. INTRODUCTION
The etymology of the word demonstrate comes from the latin
dē (“concerning”) + mōnstrō (“I show”) [25]. The noun form
of mōnstrō has become monster in English, the word for
something that warns or instructs. Medicine and biology
have a long heritage of learning from abnormal patients and

∗Corresponding author.

aberrant individuals, these so-called “monsters”. For exam-
ple, in the 19th century, after treating patients who exhibited
severe speech and language deficits, Drs. Broca and Wer-
nicke proposed areas of the brain giving rise to speech and
language after their postmortem analysis revealed brain in-
juries at specific sites [7, 24]. In similar spirit, MRI scanning
of stroke victims today continues to reveal the functional
map of the brain [4, 18]. Likewise, the field of genetics is
largely built around animal models such as the mouse and
fruit fly where standard practice is to “knock in” or “knock
out” genes and observe the phenotypes of the mutants [5,
21].

Indeed, errors help frame “normal”. In the context of learn-
ing, the types of errors that are revealed in a task demon-
strate areas of confusion and the hurdles that need to be
overcome to attain mastery. Errors therefore have a strong
correspondence with the knowledge components (KCs) – the
skills, concepts, and rules of a problem [12, 16, 17, 22]. It has
been found that those who have achieved mastery catego-
rize problems differently than those who are novices, as their
categorization is more shallow [3]. Prior work has shown
that more often than not, student errors in simplistic frac-
tion multiplication word problems concern the vocabulary
used rather than the actual math itself [8, 13]. Further-
more, evidence exists demonstrating not only a causal rela-
tionship between students’ prerequisite knowledge, or lack
thereof, and errors in problem solving, but also that gaps in
prior knowledge negatively impacts students’ accrued learn-
ing [23]. Also, strategic errors in instruction, have been
shown to be at fault and contribute to particular limita-
tions in prior knowledge [2]. Such research highlights that
errors can help sculpt and define KCs. We will argue that
in many cases, they may be two sides of the same coin.

In the work presented in this paper, we evaluated incorrect
responses to mathematical exercises to determine and quan-
tify specific types of errors learners made. Even though our
data contained only final answers, we were still able to label
60-90% of the errors without intermediate step data. Our
approach exploited the relatively large number of samples of
each problem (hundreds or low thousands) and took advan-
tage that the exercises came from templates, each instance
of the template having different parameters (e.g., “4 + 7” or
“3 + 5”). Comparing across template instances permitted
us to see repeated patterns. Sometimes setting incorrect re-
sponses against the backdrop of correct solutions provided
clearer interpretations of the incorrect response to more eas-
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ily label it. We found we could ascribe several types of errors
to even seemingly straightforward exercises, demonstrating
that several KCs may go into an exercise. Additionally, we
were able to determine bias in the template that made the
problem easier or more difficult depending on the parameters
given. As such, bias illuminated the challenges delivered to
some learners that were not given to others. While such bias
has strong implications for assessments, it also permits us to
dissect the exercise further and label a KC associated with
some values of the template’s parameters that is otherwise
absent in other instances.

2. METHODS

2.1 Data
Our data consisted of student responses to online math prob-
lems from a college level developmental math book. Stu-
dents, largely from the U.S., were enrolled in courses span-
ning Fall semester 2012 through 2013 that used the Pear-
son MathXL R© homework system. All responses were from
quizzes or tests. Students may have seen an exercise in a
prior homework, or, somewhat rarely, may have taken a quiz
or test multiple times to have multiple exposures to the ex-
ercise, but we did not factor this into our analysis. We used
the final answer to the problem, which was a free text field.
Therefore, learners could enter strings that could remain
string literals, or be parsed into numbers. Alternatively,
students could use an equation editor to enter mathemati-
cal expressions into the field. Responses were either labeled
“correct” or “incorrect”.

The system employs automatic item generation from math
templates, randomly creating instances of the exercise, often
with certain constraints in the hopes of keeping the problem
within the same domain and similar range of difficulty. By
the combinatoric nature of the parameters used in some tem-
plates of the system, some exercises have nearly an infinite
number of possible instances. For this study, we concen-
trated on some templates that had few instances (3 - 24) for
all but the “GPA” example, which had 1022 instances.

2.2 Our approach
We collected student responses to each instance of each ex-
ercise. For the cases with few instances, we looked at the
distribution of incorrect responses. Our null hypothesis is
that incorrect responses are random guesses. Since the re-
sponse field is free text, this means that the distribution of
possible answers will be very large under the null hypothe-
sis. It was straightforward, then, to find those cases where
several students converged to enter the same incorrect re-
sponse. What was not so apparent, and remains the bottle-
neck of our approach, was determining how students arrived
at their particular response. For this, we looked across the
instances of the template, comparing the peak responses to
determine consistent patterns. This is perhaps best illus-
trated with an example as shown in Table 1 that shows a
sampling of responses where four or more students gave the
same response to the question “Find the reciprocal of the
number x.” Looking across the instances where x is 2, 3, 4,
or 5, there are repeated patterns of users giving the nega-
tive of the number, or framing the response as x/1 instead
of the correct response of 1/x. The table also shows many
students simply echoing the number given. Because these

patterns repeat themselves across the different instances, we
can more confidently define the type of error by seeing how
it generalizes. After determining the type of error, we wrote
mathematical expressions to match the specific error for the
given input parameters of the instance. We therefore tagged
those responses that had one or more errors attributed to
them. (Because an incorrect response might match more
than one error formula, the “Total inferred” row at the bot-
tom of many of the tables we provide in our results is not
a subtotal of each error category. Each tagged incorrect re-
sponse was only counted once.) We then filtered out these
cases and iteratively considered the remaining responses in
attempts to further ascribe possible types of errors.

Our “GPA” example had a different output from the others.
In this case, only a handful of students saw the same in-
stance. We therefore contrasted the distributions of correct
and incorrect responses through visualizations as described
in Section 3.6.

We determined bias in a template in the following ways:
Firstly, we considered the fraction correct from students that
saw a particular instance as compared with the rest of the
instances in a binomial test. This permitted us to see if a set
of specific instances were easier or harder. We then looked
at all instances that had a variable set to a specific value.
Taking each variable across all of its values and performing
the same binomial test allowed us to determine if and when
a variable showed bias. We carried this one step further
and performed the same binomial test on pairs of instance
variables as illustrated in Figure 1.

3. RESULTS
We applied our method across several different templates as
highlighted in each subsection.

3.1 Find a quotient example
Students were presented with the exercise “What is the quo-
tient of x and 5?” where x was a uniformly random multiple
of 5 in the range [1000, 1250]. We evaluated 2467 responses
of which 379 were incorrect. With 51 possible instances with
x ∈ {1000, 1005, . . . , 1245, 1250}, there were only 7 incorrect
responses per instance on average. Nevertheless, we noted
that 31% of the errors followed the form x×5 and 12% of er-
rors matched x+5, indicating a misconception or misunder-
standing surrounding “quotient”. Interestingly, while many
errors either multiplied or added, less than 1% of students
gave a response that matched x−5, implying that these stu-
dents realized “quotient” did not involve subtraction. About
5% of error responses simply echoed the numerator, x, or
the denominator, “5”. With the remaining responses, we
could see that if the correct answer contained a “0” digit,
that many student responses omitted it. For example, if
users were asked to find the quotient of 1015 and 5, which
is 203, they might give “23”. Such a response indicates a
mechanical error or misconception surrounding place values
and accounted for 10% of all errors. In fact, while the mean
probability correct was 85% for this problem, when contrast-
ing problems that had a“0” in their correct answer vs. those
that did not, the probability of success was 81% (p = 0.008)
and 87% (p = 0.025), respectively, indicating that the prob-
lem added another knowledge component when asking stu-
dents to deliberately consider the place value. Collectively,
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ABSTRACT 
Knowing the prerequisite structure among the knowledge 
components in a domain is crucial for instruction and assessment. 
Treating Knowledge Components as latent variables, we 
investigate how data on the items that test these KCs can be used 
to discover the prerequisite structure among the KCs. By 
modeling the pre-requisite relations as a causal graph, we can then 
search for the causal structure among the latents via an extension 
of an algorithm introduced by Spirtes, Glymour, and Scheines in 
2000. We validate the algorithm using simulated data. 

Keywords 

Domain models, knowledge components, q-matrix, prerequisites, 
causal discovery 

1. INTRODUCTION 
In general, we need to determine the prerequisite structure of a 
domain. [3,4] Instead of relying on expert knowledge, which is 
subject to an “expert blind spot,” in this paper we explore using 
causal model search to discover prerequisite structures from data. 

As prerequisite relations are a form of causal relations, and as 
skills can be modeled as “latent” (unmeasured) variables, our 
approach is a generalization of causal structure discovery 
algorithms involving latent variables (Build Pure Clusters 
(BPC) [6] and MIMbuild [2, page 319]). In these algorithms, 
however, items are assumed to be “pure,” that is, direct measures 
of only a single latent skill. In education this assumption is 
unreasonable, so we need to generalize the algorithms to handle 
models with impure measures. Further, BPC was written for 
continuous items. It would need to be extended to work on binary 
data before it could be applied to “correct/incorrect” test items. 

We begin with a simplifying assumption that we hope to 
eventually relax: that the Q-matrix (the matrix that specifies 
which item measures which skills) is known. We know of no 
current method for learning the prerequisite structure among skills 
in cases where there are very few pure items; so although the 
method we propose here is limited to cases where the Q-matrix is 
known, our method solves a novel problem. There are existing 
techniques for discovering and refining a Q-matrix, so there will 
be many cases where the Q-matrix is known or can be estimated 
to some approximation.  

2. PREREQUISITE DISCOVERY  
We model skills as continuous variables that represent the degree 
to which a student has mastered or has knowledge of a particular 
skill. We treat items as continuous variables that reflect the degree 

to which a student completed a task correctly. In practice, the 
measure of task completion is often a binary variable with values 
= correct/incorrect. A binary item can, however, be considered as 
a projection of a continuous item, and correlations among 
idealized continuous items can be estimated by computing the 
tetrachoric correlation matrix among the measured binary items.  

 
 (a: Measurement Model)   (b: Structural Model) 

 
(c: Full Structural Equation Model) 

Figure 1: Structural Equation Models 
The Q-matrix typically defines which items “load” on which 
latent skills. We can define a “measurement model” that relates 
latent skills to measured items (Fig 1-a). By modeling the 
relations among the skills as a path analytic causal model among 
the latent variables (Fig 1-b), called the “structural model,” we 
can then combine the “measurement model” and the “structural 
model” to form a full linear structural equation model [1]. 
By assuming that the measurement model is known, we can 
search for the structural model with the PC causal discovery 
algorithm [2], in which the inputs are the independence and 
conditional independence relations that hold among the latent 
variables. We compute or test the independence relations among 
the latents by constructing a distinct structural model and fitting it 
to the data for each particular independence test required. Our 
model construction method produces a provably consistent test of 
each conditional independence relation. [7]  

3. VALIDATION ON SIMULATED DATA 
To measure the method’s ability to recover prerequisite structure, 
we conducted a large simulation study in which we varied (i) the 
structural model, (ii) the purity of the measurement model, (iii) 
the sample size, and (iv) whether the observed data were 
continuous or binary. In each of these conditions, we performed 
100 simulations with different parameterizations. We used three 
structural models representing different causal relations between 
the latent skills, and varying degrees of impure measurement 
models (complicated Q-matrices). We ran the PC algorithm using 
the new test for independence involving a constructed structural 
equation model, and produced an equivalence class for the 
structural model in which we assumed no additional latent 
confounding, called a pattern [5].  
We then scored each graph on the following metrics:  

1. True positive adjacency rate (# correct adjacencies in 
output / # adjacencies in true graph), a.k.a. recall 
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2. True positive orientations or orientation recall (# 
correctly oriented edges in output / # orientable edges in 
true equivalence class). Defined to be 1 if none of the 
edges in the true equivalence class are orientable. 

4. Results 
Our results show that the algorithm performs well for discovering 
adjacencies (Figure 2). Even in the most difficult (and most 
realistic) case, where the sample size is 150, the measurement 
model is impure, and the data are binary, we still recover 74%, 
76%, and 89.5% respectively for the three generating models.  

 
Figure 2: True positive adjacency rate 

 
Figure 3: True positive orientation rate 

The true positive orientation rate (recall) is shown in Figure 3. 
The worst score is 64.5% (for Model 3, with binary data, an 
impure measurement model and sample of 150), which is still 

quite good. Results for other metrics (omitted for lack of space) 
are also very good [7], including false positive adjacency rate, 
true adjacency discovery rate, false positive orientation rate, true 
orientation discovery rate, and false negative orientation rate. 

5. CONCLUSIONS 
The prerequisite graph is an important pedagogical artifact in 
itself, because we can use it to examine the structure of a domain, 
and it is furthermore a critical element of adaptive learning 
environments, where it can be used to create personalized and 
efficient learning trajectories for students. We expect that our 
algorithm can be used to discover fine-grained prerequisite 
structures to make student learning more efficient and more 
effective. 
Unlike prior work [8], our method of prerequisite discovery only 
requires a single assessment from a point in time, and it applies to 
an assessment of any scope, regardless of whether it covers 
multiple problem-solving strategies on a skill, or multiple skills on 
a single learning objective, or multiple objectives in a syllabus, or 
multiple courses in a multi-year curricular sequence (e.g., a 
standardized test). Our algorithm is the only method currently 
available for inferring latent structure when the measurement 
model contains few pure items (i.e. items that load on only one 
latent). It performed well in our simulations, but has several 
important limitations including the assumption of linear relations, 
that the Q-matrix is known, and that the models are identified.  
We intend to extend the work by expanding the range of models 
that can be identified, by investigating the robustness of the 
procedure to errors in the Q-matrix specified, and by including 
steps for Q-matrix discovery. 
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ABSTRACT 

In collaborative learning contexts, the problem of automatically 

forming effective learning groups gets considerably complex 

with larger class sizes, e.g. in MOOCs. Additionally, group 

dynamics caused by high dropout rates currently observable on 

online open course platforms poses challenges to learning group 

formation strategies. To address these problems, this paper 

presents PSO-based algorithms to dynamically re-compose 

learning groups. In addition to static grouping criteria (such as 

MBTI personality types), the algorithms take into account 

factors of the group success rate and group satisfaction during 

re-composition. We carried out simulations based on randomly 

generated sample data. The experimental results show that the 

proposed approach performs better than traditional exhaustive or 

random methods. 

Keywords 

Group Formation; Collaborative Learning; Group Composition; 

Group Dynamics 

1. INTRODUCTION 
The concept of re-composing learning groups was introduced by 

Oakley et al. [4]. They dissolved dysfunctional teams to re-form 

more effective teams. However this is just one single motivation 

for re-forming learning groups. There is another important 

reason that should not be forgotten in the light of the growing 

popularity of massive open online courses (MOOCs): the 

dropout rate. According to Dung Clow’s findings, the dropout 

rate on MOOC platforms is considerably higher than in 

traditional education [2]. Only 3% of the initial participants took 

the final exam in a bioelectricity MOOC Duke offered through 

Coursera [5]. In collaborative learning contexts, this high 

dropout rate may cause learning groups to collapse. Therefore, it 

is crucial to re-compose learning groups in order to enable an 

effective collaborative learning setting also in later parts of a 

course when many participants might have left. 

The rest of the paper is organized as follows. The following two 

sections describe our research methods and the proposed 

approach. We then present the simulation results. Finally, the 

last section concludes this paper.  

2. METHOD 
In this paper, we assume that a class S is composed of a given 

number of n students,              . Before taking a course, 

instructors must divide these n students into   groups,   
           . Each student can only be a member of a single 

group.   is the initial group formation which can, for instance, 

be formed by diversifying MBTI personality and distributing 

even gender. Subsequently, these   groups of students are 

instructed to complete their first group tasks. When they finish, 

every group’s work is rated,                   . From 

the rating data, we then estimate the pair success rate      (i.e. if 

   and   are in group   , then          ). In parallel and in 

addition to the performance rating, the participating students are 

invited to state their personal satisfaction rating,     , with 

respect to their teammates.     stands for   ’s subjective 

satisfaction rating about working in one group with   . The 

satisfaction rating indicates how much one student is willing to 

work with each of his teammates. When the satisfaction rating is 

low, the student will very likely not want to stay in the same 

team with his counterpart. Between group tasks, we also assume 

some certain percentage of students dropping out from the 

course. Then, in the next group task, we intend to re-compose 

the remaining students into learning groups aiming at meeting 

the initial grouping criteria as well as maximizing group success 

rate and pair satisfaction. We then follow this strategy to re-

compose learning groups task by task.  

3. PSO-BASED APPROACH 
In order to solve our group re-composition problem, a Discrete 

Particle swarm optimization (DPSO) algorithm is proposed  in 

this study which was previously introduced to the manufacturing 

cell  design problem [3] and the travelling salesman problem  

[1]. We use a list representation for a group formation: n 

students are simply permutated in a list of length n. The PSO 

starts with initial solutions which are called particles, then 

updates these initial solutions and searches for the optimal 

solution iteratively. The velocity vector   
   which is used to 

update a particle    for the next iteration can generally be 

calculated using (1). 

     
         

                                              (1) 

In (1),    stands for the number of the current iteration and   

indicates the number of the updated particle.           , 

       and      indicate the current state of   , the personal best 

prior state of   and the global best particle state.   ,   ,    are 

learning coefficients. Representation-wise, a velocity vector    

is a set of pairwise permutations       that will be used to update 

  
 

 to   
    as shown in (2). 

  
      

    
      (2) 

In DPSO two fitness functions should necessarily be designed to 

evaluate the quality of each group formation at the initial stage 

and re-composition phases respectively, as shown in (3) and (4).  

Here,       is an indicator of diversity of MBTI personality and 

gender distribution in a learning group (the larger the better). 
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               (3) 

        
∑                               

 
   

 
  (4) 

The complete DPSO algorithm is described in Figure 1. 

 

 

 

4. SIMULATION RESULTS 
As shown in the formula (4), the group quality is calculated 

based on the MBTI and gender diversity, the group success rate 

and the group satisfaction rate. The impacts of these three 

factors are controlled by three weights (i.e.   ,    ,    ). 

Basically, we have two ways to determine the weight factors.  

One way is to use fixed weights (possibly gained by experience 

of through systematic research and test).We simply set    
   ,        ,         for our tests. The other way is to 

define the weight factors    and     adaptive to the students’ 

co-working experience. If one group of students has worked 

together for many times, we can emphasize their previous group 

success rate and pair satisfaction and reduce consideration of 

their personal traits diversity. Technically, we set        
        ,                 ,                 .    

is a co-working experience factor. We conducted an experiment 

to test the two methods (fixed vs adaptive weights) on a 

randomly generated dataset in comparison to two traditional 

methods, the random method and the exhaustive method. 

4.1 Synthetic Data 
Participating students’ personal traits which exactly contain 

gender and MBTI personality are typically collected via online 

surveys. In our research, we generated this data randomly (i.e. 

each student was randomly assigned a gender information and 

an MBTI personality type).  We designed 4 data sets (made up 

of 150, 300, 900 and 3000 students respectively) and used this 

dataset for 8 group re-compositions to test our algorithms. At the 

stages of group re-compositions, we modeled a dropout rate of 

40%, 20%, 10%, 8%, 6%, 4%, 2%, 2% from the first group re-

composition to the last one. Group performance and pair 

satisfaction were also randomized. 

4.2 Performance Analysis 
The proposed DPSO algorithm has been implemented in 

MATLAB and tested on the synthetic data illustrated in the 

previous subsection. The group size in the experiment was set to 

three. The simulation was conducted on a personal computer 

with an Intel(R) Core(TM) i7-4600U CPU 2.10GHz and 8GB 

RAM. We evaluate the DPSO algorithm’s performance by 

computational time and quality of grouping (as measured by the 

fitness value). As a result, the DPSO algorithm can achieve a 

near-best solution to our re-composition problem in comparison 

to the exhaustive method, and runs considerably faster (for 3000 

students, the time cost on our machine was just 11 minutes at 

maximum). The fixed-weights method performs closely similar 

as the adaptive-weights method in terms of group quality and 

time cost. As anticipated, the adaptive-weights method 

composes fewer groups with low satisfaction pairs by 

comparison of the fixed-weights method, as shown in Table 1 

(the percentage indicates how many groups contain a pair of 

members with a pair satisfaction lower than 0.3).  

Table 1. Low pair satisfaction percentages 

 
fixed-weights adaptive-weights 

 
150 300 900 3000 150 300 900 3000 

Comp. N/A N/A N/A N/A N/A N/A N/A N/A 

1st re-Comp. 50.7% 60.5% 62.7% 68.5% 28.0% 43.3% 51.8% 62.1% 

2nd re-Comp. 57.3% 56.8% 63.3% 66.6% 31.0% 44.0% 49.3% 63.0% 

3rd re-Comp. 42.0% 54.3% 56.4% 65.5% 28.0% 30.0% 47.8% 60.0% 

4th re-Comp. 39.1% 48.6% 57.3% 63.8% 23.6% 30.9% 44.8% 56.3% 

5th re-Comp. 25.0% 48.1% 52.1% 62.7% 10.0% 25.0% 37.9% 54.5% 

6th re-Comp. 45.0% 44.2% 50.0% 65.6% 6.7% 18.3% 37.8% 50.7% 

7th re-Comp. 52.0% 45.0% 51.7% 60.6% 40.0% 8.0% 37.3% 49.2% 

8th re-Comp. 47.5% 37.5% 47.1% 57.9% 25.0% 12.5% 26.7% 46.5% 

 

5. CONCLUSION AND FUTURE WORK 
In this paper, we presented a new method for dynamically re-

composing students into learning groups by taking into account 

both (static) personal characteristics, dynamic data (student 

group success and satisfaction) and student dropout rates. We 

also proposed a DPSO algorithm to dynamically re-compose 

collaborative learning groups based on the method. The 

proposed algorithm is able to search for the near-best solution to 

our group re-composition problem in an acceptable 

computational time as compared to the exhaustive method. 

Additionally, the adaptive-weights method is able to largely 

reduce the violation of low pair satisfaction. In our future 

research, we will test this algorithm against real data collected 

from large online courses. 
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ABSTRACT 

Student Learning Outcome (SLO) has been a hot issue in the 

research fields of higher education quality assurance and 

institutional research. Based on the classic college student 

development theories and students' learning experiences, this paper 

combines two educational data mining techniques, regression 

analysis and neural network modeling to explore the influential 

mechanism of SLO by the means of empirical analysis. Finally, 

from the perspective of learning analytics and considering students’ 

individual factors and university factors, a predication model of 

SLO is constructed to provide universities with essential reference 

to enhance SLO and teaching quality. 

Keywords 

Student Learning Outcome; Educational Data Mining; Learning 

Experience; Learning Analytics 

1. INTRODUCTION 
SLO has been a hot issue in the international research fields of 

higher education quality assurance, providing important evidence 

to reflect the educational effectiveness of a university [1]. A major 

part of the assessment of SLO is to obtain information and evidence 

of learning outcomes with qualitative or quantitative measurement 

methods. However, the diverse categories and levels of universities 

and colleges, as well as the complicated learning objectives and 

learning process, result in the multi-dimension and complexity of 

college-SLO. 

It is recognized that the academic research on SLO has made a 

marked progress. In particular, research that explores models of 

SLO and their influential mechanism regarding the environments 

and conditions of schools, students’ individual characteristics and 

student engagement in learning, contribute significantly to the 

decisions on how to promote SLO. Yet, there is little research 

examining SLO from the perspective of learning experience, for 

instance, student emotion, behavior and cognition. Empirically, 

students’ participation in school activities and their rich 

experiences will influence their learning outcomes to a certain 

extent. And through those activities and experience they will have 

various cognitive experiences and respond with different emotional 

reactions. The data involved are huge and extensive that it becomes 

difficult for traditional statistical methods to discover the hidden 

laws. As a result, emerging data statistics and analysis methods, 

such as educational data mining, are urgently needed. In order to 

better understand the influential factors of SLO, this research uses 

stepwise regression analysis and neutral network to mine data of 

SLO, and reconstruct the meaning of mining results from the 

perspective of learning analytics. The ultimate purpose is to 

establish the intricate relationship between student learning 

experience, school characteristics, student characteristics and SLO, 

and thereby provide crucial reference for improving the training 

quality of university talents. 

2. INSTRUMENT OF THE SURVEY 
Research has shown that questionnaire survey precisely reflects the 

overall level of SLO by indirectly measuring learning outcomes 

with students’ self-reports. This study devises the Sun Yat-sen 

University Student Learning Status Survey based on Astin’s and 

Pace’s student survey assessment models [2, 3]. Students’ relevant 

experiences are emphasized, for instance, how much they involve 

in learning and work hard on it, and their interactions with teachers. 

Besides, students’ emotional learning outcomes and general-

knowledge education outcomes are also included. The survey 

divides student learning experiences and outcomes into 6 

dimensions, illustrated in Figure 1. The coefficient of internal 

consistency among items in each dimension is above 0.9, 

demonstrating a high degree of reliability. This research analyzes 

the university and student factors’ impacts on SLO in the logical 

framework of “Inputs-Learning-Outcomes”, and from the 

standpoint of the broad learning experiences like student emotion, 

behavior and cognition. 

 

Figure 1. The Instrument of the Survey. 

3. ANALYSIS 
Educational data mining shows its potential value in determining 

the influential factors of SLO, such as identifying student 

characteristics and the dimensions of learning experiences that 

really affect learning outcomes in datasets. This paper uses 

educational data mining to deal with SLO data, interprets the 

mining results from the perspective of learning analytics, and 

explores the influential mechanism of SLO imposed by student 

learning experience, school characteristics, and student 

characteristics.   

Data of this study came from the campus-wide online survey 

officially conducted in 2012, which was part of the Sun Yat-sen 

University Student Learning Status Survey Project, covering 36 

departments and 33,000 undergraduates. These students completed 

the items in the questionnaire under the circumstance without stress.  

A total of 7,051 questionnaires were returned with a 21.2% 
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response rate, representing a considerable satisfaction compared 

with the international response rate of questionnaires. This research 

focuses on the samples of undergraduates, and selects 6,673 

effective questionnaires out of the total returned with an effective 

rate of 94.6% based on principles such as response time and 

questionnaire quality standard. 

3.1 Determining the Influential Factors of 

SLO with Regression  
Stepwise regression provides an approach to identify the concrete 

experiences relevant to SLO. Specifically, it groups together 

similar items among the total 227-item in the survey, identifies 

those related to learning outcomes using forward and backward 

stepwise regression, thoroughly examines the residual plot and the 

diagnostics, and ultimately determines 17 independent variables in 

the multivariate regression model. 4 dimensions with 17 variables 

in student learning experiences are important factors affecting SLO, 

which are respectively the availability of learning resources, 

student involvement in learning, campus culture and school 

outcomes, including university factors like assessment of 

coursework and major study experience, guidance of academic 

norms, equal cultures and the atmosphere of cultivating multiple 

abilities, together with student factors like self-regulated learning, 

activity engagement, extra-curricular reading, thesis writing, peer 

communications, discussion contents, student-teacher interactions, 

academic activities and allocation of personal spare time. While 

school outcomes combining student and university factors, for 

instance, satisfactions towards school experiences and capability 

cultivation, as well as overall satisfaction, also have certain 

influential power on student learning outcomes. 

These findings are consistent with Vincent Tinto’s theoretical 

model on dropout problems of college students [4]. Whether 

students could obtain better learning outcomes depends on how 

well they fit their own experiences and objectives into the academic 

and social systems within the school system.  

3.2 Optimizing Predictions of Learning 

Outcomes by Neutral Network Modeling 
On the basis of the above analysis and for the purpose of increasing 

predictive accuracy, this study optimizes predictions of learning 

outcomes by neutral network modeling. The authors consider the 

influential factors of SLO determined by the regression analysis as 

experts’ prior knowledge, and then further promote the intelligent 

processing through optimization model of neutral network, 

achieving the optimized prediction of SLO. 

The number of input-layer nodes is determined by the number of 

factors affecting SLO, that is, 17 independent variables identified 

by regression analysis are considered as the input-layer nodes in the 

neutral network. Meanwhile, SLO is identified as the output-layer 

node. Finally, the optimized number of hidden-layer nodes is set to 

be 7 with the method of cut-and-trial. As such, the optimum 

topological structure for predicting SLO based on the neutral 

network model is 17-7-1.  

Among the 6,673 effective questionnaires from the student learning 

condition survey, 8 samples with missing values have been 

eliminated. The 6,665 samples left are divided into two subsets, 

with 4,680 training samples (70.2%) for network model training, 

and 1,985 testing samples (29.8%) for testing whether the model 

meets the fundamental function required. Given the minimum 

relative change of training deviation is .0001 and that of training 

error is .001, and considers 1, 985 samples as testing samples. 

Through experiments, the output O represents the prediction of 

SLO, which ranges within [0, 1]. According to the overall 

evaluation of SLO by the 5-level rankings, i.e., A(0.9<=O), 

B(0.8<= O <0.9), C(0.7<= O <0.8), D(0.6<= O <0.7) , E(O <0.6), 

the output has a sound consistency and accuracy with the self-

assessment results of learning outcomes by the respondents. Table 

1 shows a random list of the comparisons between network output 

and students’ self-assessment results. Due to the large number of 

samples, Table 1 does not exhibit all the results.  

Table 1. Sample Comparison 

Testing 

Sample 
Output Expected 

Relative 

deviation 
Level 

Sample 1 0.53 0.53 0.00 E 

Sample 2 0.71 0.72 0.01 C 

Sample 3 0.64 0.66 0.02 D 

Sample 4 0.63 0.62 0.01 D 

Sample 5 0.73 0.72 0.01 C 

Sample 6 0.66 0.65 0.01 D 

Sample 7 0.82 0.83 0.01 B 

    Sample 8     0.92      0.92     0.00     A 

   Sample 9    0.90     0.91     0.01     A 

 

4. CONCLUSIONS 
Predictive model of student learning outcomes which is constructed 

by the combination of neutral network and experts’ prior 

knowledge established in the regression analysis, has a simple 

structure, better objectivity and accurate predictive effects. The 

trained neutral network model mentioned above could be used to 

scientifically and appropriately predict and evaluate student 

learning outcomes. 
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ABSTRACT 
Knowledge tracing (KT) is widely used in Intelligent Tutoring 
Systems (ITS) to measure student learning. Inexpensive portable 
electroencephalography (EEG) devices are viable as a way to help 
detect a number of student mental states relevant to learning, e.g. 
engagement or attention. This paper reports a first attempt to 
improve KT estimates of the student’s hidden knowledge state by 
adding EEG-measured mental states as inputs.  Values of learn, 
forget, guess and slip differ significantly for different EEG states. 

Keywords 

EEG, knowledge tracing, Logistic regression. 

1. Introduction 
Knowledge tracing (KT) is widely used in Intelligent Tutoring 
Systems (ITS) to measure student learning. In this paper, we 
improve KT’s estimates of students’ hidden knowledge states by 
incorporating input from inexpensive EEG devices. EEG sensors 
record brainwaves, which result from coordinated neural activity. 
Patterns in these recorded brainwaves have been shown to 
correlate with a number of mental states relevant to learning, e.g. 
workload [1], associative learning [2], reading difficulty [3], and 
emotion [4]. Importantly, cost-effective, portable EEG devices 
(like those used in this work) allow us to collect longitudinal data, 
tracking student performance over months of learning. 

    Prior work on adding extra information in KT includes using 
student help requests as an additional source of input [5] and 
individualizing student knowledge [6]. Here we use students’ 
longitudinal EEG signals as input to dynamic Bayes nets to help 
trace their knowledge of different skills. An EEG-enhanced 
student model allows unobtrusive assessment in real time. The 
ability to detect learning while it occurs instead of waiting to 
observe future performance could accelerate instruction 
dramatically. Current EEG is much too noisy to detect learning 
reliably on its own. However, as this paper shows, adding EEG to 
KT may allow better detection of learning than using KT alone.  

2. Approach 
KT is a Hidden Markov Model using a binary latent variable (K(i)) 
to model whether a student knows the skill at step i. It estimates 
the hidden variable from its observations (C(i)’s) in previous steps 
of whether the student applied the skill correctly. KT usually has 
4 (sometimes 5) probabilities as parameters: initial knowledge 
(L0), learning rate (t), forgetting rate (f) (usually assumed to be 

zero, but not in this paper), guess rate (g), and slip rate (s).
We 
add another observed variable (E(i)), representing the EEG 
measured mental state estimated from EEG signals and time-
aligned to the student’s performance at step i. 

    EEG-derived signals are often described as a type of measure of 
human mental states. For example, NeuroSky uses EEG input to 
derive proprietary attention and meditation measures claimed to 
indicate focus and calmness [7]. We hypothesize that a student 
may have a higher learning rate t and/or a lower slip rate s when 
focusing or calm at a given step. Thus EEG-KT, shown in Figure 
1, extends KT by adding variable E(i) computed from EEG input. 

 
Figure 1.  EEG-KT uses a binary EEG measure in KT 

3. Evaluation and Results 
To evaluate this approach, we compare EEG-KT to the original 
KT on a real data set. Our data comes from children 6-8 years old 
who used Project LISTEN’s Reading Tutor at their primary 
school during the 2013-2014 school year [8]. We measure the 
growth of oral reading fluency by labeling a word as fluent if it 
was accepted by the automatic speech recognizer (ASR) as read 
correctly without hesitating or clicking on it for help. 

    EEG raw signals are collected by NeuroSky BrainBand at 512 
Hz, and are denoised as in Chang et al. [3]. We use NeuroSky’s 
proprietary algorithm to generate 4 channels: signal quality, 
attention, meditation, and rawwave. We then use Fast Fourier 
Transform to generate 5 additional channels from rawwave: delta, 
theta, alpha, beta, and gamma. In total, excluding signal quality, 
we obtain 8 EEG measures. We also compute a confidence-of-
fluency (Fconf) metric as our 9th EEG measure by using training 
pipeline similar to [9]. It pre-balances the data by under-sampling, 
computes the average and variance of each channel’s values over 
each word’s duration as 16 features, and trains Gaussian Naïve 
Bayes classifiers to predict fluency (61.8% accurate, significantly 
above chance with p < 0.05 in Chi-squared test). We compute 
Fconf as Pr(fluent | 16 features) – Pr(disfluent | 16 features).  

    We normalize each of the 9 measures within student, discretize 
it as a binary variable (TRUE if above zero; FALSE otherwise), 
and use it to fit an EEG-KT model. We also evaluate Rand-KT, 
which replaces EEG with randomly generated values from a 
Bernoulli distribution. We use EM algorithms to estimate the 
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parameters, and implement the models in Matlab Bayesian Net 
Toolkit for Student Modeling (BNT-SM) [10, 11]. 

    The data has 6,313 observations from 12 students, with 83% 
labeled as fluent. We use leave-1-student-out cross-validation 
(CV), which trains word-specific models on 11 out of 12 students 
and tests on the remaining single student. To maintain enough 
data for EM to estimate the parameters, we keep 4 students who 
have many more than 500 observations in the training data and 
cross-validate only the other 8 students. We use AUC (area under 
the curve) to assess model prediction, as shown in Table 1. Fconf-
KT and Theta-KT beat KT, but not significantly. The other 7 
models did worse than KT, the bottom 5 significantly so. 

Table 1. AUC scores by 8-fold CV 
(underlined if p <0.05 in pair[1]ed t-test comparison to KT) 

Models AUC Models AUC 
Fconf-KT 0.6613 Gamma-KT 0.6317 
Theta-KT 0.6568 RAW-KT 0.6275 
KT 0.6479 MED-KT 0.6230 
ATT-KT 0.6435 Delta-KT 0.6224 
Alpha-KT 0.6429 Rand-KT 0.6146 
Beta-KT 0.6355   

Table 2 reports the estimated parameters for the two most 
interpretable EEG measures, meditation and attention. Students in 
a meditative state according to EEG were significantly less likely 
to forget, guess, or slip.  Students in an attentive state according to 
EEG were significantly less likely to forget or slip. 

Table 2. Avg. estimated parameters in EEG-KT across words  
(underlined if p < 0.05 in paired t-test across high/low state) 

 
Parameters 

Meditation Attention 
High Low High Low 

te 0.32 0.33 0.38 0.43 
fe 0.10 0.25 0.15 0.30 
ge 0.53 0.62 0.55 0.56 
se 0.03 0.07 0.03 0.08 

4. Conclusion and Future Directions 
To improve KT’s estimates of students’ hidden knowledge 

states, we tried adding different binary EEG measures as an input. 
This simple approach produced significantly different estimates of 
forgetting, guessing, and slip rates according to the attention and 
meditation indicators, but did not improve model fit significantly.  
Our subsequent approach achieved much higher accuracy (AUC 
.7665) by using logistic regression to merge EEG measures [12]. 

With months of data and many words per minute, fluency 
development offers a rich domain for studying EEG-enriched KT, 
but it can apply to other types of learning as well. Another future 
direction is to analyze its practical impact on learning. As Beck 
and Gong [13] pointed out, tiny improvements in predictive 
accuracy don't matter -- actionable intelligence does. We want to 
estimate the possible speedup in learning from using EEG to 
detect it as it occurs rather than wait to see it in later performance. 
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ABSTRACT 
Learning from dialogues is a powerful pedagogy. Video-based 
and dialogic learning have become increasingly commonplace 
over the last decade and gradually evolve as one of the most 
popular teaching & learning strategies for modern e-learning (i.e. 
MOOCs). Identifying high-quality video dialogues is increasingly 
challenging because of the sheer number of video discussions 
being produced daily. In this paper, we explore online video 
discussions by considering both structural discourse of discussion 
and user interaction.  

Keywords 

dialogue-based learning, video discussion, vialogue, engagement 

1. INTRODUCTION 
Learning from dialogues is a powerful pedagogy, which involves 
several diverse cognitive instructional strategies, such as self-
explanation, scaffolding tutorial dialogues, group discussions and 
among others [1-2]. The juncture of ITS/AIED & Learning 
Science literature has successfully demonstrated that students can 
learn from a wide range of such dialogue-based instructional 
settings [3-6]. Recently, studies show an alternative instructional 
context by learning from observing others learn [3] and is 
considered as a promising learning paradigm [4] due to such 
paradigm addresses the major limitations on development time in 
ITSs & liberated the domains from procedural skills to less 
structured fields. However, less is explored is whether such 
paradigm can be successfully applied on discussions around 
videos or other multimedia, which is one of the most popular 
teaching & learning strategies for modern e-learning (i.e. 
MOOCs).  

Video-based and dialogic learning are not only becoming 
increasingly commonplace as research over the last decade, but 
more importantly, discussing within a multimedia-rich 
environment creates a wide range of educational benefits [7-10]. 
Essentially, discussing around videos includes more complex 
interactions rather than having dialogues alone/among groups or 
merely performing video annotations. In addition, given the 
accelerated pace of online media generation and discussion 
around that media, identifying high-quality video discussions is 
increasingly challenging and important. In fact, the task requires 

more than just text analysis. Interactions on video discussions tend 
to be more sophisticated than posts and replies on discussion 
forums. Much of the time spent on video discussions is with the 
video rather than static objects in traditional forums (i.e. reading a 
post, an article or an image and reflect by responding text). 
Moreover, users’ engagement can be heavily influenced by the 
user interface and its associated process flow [11]. Therefore, in 
this paper, we attempt to address these challenges by exploring 
the engagement activities in video dialogues. The goal of this 
project is to model the rich user interactions and structural 
discourse of video dialogues for deeper inferences on users’ 
engagement. 

2. VIALOGUES: VIDEO DIALOGUES 
Vialogues is a video-based discussion tool purposively devised for 
reflective adaptive collaborative learning. We provide a brief 
overview on the core features of Vialogues in Figure 1. Vialogues 
allows users to comment directly on specific portions of a video, 
as opposed to only posting comments on a discussion board that 
references an entire video. All the comments are time coded to a 
specific point in the video. Thus, the comments and related 
portions of the video can be mutually referenced. Detail design 
rationales were published in [9]. 

 
Figure 1. Vialogues, http://vialogues.com 

Since December 2011, 3~5 vialogues have been featured on 
the Vialogues homepage weekly. At the moment of writing, there 
were 357 featured vialogues with a total of 3995 comments. 
Based on the reviewed literature, we selected three features to 
detect the most engaging comments from online video 
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discussions: 1) Comment Syntactic, including basic discourse 
structure: comment length (total characters), word counts, words 
per sentence and comment density, comment novelty, comment 
readability; 2) Comment Semantic, including comment 
psychometrics and comment sentiments and 3) User Interactions, 
including Vilaogues moderation, user activity and user behavioral 
patterns. 
3. EVALUATION 
Our goal is to construct a generic model that can predict users’ 
behavior based on the discussion structure, content and their 
interactions. To capture whether the observed assumptions on the 
features would account for the variation in engagement prediction, 
we performed logistic regression. Overall, the full model was able 
to successfully predict user behavior at F(1, 334)= 3.25, p<.001, 
adjusted-R2=0.139. We tested the goodness of the models 
reserving 20% of the observations for testing with 10-fold cross 
validation (MAE10FOLD=2.59) and selected a final model.  

3.1 Effects of Syntactic on Engagement 
In predicting user engagement based on comment syntactic 
features, we found that the relative position of the comment to the 
video has a significant positive effect on user engagement. A 
possible explanation is that once a user starts playing a video, 
disregarding the video length, it is common to spend some time in 
the beginning getting oriented to the context and participate later. 
Such results provide very useful information for instructors or 
instructional designers to be aware of the natural tendency of 
“warming-up” phase of a discussion and can adaptively moderate 
discussions early on. We anticipated that the more novel words in 
the comments, the more engaged with the discussion a user might 
be. However, the results demonstrated otherwise. Possible reasons 
could be that new words or new information may be useful, but 
may also be distracting, losing user focus. Among other comment 
syntactic features, we see a tendency of less lengthy comments 
and slightly complex words tend to promote video discussion. 
Although these are not significant predictors of user engagement, 
we think the short and complex words phenomenon can be 
somehow attributed to the hashtags (#).  

3.2 Effects of Semantics on Engagement 
Some online discussion literature has already suggested that 
discussions may remain at a surface level, such as sharing or 
comparing information, without diving into deeper levels [11]. To 
prove that the vialogues effective promote meaningful discussion 
rather than surface level communications, we looked at the 
comment semantics. Based on the logistic regression model, we 
found that only cognitive words attributed significantly positive to 
users’ engagement; perceptual and relative words negatively 
attributed to users’ engagement, social and biological words were 
marginally negatively attributed to users’ engagement; and 
emotional words (affection words or sentence sentiments) in the 
comments do not affect users’ engagement. The results seemed to 
be counterintuitive to our understanding at the beginning; 
however, the results supported the design of vialogues to facilitate 
meaningful video discussions and appeared to be engaging when 
the comments are highly cognitive but not superficially 
conversational.  

3.3 Effects on User Interactions 
We found that the number of moderators’ comments, the number 
of views and the number of timecode clicks are positively and 
significantly attributed to the vialogues engagement. However, 
there were significant negative correlations among the number of 

moderators, the moderation ratio, the number of vialogues were 
embedded and the number of vialogues being bookmarked as 
favorites. Such results revealed the importance on the comments 
quality instead of quantity. Meanwhile, users were found engaged 
with immediate interactions (time-code clicks to reference to 
specific video fragment and the comment) with the video 
discussions rather than post-interactions (such as favorite the 
vialogue or embedded it to elsewhere).  
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ABSTRACT 
Following a low cost and non-intrusive approach, in this paper we 
discuss how prediction rates from 5 different data mining 
algorithms using 4 different emotional labeling approaches differ 
when exploring the usage of keyboard and mouse interaction 
sources for affective states detection in a math problem solving 
experiment. 
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Data Mining, Affective Computing, Affective States, Human-
Computer Interaction, Keyboard, Mouse. 

1. INTRODUCTION 
Due to the existing relations between emotions and cognitive 
processes in learning, there is a need to take into account the 
learners’ affective state when supporting the learning process [7]. 
With this context in mind, in this paper we explore the potential 
of using mouse and keyboard interaction data as affective 
information sources, which are low cost and non-intrusive. We 
compare the results obtained from them with those provided by 
alternative data sources, such as sentiment analysis and 
physiological signals.  
The most common approach reported in the literature regarding 
emotion detection is based on using a single data source as 
affective indicator [2, 12]. Usually, keyboard and mouse 
interactions as well as physiological sensors are used. Regarding 
keyboard, keystroke features extracted from single events are 
used to detect affective states [2], although combined keystroke 
events indicators have also been considered [4]. On the mouse 
side, some works have used features such as speed or direction to 
detect affective states [12]. A review of different studies carried 
out to detect emotions from keyboard and mouse interactions can 
be found in [6]. Physiological sensors have been widely used with 
affective purposes, but usually using intrusive ways to get data 
[5]. 

2. EXPERIMENT & RESULTS 
A math problem solving experiment was carried in our lab with 
75 participants (details in [11]) in order to research how to detect 

affective states with data mining [9]. To gather emotional data we 
used different data sources: keyboard interactions (K), mouse 
interactions (M), webcam recording, computer screen recording, 
Kinect recording and physiological recording (i.e. heart rate, skin 
conductance, breath frequency and skin temperature) (P). The 
experiment collected participants’ emotional baseline. The 
mathematical tasks consisted of 3 series of 6 problems. For each 
problem, participants had to select one answer from a set of 4 
possibilities and fill in the 9-point Self-Assessment Manikin 
(SAM) [3] scale to report their valence (i.e. pleasure) and arousal 
(i.e. activation) state. After each group of problems (task), 
participants had to type their feelings about it. Emotions were 
elicited by giving less time than required to do some tasks, or 
changing their difficulty level. All along the experiment each 
participant had an affective tutor, who supervised the progress 
and took timestamps on the physiological recordings on every 
task beginning. 
Representing the affective states occurred during a session is an 
open issue [8], so several approaches to emotionally label 
interactions were considered: i) SAM scores provided by 
participants during the experiment (Label 1), calculating the mean 
and standard deviation for each task; ii) SAM scores provided for 
each task by two psychologists (with experience in motivational 
and educational issues) after reading the corresponding emotional 
reports (Label 2); iii) a categorical classification (positive, 
negative, neutral and positive-negative) provided by another 
expert (with 10 years of experience in supporting learners in e-
learning platforms) when reading those emotional reports (Label 
3), and iv) the average value from the 9-point SAM scores per 
task given by the participant and the psychological experts (Label 
4). 
For data processing, indicators were grouped by task. For 
keyboard interactions, depending on the event aggregation 
performed, the indicators generated were the following: i) number 
of key press events, ii) average time between press events, iii) 
average time between a press and its following release event and 
iv) number of times a certain key or a group of keys has been 
pressed (backspace key, delete key, alphabetical characters keys, 
etc), and v) the indicators proposed in [4], which were generated 
from creating combinations of two or three keystrokes events. On 
the mouse interactions side, indicators were as follows: i) number 
of clicks (per button and aggregated); ii) overall distance; iii) 
covered distance (distance the cursor has traversed) between two 
button press events, between a button press and its following 
release event, between a button release and its following press 
event and between two button release events; iv) the Euclidean 
distance in the four previously described cases; v) the difference 
between the covered and the Euclidean distances calculated; and 
vi) time durations between the proposed combinations of events. 
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When processing the physiological signals, differences between 
the values in each task and the baseline value for each signal were 
calculated and used to compute the average for all those values. 
Additionally, sentiment analysis (S) was used to automatically 
generate an affective score for each emotional report, counting the 
number of positive and negative terms according to the MPQA 
Opinion Corpus affective database. 

Following previous works [10], our goal here was to predict the 
valence dimension as higher correlations were found with valence 
than with arousal. As suggested in the literature [1], the 9-point 
valence values were grouped into three categories (i.e., positive 
(>6), negative (<4) and neutral (4-6)). Different algorithms were 
used, namely C4.5 (C), Naïve Bayes (N), Bagging (B), Random 
Forests (R) and AdaBoost (A). Results in Table 1 show the best 
prediction rate depending on the labelling and the data source 
used and the algorithm applied to achieve that rate. The analysis 
was done on the data from 17 participants, who are the ones 
whose interactions have already been emotionally labeled with 
the four aforementioned approaches. When processing the data, 
some filtering decisions were taken, such as removing the 
registers with SAM values per task with a standard deviation 
higher than 2, as well as the registers corresponding to neutral and 
positive-negative categories. 

Table 1. Best prediction rates depending on the labels and the 
input data sources. Best result per data labeling is bolded. 

 Label 1 Label 2 Label 3 Label 4 

K 0,65 (C) 0,74 (B) 0,58 (C) 0,67 (R) 

M 0,65 (C) 0,74 (B) 0,57 (R) 0,67 (R) 

S 0,82 (R) 0,83 (A) 0,66 (A) 0,81 (C,B,A) 

K+M 0,67 (R) 0,74 (B,R) 0,59 (R,A) 0,56 (R) 

K+S 0,75 (C) 0,74 (B) 0,64 (R) 0,86 (C) 

M+S 0,85 (C) 0,74 (B) 0,6 (A) 0,81 (R) 

K+M+S 0,75 (B,R) 0,74 (B) 0,62 (B) 0,77 (A) 

P 0,67 (C) 0,74 (B) 0,52 (C,R) 0,53 (C) 

3. DISCUSSION & FUTURE WORK 
From Table 1, sentiment analysis seems to be the best data source, 
but its results can be improved when combined with keyboard or 
mouse. This suggest that combining different data sources would 
produce improvements, but this should be clarified with further 
experiments as using different prediction algorithms and 
alternative labeling approaches seem to induce significant 
differences in the results. Up to our knowledge, there are no 
works in the literature that report a deep comparison of the 
benefits of each labeling approach. Due to this, it seems of 
interest to study different approaches to label emotions by 
performing a comparative analysis using a large number of 
algorithms depending on their predictive features (using feature 
selection techniques). Another future step of interest to take is 
exploring the idea of mining these sources separately and then 
mining the obtained outputs, in search for a system that would be 
able to automatically choose the data source to be used depending 
on their individual success in the prediction. 
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ABSTRACT
Examinations are tools for measuring examinees’ skills. A
question item in an examination requires several skills to
solve it. In order to grasp latent skills, it is important to
find which skills an item requires. The relationship be-
tween items and skills can be represented by a Q-matrix.
Recent studies have attempted to extract a Q-matrix by
non-negative matrix factorization (NMF) from a set of ex-
aminees’ test scores. In order to apply NMF, examination
results without missing values are required as the matrix to
be decomposed. However, it is difficult to assemble complete
examination results because users of intelligent tutoring sys-
tems solve different items at different times. In this paper,
we propose a method which extracts a Q-matrix by aggre-
gating incomplete examination results asynchronously.

1. INTRODUCTION
The concept of a Q-matrix was developed on the basis of
the rule space method (RSM) by Tatsuoka et al. [4]. A
Q-matrix allows us to determine which skills are necessary
to solve each item of an examination. Recently, there have
been several studies on how to extract a Q-matrix from a
set of examination results [1, 2]. These studies applied the
non-negative matrix factorization (NMF) method to decom-
pose the results of an examination into a Q-matrix and an
S-matrix (which gives the relationship between skills and
users). In particular, the online NMF with regularization
(online NMF) has been proposed in order to extract a con-
stant Q-matrix from examination time series in an online
fashion [2]. Although these NMF methods require the input
matrix to have no missing values in order to be able to fac-
torize it, real examination results have many missing values
because users of general intelligent tutoring systems (ITSs)
do not always solve all items. In this paper, we introduce a
novel method for extracting a time-invariant Q-matrix from
a time series of asynchronous and incomplete examination
results. The key ideas are as follows: 1) to synchronize
time-series data per “stage” (the period during which a fixed
number of items are given) to obtain multiple item-user ma-
trices having missing values and 2) to apply the weighted
NMF [3] to each matrix in an online manner as with the
online NMF. We empirically demonstrate the effectiveness
of the proposed method by using artificial data sets.

2. COLLECTING EXAMINATION RESULTS
FROM REAL ITS

In the Q-matrix extraction by the online NMF [2], the Q-
matrix Q was assumed to be constant, while S-matrix St

varied over time because users acquired knowledge by learn-
ing and experiences. An examination result Rt changed
whenever St changed because ¬Rt was obtained according
to the equation ¬Rt = Q ◦ (¬St), where the operator ¬
denotes Boolean negation. In order to extract a constant Q-
matrix from such variable examination results, the key idea
of the online NMF was that the initial values of the matrix
are inherited from the Q-matrix of the previous decompo-
sition; this is in contrast to the conventional NMF-based
method, in which the initial values are set at random.

However, in a real ITS, it is impossible to collect all users’
answers as examination results because each user solves dif-
ferent items at different times, even the online NMF needs
all answers. In this paper, we introduce the novel concept
of a stage to resolve this problem. We define one stage as a
period during which a fixed number of items are given and
a fixed number of skills are required for each stage. In this
paper, one stage is defined as when items in an ITS are given
c items to a user. Elements of ¬Rs are collected as users’
results from every stage s. The overall flow of the proposed
method is shown in Figure 1. In this figure, the ¬Rs are
constructed using a stage with c = 3.
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Figure 1: Overall flow of the proposed method
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3. Q-MATRIX EXTRACTION FROM INCOM-
PLETE EXAMINATION RESULTS

Whereas the online NMF needs a filled matrix, the examina-
tion results collected as ¬Rs have missing values. In order
to factorize the incomplete matrix, we apply the WNMF.
The WNMF can cope with missing values in an observed
matrix. Suppose W is a binary matrix of the same size as
¬R such that Wij = 1 when ¬Rij is known and Wij = 0
when ¬Rij is missed. The update rules of the extraction of
the Q-matrix with WNMF are as follows:

Qik ← Qik
((W ∗ ¬R)¬S⊤)ik

((W ∗ (Q¬S))¬S⊤)ik
, (1)

¬Skj ← ¬Skj
(Q⊤(W ∗ ¬R))kj

(Q⊤(W ∗ (Q¬S)))kj
, (2)

where ∗ denotes element-wise multiplication.

The online WNMF produces a Q-matrix by letting the initial
values be those obtained at the previous stage. The cost
function of the online WNMF can be written as

min
Qs,Ss

{∥¬Rs −Qs¬Ss∥2F + λ(s)(∥Qs−1 −Qs∥2F )}, (3)

where λ(s) is a monotonic increasing function of time given
by λ(s) = αs/S, where s is a stage in (1, . . . , S), and α
is the constant parameter determining the rate of increase.
At each stage s, we find Qs and ¬Ss according to (3), so
that the sum of the factorization error and regularization
term is minimized. In the optimizations with respect to Qs

and ¬Ss, we set Qs by inheriting Qs−1, and choose ¬Ss by
taking random non-negative values.

4. EXPERIMENTAL RESULTS
In order to verify the effectiveness of our methods, we made
a synthetic examination time series. We generated a time-
varying S-matrix and a fixed Q-matrix to obtain ¬Rs ac-
cording to the equation ¬Rs = Q ◦ (¬Ss). A conjunctive
Q-matrix consisted of 31 items and 5 skills. We designed
a time series of ¬Ss as a process of acquiring skills, on the
basis of the item response theory.

As a measure of the performance for Q-matrix extraction, we
introduce a Q-matrix error es between Q and an extracted

matrix Q̂s as es = ∥Q̂s − Q∥2F . Note that the factorized
solutions obtained using the NMF may not be unique due to
the randomness of the initial matrices. Hence, we calculated
the mean and standard deviation of Q-matrix errors from 10
simulations.

To begin with, we need to investigate the factorized per-
formance of WNMF which concerns with the missing rate
of an input matrix. The matrix was made by simulating
random {0, 1} as a filled matrix. We made incomplete ma-
trices from the matrix by giving various masks with different
missing rate to it. Figure 2 shows the relationship between
factorized errors and missing rates of matrices. The factor-
ized errors are low when the missing rates of matrices are
less than 30%. As a result, we defined one stage as c = 23,
namely the missing rate of each Rs was 25% because a user
solved 23 out of 31 items. Figure 3 shows the Q-matrix
errors for both the WNMF and the online WNMF for ex-
amination results having a missing rate of 25%. Although,
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Figure 2: The correlation between factorized errors
and missing rates of an input matrix.
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Figure 3: The Q-matrix errors with the WNMF and
the online WNMF over missing rate 25%.

in the WNMF only, the Q-matrix error did not become zero
at any stage and the error gradually increased after stage=8,
the online WNMF overcame this problem.

5. CONCLUSIONS
In this paper, we have introduced the concept of a stage
to collect users’ answers asynchronously and have proposed
the online WNMF for the purpose of extracting a constant
Q-matrix from a time series of incomplete examination re-
sults. We have designed the method so as to decompose ex-
amination results with missing values. Finally, we applied
the proposed method to a synthetic data set to demonstrate
that it could find a constant Q-matrix stably.
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ABSTRACT 
Recent work demonstrates that process data from intelligent 
tutoring systems (ITSs) can be used to predict student outcomes 
on high-stakes, standardized tests.  Such models are important if 
ITSs are to be used for formative assessment and as replacements 
for external assessments.  Recent work used various measures of 
learning efficiency and performance from problem-level, 
aggregate data from Carnegie Learning’s Cognitive Tutor to 
predict standardized test scores on the state of Virginia’s 
Standards of Learning exam. We generalize this model to a 
different school district, state, and standardized test and examine 
extending the model using finer-grained data. 

Keywords 

Formative assessment, standardized tests, intelligent tutoring 
systems, Cognitive Tutor, off-task behavior, gaming the system 

1. INTRODUCTION & BACKGROUND 
Advanced learning systems like Cognitive Tutor (CT) [8] and 
ASSISTments [4], which assess students as they teach, have the 
potential to reduce time taken away from instruction to assess 
student knowledge. By fully integrating instruction with 
assessment, they ensure that the two are well aligned. Recent 
work has aimed to demonstrate correlations between such 
unconventional assessments and exams to determine whether they 
prepare students for assessments or could replace conventional 
high-stakes assessments (e.g., [5,7,9]).   

The CT mathematics intelligent tutoring system (ITS) is known to 
improve student learning and performance on standardized tests 
(e.g., [6]), and recent work [9] demonstrated that a model 
incorporating CT process data predicts middle school outcomes 
on Virginia’s (VA’s) Standards of Learning (SOL) exam [10]. We 
generalize this result to a new population of students from a 
different school district and U.S. state on a different test. We also 
investigate extending the model by using finer-grained data. 

We ask: what process data should instructional/analytics systems 
track, and what level of granularity (e.g., problem-level vs. 
problem-solving steps) is sufficient for tracking?  Both questions 
are important if ITSs are to be used for instruction and formative 
assessment, and if instructor dashboards and diagnostic systems 
are to be useful and scalable. 

1.1 Cognitive Tutor 
CT curricula are sequences of topical sections in instructional 
units. Sections contain a set of problems, each of which targets 
one or more knowledge components (KCs). Problems are 
adaptively presented to students according to KCs that a student 

has yet to master, as probabilistically assessed by CT. Students 
proceed to the next section when they master all KCs in a section. 
A student can choose to ask for a hint at any problem-solving 
step. As assessing KC mastery depends on errors made and hints 
requested, students may require different numbers of problems. 

1.2 Previous Work & VA’s SOL Exam 
Past work has associated learning system process data with 
standardized test scores.  For example, data from ASSISTments 
(e.g., counts of help requests) have been used to predict 
Massachusetts Comprehensive Assessment System (MCAS) 
scores (e.g., [5]).  Problem-level features used in these models do 
not require logging data at the level of individual student actions, 
but they still provide satisfactory models of test scores. 

Predictions of sensor-free, data-driven “detectors” of gaming the 
system [2], off-task behavior [1], and affect [3] with 
ASSISTments data have been used to predict MCAS scores [7]. 
Detectors require fine-grained tracking of student actions in ITSs 
rather than features like aggregate counts of hints.  A natural 
question is whether finer-grained data provide information about 
test scores beyond that provided by problem-level data. 

Previous work [9] predicted outcomes of VA’s SOL test from 
problem-level CT process data. Data included usage for 3,224 
students in Grades 6-8 across 12 schools. Grade 7 data were used 
to build an ordinary least squares (OLS) linear regression model. 
Five variables were significant: (1) Total Problem Time - 
problem-solving time; (2) (number of) Skills Encountered (3) 
(number of) Sections Encountered; (4) Assistance Per Problem - 
average sum of # of hints requested and errors made for each 
problem; and (5) (average number of) Sections Mastered Per 
Hour. Model parameter estimates for Grade 7 data (model 
adjusted R2 = 0.43) were used to predict outcomes for Grade 6 (R2 
= 0.46), Grade 8 (R2 = 0.18), and overall (R2 = 0.38). 

2. GENERALIZING THE MODEL 
2.1 West Virginia’s WESTEST 2 
We generalize the model that predicted SOL scores by modeling 
data from a school district in West Virginia (WV) that uses a 
different standardized test, WESTEST 2. For math, WESTEST 2 
assesses a student’s on defined standards, objectives, and skills, 
using multiple-choice questions and gridded response items [11]. 

2.2 Data & Results 
We build models of data from the 2012-2013 school year, 
including usage information for 636 students, mostly 9th graders 
taking Algebra 1, with 5+ hours of CT usage and scores above the 
“novice” ranking for WESTEST 2 achievement descriptors, as 
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students with a novice ranking are likely from a different learner 
sub-population than that which we target here.  

Our approach starts with the variables found in the prior work. 
Skills Encountered and Sections Encountered are highly 
correlated (r = 0.989), so we disregard the variable with lower 
correlation to WESTEST 2 scores (Sections Encountered).  
Building a stepwise regression model from remaining variables, 
including neither Skills Encountered nor Total Problem Time 
improves the model over that of Table 1 (R2 = 0.295). Student-
level (10-fold) cross validation does not lead to models that differ 
substantially, so two variables generalize to WV’s exam. 

Table 1: Standardized regression coefficients, & significance 
for generalized model of WESTEST 2 scores (***p < .001) 

Variable Coefficient 

Assistance Per Problem -0.225*** 

Sections Mastered Per Hour 0.372*** 

3. EXTENDING THE MODEL 
Data-driven “detectors” of gaming the system [2] (e.g., abusing 
hints or excessive guessing), off-task behavior [1] and affect [3] 
have been used to predict MCAS scores [7]. Detectors use 
features “distilled” from problem-solving-step-level (i.e., finer-
grained data) logs. 

We construct Steps Gamed and Steps Offtask variables using data 
for 5 million+ student actions, to capture the proportion of student 
problem-solving steps detected as instances of these behaviors.  
Table 2 reports the regression model (R2 = 0.322) including these 
variables and correlations to WESTEST 2 outcomes.  

Table 2: Regression coefficients for extended model & 
correlations with learning outcome (**p <.01; ***p<.001)  

Variable 

 
Regression 
Coefficient 

Correlation 
with 

WESTEST 2 

Assistance Per Problem -0.07 -0.47*** 

Sections Mastered Per Hour 0.396*** 0.52*** 

Steps Gamed -0.224*** -0.51*** 

Steps Offtask 0.129** -0.2*** 

Measures of student efficiency, gaming the system, and off-task 
behavior are significant predictors of outcomes. Off-task behavior 
is relatively weakly correlated with WESTEST 2 outcomes. 
Assistance Per Problem and Steps Gamed are highly correlated (r 
= 0.8, two-tailed p < .001); if gaming is a common cause of more 
assistance (i.e., hint abuse) and less learning, conditional on Steps 
Gamed, Assistance Per Problem and learning would be 
independent, so Assistance Per Problem would be insignificant.  
Sections Mastered Per Hour is negatively correlated with Steps 
Gamed (r = -0.68, p < .001) and Steps Offtask (r = -0.59, p < 
.001), so gaming and off-task behavior seem to provide the same 
information about outcomes as variables in the generalized model.  

4. DISCUSSION 
Two features from a model that predicts VA’s SOL test generalize 
to WV’s WESTEST 2.  We attempted to extend the model by 
including features that require finer-grained data about problem-
solving steps; we find that gaming the system and off-task 
behavior do not substantially improve our predictions for 
WESTEST 2, in part because assistance is highly correlated with 

gaming. Our results thus suggest that the benefits of collecting 
fine-grained data needed to construct sophisticated features may 
not be substantial for use in test score prediction. Nevertheless, 
engineered features and fine-grained data may provide for real-
time assessment to target interventions. 
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ABSTRACT
A technique to detect patterns in student’s program source
codes. First, we represent a source code in the form of an
Abstract Syntax Tree (AST). The detection of patterns is
done with the SLEUTH algorithm for frequent subgraph
mining on trees. We provide experiments using real data
from a programming course at our university. In the paper,
we discuss the relation between patterns and skills as well
as some use cases and further directions of our research.

Keywords
pattern, source code, student, skills

1. INTRODUCTION
One of the best-known problems in educational data min-
ing (EDM) is predicting student’s performance [6]. A great
deal of algorithms have been applied to predict academic
success of students. However, we are interested mainly in
the following issues/questions: What lies in the background
and prerequisities of students’ success? What skills do stu-
dents have and what is their level? We are inspired by a
real situation from one programming course at our univer-
sity. Students solve programming tasks where their pro-
duce a program source code. Evaluation of the solutions
for the tasks solved by students is a complex process driven
mainly by subjective evaluation criteria of a given teacher.
Each teacher is somehow biased meaning how strict she is
in assessing grades to solutions. Besides the teacher’s bias
there are also some other factors contributing to grading,
for example, teachers can make mistakes, the grading scale
is too rough-grained or too fine grained, etc. Latent pro-
gramming skills of students are somehow “encoded” in their
source codes provided. Automatic detection of these latent
skills (with or without the assistance of the teacher) remains
still an open issue.

Pardos and Heffernan presented a model called “Knowledge
tracing” [5] and they used it to model students’ knowledge

and learning over the time assuming that all students share
the same initial prior knowledge. However, by consider-
ing the needed (listed) skills as attributes of the task, it
is straightforward to use them also as features in prediction
models [7]. Desmarais [3] introduces different linear mod-
els of student skills for small, static student test data that
does not contain missing values. They compare the predic-
tive performance of their model to the traditional psycho-
metric Item Response Theory approach, and the k-nearest-
neighbors approach. In [1] they present wrapper-based method
for finding the number of latent skills.

This work focuses on designing the technique to detect pro-
gramming patterns from students’ source program codes.
Using real data, we illustrate how do patterns related to
skills of students predefined by the teacher (author) are dis-
covered. The contributions of this work are the following:
i) we introduce a model for representing source codes in a
tree-structure, ii) we propose an approach to detect patterns
in source codes utilizing pattern mining algorithm.

2. THE PROPOSED APPROACH
Our approach is based on pattern detection from source
codes and on the analysis of the relationships between the
found patterns and the skills for programming tasks pre-
defined by the teacher.

Source Code Representation is a critical issue in design-
ing the process of pattern recognition. We utilize a repre-
sentation scheme of source codes in the form of Abstract
Syntax Trees which provide detailed information about the
source code which can be used for various types of analysis
[4]. Since AST contains lots of abundant information from
a pattern detection point of view, we have implemented our
own filter to generate a representation of a source code in
XML format from AST. which provides us with a better
abstraction of a source code in different levels which allows
us to better specify its important parts needed for the next
step of our approach.

Pattern Mining Method which we use in our approach
is SLEUTH, an efficient algorithm for mining frequent, un-
ordered, embedded subtrees in a database of labeled trees
[8]. Given the particular source codes, first, we represent
them in relevant trees in XML format at the given level
of abstraction. Second, we apply SLEUTH on the prepared
dataset of trees.The aim is to find all patterns (frequent, un-
ordered, embedded subtrees) in the input dataset. We are
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especially interested in so-called maximal frequent patterns,
i.e. maximal frequent subtrees which are defined as those
frequent subtrees none of which proper supertrees are fre-
quent [2]. Finally, we cluster the resulting maximal frequent
patterns (since many of them may be similar) and extract a
set of representative patterns from each cluster of maximal
frequent patterns.

Relation between Patterns and Skills. Consider the
following instance of the for loop construction in the Java
programming language.

for(int i=0;i<5;i++) {...} (1)

To understand this construction of a for loop, and thus, to
be able to use it during programming, we must first under-
stand the following four programming concepts we call pre-
requisites for the for loop : i) variable declaration (int i),
ii) variable assigment (i=0); iii) relational operators (i<5),
iv) increment/decrement operators (i++). An important is-
sue to mention is “The whole is greater than the sum of its
parts” principle. For example, if one knows all of these pre-
requisites for the for loop individually it does not necessarily
mean that she is also able to construct a for loop itself.

3. FIRST EXPERIMENTS
Experiments were performed with a real-world dataset, la-
beled “PAC”1. The dataset contains the following informa-
tion about students’ solutions: studentID, taskID, teacherID,
grade, review, solution (source code). Main characteristics of
the dataset are described in the table 1. Each task belong to
one set of tasks, i.e. we consider a set of tasks as one complex
task containing several subtasks. We realized experiments

Table 1: Characteristics of the dataset used
Dataset PAC #Students #Sets #Tasks #Codes

2011/2012 A 82 7 33 578
2011/2012 B 36 9 21 381
2012/2013 A 85 6 28 769
2012/2013 B 33 10 20 397
2013/2014 A 78 7 31 510

on the sets of tasks according to the described steps of our
approach above, such as representation in AST, conversion
to XML, pattern mining with SLEUTH and clustering the
maximal patterns.

The result shown in Figure 1 refer to the number of patterns
and the number of maximal patterns detected in the data for
different sets of tasks. Using maximal patterns we are able
to filter out repetitive and meaningless patterns. In pattern
mining method we used support 0.8, 0.9, 1 corresponding to
80%, 90% and 100% coverage, respectively.

4. CONCLUSIONS
We presented a model for mining patterns in source codes in
order to map these patterns to corresponding programming
skills. The proposed model consists of several phases such
as source code representation in the form of AST and its

1Collected from the “Programming Algorithms Complexity”
course at the Institute of Computer Science at Pavol Jozef
Šafárik University during the years 2011–2014.

Figure 1: The number of detected patterns and max-
imal patterns with support=1 (i.e. 100% coverage).

transformation to XML at different levels, mining frequent
maximal patterns and choose their representatives by utiliz-
ing clustering techniques. Since our work is in its beginning
we provided only some early-bird experiments. We have also
discussed three use cases of the mined programming patterns
we would like to focus on in our future work.

5. ACKNOWLEDGMENTS
This publication is the result of the Project implementation:
University Science Park TECHNICOM for Innova-
tion Applications Supported by Knowledge Technol-
ogy, ITMS: 26220220182, supported by the Research & De-
velopment Operational Programme funded by the ERDF
and partially supported by the research grants VEGA 1/0475/14
and VVGS-PF-2013-102.

6. REFERENCES
[1] B. Beheshti, M. C. Desmarais, and R. Naceur. Methods

to find the number of latent skills. International
Educational Data Mining Society, 2012.

[2] Y. Chi, R. Muntz, S. Nijssen, and J. Kok. Frequent
subtree mining - an overview. 2005.

[3] M. C. Desmarais, R. Naceur, and B. Beheshti. Linear
models of student skills for static data. In UMAP
Workshops, 2012.

[4] M. K. and S. Yamamoto. A case tool platform using an
xml representation of java source code. Proccedings of
Fourth IEEE International Workshop on Source Code
Analysis and Manipulation, 2004.

[5] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. Proceedings of
International Conference on User Modeling, Adaptation
and Personalization, (UMAP 2010), 2010.

[6] C. Romero and S. Ventura. Data mining in education.
Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2012.

[7] N. Thai-Nghe, L. Drumond, T. Horváth, and
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ABSTRACT 
For tutorial dialogue systems, classifying the dialogue act (such as 
questions, requests for feedback, or statements) of student natural 
language utterances is a central challenge. Recently, momentum is 
building for the use of unsupervised machine learning approaches 
to address this problem because they reduce the manual tagging 
required to build dialogue act models from corpora. However, 
unsupervised models still do not perform as well as supervised 
models in terms of accuracy. This paper presents an unsupervised 
dialogue act modeling approach that leverages the influence of 
learner characteristics, particularly students’ perceptions of their 
own skill, on their language use. The experimental findings show 
that leveraging skill perception within dialogue act classification 
improves performance of the models, producing better accuracy. 
This line of investigation will inform the design of next-
generation tutorial dialogue systems, which leverage machine-
learned models to adapt to their users.   

Keywords 

Tutorial dialogue, learner characteristics, dialogue act 
classification, unsupervised machine learning. 

1. INTRODUCTION 
Tutorial dialogue is a highly effective form of instruction, and 
much of its benefit is thought to be gained from the rich natural 
language dialogue exchanged between tutor and student [2]. In 
order to model tutorial dialogue for the purposes of building 
tutorial systems or for studying human tutoring, dialogue acts 
provide a valuable level of representation. Dialogue acts represent 
the underlying intention of utterances (for example, to ask a 
question, agree or disagree, or to give a command) [1]. For 
tutorial dialogue systems, dialogue act classification is crucial to 
understanding students’ utterances and developing tutorial 
strategies [6].  

Today’s tutorial dialogue systems utilize a variety of dialogue act 
classification strategies. Historically when machine learning has 
been used to devise tutorial dialogue classifiers, these have been 
supervised classifiers, which require training on a manually 
labeled corpus. However, supervised techniques face substantial 
limitations in that they are labor-intensive due to the manual 
annotation and handcrafted dialogue act taxonomies that are 
usually domain-specific. To overcome these challenges, 
unsupervised dialogue act modeling techniques have been 
investigated in recent years.  

Despite this growing focus on developing unsupervised dialogue 
act classifiers, these models still underperform compared to 
supervised approaches in their accuracy for classifying according 
to manual tags. However, while unsupervised models to date have 

considered such things as lexical features (the words found in the 
utterance) and syntactic features (the structure of the sentence), 
they have not considered learner characteristics, such as skill 
perception, which are believed to influence the structure of 
tutorial dialogue [3]. Learner characteristics also play an 
influential role in learning in web-based courses [5].  

This paper investigates whether the performance of an 
unsupervised dialogue act classifier can be improved by taking a 
specific learner characteristic into account. We utilize skill 
perception, a student’s ranking of her own skill as she perceives it 
compared to others. Specifically, we train unsupervised dialogue 
act models that are tailored to students of a specific skill 
perception level, and we compare those models to ones trained 
without restricting by that learner characteristic. This 
unsupervised training is conducted entirely without the use of 
manual tags. We then test the models on held-out test sets within 
leave-one-student-out cross validation, and compare the resulting 
classification accuracy according to their previously applied 
manual tags. The results can inform the way that next-generation 
tutorial dialogue systems conduct their real-time dialogue act 
classification.  

2. DIALOGUE ACT MODELING 
The corpus used in this study consists of computer-mediated 
student-tutor interactions during an introductory computer science 
programming task [4]. Throughout the data collection, students 
and tutors communicated through a textual dialogue-based 
learning environment while working on Java programming. 
Students were given a pre-survey that included items on computer 
science. The pre-survey included an item that asked students to 
rate how skilled they are in the domain compared to others. We 
refer to this response as skill perception. Students (n=42) were 
divided into groups (high and low skill perception) based on the 
median score. 

The corpus containing 1,640 student utterances was manually 
annotated with dialogue act tags in a previous work [4]. There are 
seven student dialogue acts in total (Answer, Acknowledgement, 
Statement, Question, Request for Feedback, Clarification and 
Other) where the majority class baseline chance is 39.95%. As 
required by unsupervised modeling, these dialogue act tags are not 
available during model training, but we use them for evaluation 
purposes to calculate accuracy on a held-out testing set. 

We hypothesize that dialogue act models built using unsupervised 
machine learning will perform substantially better when 
customized to specific learner group skill perception. The corpus 
is partitioned by skill perception and we examine whether an 
unsupervised dialogue act classifier trained only on students with 
high skill perception performs better on a test set of dialogue acts 
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from high skill perception students, compared to a classifier 
trained on a mixture of high and low skill perception students.  

In order to gather accuracy data across these characteristics, we 
conduct leave-one-student-out training and testing folds. The 
testing set for each of the n folds consists of all of a single 
student’s dialogue utterances and the model is trained on the 
remaining n-1 students. We compute the average test set 
performance of the model across all folds for each learner 
characteristic partition. The performance metric utilized in this 
study is accuracy compared to the manually labeled dialogue acts 
where accuracy is the number of utterances in the test set that 
were classified the same as their manual label, divided by the total 
number of utterances in the test set. Our unsupervised dialogue act 
classifier leverages the k-medoids clustering technique.  

Figure 1: Leave-one-student-out test set accuracies for models 
by skill perception 

For students with low skill perception (nlowSkill=26) the average 
performance of the dialogue act classification model trained on 
utterances of randomly selected students is 0.39 (σ=0.17) whereas 
the accuracy rises to 0.43 (σ=0.17) for a tailored model trained 
only on students with low skill perception (Figure 1). This is not a 
statistically significant difference after Bonferroni correction. For 
these students, 11 out of 26 cases improved their performance by 
utilizing the learner characteristic (five of them above 5% and five 
of them above 15%), six of them were affected negatively (four of 
them below 5% decrease) and nine of them achieved the same 
performance. 

The same pattern is visible for students with high skill perception 
(nhighSkill=16). For these students, the average test set accuracy 
increases from 0.38 (σ=0.14) to 0.42 (σ=0.13) gained by using 
utterances of students with high skill perception rather than 
learning from utterances selected randomly, again not statistically 
significant after Bonferroni correction. Six of the cases out of 
sixteen improve test set accuracy (four of them above 15%), three 
of them degrades (two of them below 5%) and seven cases 
perform equally. 

Although the differences in model performance were not 
statistically reliable for students in different skill perception 
groups, we observed some interesting patterns within these groups 
(Table 1). Students with low skill perception tended to use more 
utterances such as, “ok I am getting it,” which may be a type of 
affective or face-saving dialogue move. Students in the high skill 
perception group seem to exhibit more social, relaxed utterances, 
reflected by examples such as, “cool cool” and “yeah haha.” 

Low Skill Perception High Skill Perception 

A
ck

no
w

le
d

gm
en

ts
 - oh 

- ok I am getting it 
- ok I get it! 
- interesting 
- oh ok 

-cool cool 
-yeah haha 
- yep lol 
-yep! exciting stuff! 
- sure 

Q
ue

st
io

ns
 

- what do i do now 
- can you explain more 
about the scanner line 
- so what is this doing 
exactly? 
-why is not it prompting 
me to enter my name? 

-comments are just a way 
to write notes to others to 
help them understand 
right? 
- out of curiosity would 
not it make sense to 
switch those last two 
lines of code? 

Table 1: Selected utterances from clusters tailored to skill 
perception  

3. CONCLUSION
Understanding student natural language within intelligent tutoring 
systems is a critical line of investigation for tutorial dialogue 
systems researchers. For dialogue act classification in particular, 
the field has only begun to explore unsupervised approaches and 
to investigate the range of features that are beneficial within this 
paradigm. We have presented a first attempt to leverage learners’ 
perception of their own skill within a dialogue act classification 
model. It is hoped that the research community can continue to 
build richer models of natural language understanding for students 
of all learner characteristics in order to enhance learning. 
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ABSTRACT 

This paper describes our experiment and analysis of utilizing 

prerequisite skill features to improve the predicting of student 

retention performance. There are two aspects that make this paper 

interesting. First, instead of focusing on short-team performance, 

we investigated the student retention performance after a delay of 

7 days. We explored several prerequisite skill features that can be 

captured in an intelligent tutoring system; in our particular case, 

these prerequisite skill features were acquired from Common Core 

standard skills and student data while working on these skills. We 

showed that some of these features have encouraging predictive 

power. Our analysis confirmed the value of prerequisite skill 

features in predicting retention performance, the prediction results 

showed an improvement from an R² of 0.182 with a baseline 

feature set to an R² value of 0.192.   

Keywords 

Educational data mining, feature selection, knowledge retention, 

intelligent tutoring system 

1. INTRODUCTION 
Inspired by the notion of robust learning [1] and the design of the 

enhanced ITS  mastery cycle proposed by Wang and Beck [3], we 

developed a system called  the Automatic  Reassessment  and  

Relearning  System  (ARRS)  to  make  decisions about when to 

review skills that the student have mastered in the ASSISTments 

system (www.assistments.org). One of the important compounds 

of ASSISTments is the mastery learning problem set, which 

simplifies the notion of skill mastery to three consecutive correct 

responses with the number of attempted problems before students 

achieve mastery. The current workflow of ARRS is relatively 

simple: after classroom teaching of a certain skill, teachers use 

ASSISTments to assign a mastery learning problem set of that 

skill to students, and students are required to first master the skill 

by completing the Mastery learning problem set; ARRS will then 

automatically reassess students on the same skill 7 days later with 

a retention test (also called the reassessment test in ASSISTments) 

built from the same sets of problems the student already mastered. 

If students answer the problem correctly, we treat them as if they 

are still retaining this skill, and ARRS will test them 14 days later, 

28 days later, and then finally 56 days after that. If a student fails 

the retention test, ARRS will give him an opportunity to relearn 

the skill.  

Cognitive domains usually have a model that represents the 

relationship between knowledge components. Each of these 

knowledge components is a major skill in the domain that 

students are expected to have. The relationship between these 

knowledge components or skills is either prerequisite or post-

requisite. A prerequisite skill of a skill A is a skill that students 

are expected to have to be able to succeed in assessments of 

requiring skill A. Without knowledge of the prerequisite skill(s) 

of a given skill, a student is not expected to respond correctly to 

questions from that given skill. The map in Figure 1 is 

representation of a subset of the prerequisite skill model used by a 

number of features in ASSISTments. The ovals represent the 

skills and the arrows linking the ovals show the prerequisite and 

post-requisite relationships between the skills. The codes are the 

Massachusetts Common Core State standards for the Math skills 

[2]. ASSISTments started adopting the Common Core standards 

since fall 2013.  

 

 

Figure 1. A subset of the Common Core skills 

Cognitive models, together with their skills maps, have been used 

to determine students’ cognitive levels in a given domain. For 

example, when a student answers a problem from a given skill 

incorrectly, problems are presented from the prerequisite skill to 

determine how well they know the prerequisite skills.  

2. MODELING PREREQUISITE SKILL 

EFFECTS 
Consider a situation where a student has very high performance in 

general but performed poorly in prerequisite skills to a particular 

skill. When this student encounters the postrequisite skill, we 

would not expect him to have robust mastery; therefore, his 

performance on retention tests to that postrequisite skill could be 

poor. However, most models have only focused student’s general 

performance on their most recent performance. Hence we formed 

a hypothesis that the prerequisite skill performance can be 

independent from student local performance and can be used to 

enhance our models of predicting retention performance. We 

initially noticed [4] that the number of problems required to 

achieve mastery has great influence on the delayed performance. 

We refer to this number as the Mastery Speed. We first employed 
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the mastery speed, as well as two other basic features to establish 

a baseline for our modeling work. These features relate to item 

and skill information, including: (1) problem easiness and (2) skill 

ID. Note that because we are not using the identifier of students in 

the modelling work, thus our models can test our ability of 

generalizing to new students. To test our hypothesis, the next step 

was to gather a set of prerequisite skill features and identify which 

features can be used as predictors. Towards this end, we selected 

the following three features to capture different prerequisite skill 

information: 

(1) prerequisite skill ID: the unique identifier of each prerequisite 

skill. By modeling skill ID as a factor, we are estimating an 

overall effect of these skills; 

(2) student prerequisite skill performance: this is a measure of a 

student’s performance on a direct prerequisite skill of the 

retention test skill. This number is presented by the percentage of 

correctness of all the problems that are answered by the students 

for this prerequisite skill;  

(3) prerequisite skill easiness: the percentage of correctness for 

this prerequisite skill across all answers and all students. 

We experimented with using prerequisite skill ID as a factor, as 

well as student prerequisite skill performance and prerequisite 

skill easiness as covariates; hence there are three models to be 

calculated besides the baseline model. Table 1 provides the results 

for each of these models, the prediction performance were 

measured in terms of R² on the testing set. 

Table 1. Prerequisite skill model performance 

Model R² 

base model + student 

prerequisite skill performance 

0.189 

base model + prerequisite skill 

ID 

0.185 

base model + prerequisite skill 

easiness 

0.182 

base model 0.182 

 

From the results in Table 1, we can see that improved models 

were obtained both on prerequisite skill ID and student 

prerequisite skill performance. The results from using student 

prerequisite skill performance clearly indicate that a student’s 

performance on prerequisite skills is helpful for improving 

predictions. The predictive power of prerequisite skill ID may 

suggest that there seems to be an overall skill effect, which is 

different from the average performance of prerequisite skills, 

which is modeled by prerequisite skill easiness. Furthermore, a 

model using both prerequisite skill ID and student prerequisite 

skill performance achieved an R² value of 0.192 and the result is 

statistically reliable (p ≈ 4.5 × 10-4). This led us to believe that 

these two features are largely independent predictors and 

whatever prerequisite skill ID represents, it is relatively distinct 

from student prerequisite skill performance as the R² increases 

noticeably when both are modeled. The Beta coefficient values 

and p-values for each covariate are shown in Table 2.   

Table 2. Parameter table of covariates 

Covariate Beta p-value 

problem easiness 6.306 .00 

prerequisite skill 

performance 

2.24 .00 

 

The positive Beta values indicate that the larger the covariate is, 

the more likely the student responded to this problem correctly. 

So we see that the easiness of retention test problem is still more 

likely to affect students’ performance compared to their 

prerequisite skill performance.  

3. CONCLUSIONS AND FUTURE WORK 
In this work we attempted to model prerequisite skill features to 

better predict student retention performance in an intelligent 

tutoring system on a small dataset. We need to further investigate 

our model with larger datasets and other data sources.  

In this paper we only investigated the direct prerequisite skill of 

test skills. We have not yet looked into the skill system as a 

hierarchy of complete knowledge components. For future work 

we will consider the notion of the student's performance in all 

prerequisite skills prior to the skills we are investigating. For 

example, we could measure how well a student did on the 

retention tests of prerequisite skills. Also, it is possible that skill 

interference is also affecting the retention performance. Exploring 

these avenues to discover prerequisite skill impacts on 

performance is an interesting future direction. 
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ABSTRACT
This paper presents our approach to identifying areas of
improvement in the intelligent components of adaptive Ex-
ploratory Learning Environments. Students’ interaction data
from an online operational database are first transformed
into a data warehouse in order to allow visualisation and ex-
ploration using online analytical processing (OLAP) tools.
Using a microworld for secondary school algebra as a case
study, we also present some more targeted visualisations of
the students’ interaction data. We demonstrate the possi-
bilities that these visualisations provide for exploratory data
analysis, enabling confirmation or contradiction of expecta-
tions that pedagogical experts may have about the system
and ultimately providing both empirical evidence and in-
sights for its further development.

Keywords
exploratory learning environments, indicators, visualisation

1. INTRODUCTION
In recent years there has been much research and develop-
ment work focusing on open-ended interactive educational
applications that encourage students’ experimentation within
a domain. These applications range from simple games to
complex simulators and microworlds [1]. Although not new,
they are becoming more common due to the new forms of in-
teraction afforded by tablets and increasing ease of creation
through related authoring tools. In parallel, the appreci-
ation that in order for students to benefit from interaction
with such Exploratory Learning Environments (ELEs) there
is a need for explicit pedagogical support [2] has led to the
development of adaptive support components [1].

The design and improvement of such adaptive exploratory
environments is not a trivial task. Following a principled,
evidence-based approach needs to rely on data gathered from
students’ interactions, which can help educationalists to un-
derstand how students are interacting with the system and
technical experts to prioritise the development of enhanced
or new support features. However, log files from ELEs con-
tain large quantities of data that render their interpretation
for researchers, teachers and systems designers quite a diffi-
cult and expensive task (cf. [3]). In addition, one does not
always know in advance what data are required for analyt-
ical purposes and therefore an exploratory analysis may be
needed. Lastly, logging of students’ interaction data typi-
cally takes place in a manner that is optimal for recording
and supporting students’ interaction but not necessarily for

subsequent analysis and decision-making.

In this paper, our case study is the MiGen system, which
provides an intelligent environment to support 11-14 year old
students’ learning of algebra concepts In MiGen, students
undertake tasks in a microworld called eXpresser. These
tasks ask students to create models consisting of 2-dimensional
tiled and coloured patterns — firstly specific instances of
such models and then generalised versions in which one or
more of the numbers in their construction are replaced by
so-called “unlocked” numbers (i.e. variables). In parallel,
students are asked to create rules specifying the number of
tiles of each colour that are needed to fully colour their mod-
els (for more details see www.migen.org).

As students are interacting with the system, MiGen’s intel-
ligent support component [1] applies rule-based and case-
based reasoning techniques to infer the occurrence of a wide
range of significant task-independent and task-dependent in-
dicators from the students’ actions. These inferrences are
used to provide both unsolicited and on-demand feedback
to students. In addition, the indicators are stored in the op-
erational online MiGen database, leading to large volumes
of such data.

The question we address in this paper is: how might this
data be visualised and explored in order to determine the ef-
fectiveness of the intelligent support provided by the system
and to improve it? We have investigated several possible
visualisations, including (i) multi-dimensional data visual-
isation and exploration using online analytical processing
(OLAP) tools, and (ii) more targeted visualisations of the
frequency of occurrence of different types of indicators and
the transitions between them.

2. INDICATOR VISUALISATION
We first transformed data from the online MiGen database
into a data warehouse that categorizes indicator occurrences
according to several dimensions (e.g. when in occurred, the
student and task it relates to, what kind of indicator it is).
Multi-dimensional visualisation of this warehouse data using
standard OLAP tools allowed the MiGen team and other
experts to see what kinds of positive, neutral and negative
behaviours are occurring as students are undertaking a task.

2.1 Frequency of indicator type occurrences
The visualisation in Figure 1 illustrates the conditional rel-
ative frequencies of different types of indicators (indicators
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of Status -1, 0, 1, 2) in three successive classroom sessions
(Sessions 1, 2, 3). The widths of the bars correspond to the
relative frequencies of indicator occurrences between the ses-
sions. We can see that the number of indicator occurrences
grows with each successive session and that the frequency
of occurrence of negative indicators is decreasing with each
successive session. This may be because students are be-
coming more familiar with using the system — a hypothesis
that could warrant further investigation.
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Figure 1: Per session proportion of negative (-1),
neutral (0), positive (1) or feedback (2) indicators.

2.2 Transition of indicator type occurrences
Sequences of indicator types may be presenting patterns that
can provide insight. Standard sequence analysis, however,
provides patterns that are difficult to inspect. In order to
facilitate the involvement of domain experts, we therefore
investigated transition matrices, which are used to describe
the transitions of a Markov chain.

Given a finite space of indicator types, Pij = P (j|i) is the
probability of moving from indicator i to indicator j in one
time step. Transition matrices can be normalised to quan-
tify the transition probability from indicator i to any other
indicator. We can also normalise the matrix to measure the
incoming transition probability to indicator j from other in-
dicators. In addition, we add artificial points to the system
to capture the start and end of the interactions. Accord-
ingly, for each model, s indicates the first indicator before
the student begins construction of the model and e the last
indicator at the end of the model’s construction.

Transition matrices can be visualised using graphs such as
those in Figure 2. Indicators shown with a circle round them
indicate that there are transitions in the data where this
indicator occurs in succession. The thickness of each line or
circle indicates the value of the transition probability: the
thicker the line, the higher the probability. The red (light
grey) lines are associated with a probability less than 0.2 and
the black lines a probability greater than or equal to 0.2.

Figure 2 shows an example transition matrix from Session 1
that leads to interesting insights. For example, consider the
transition from indicator 3002, corresponding to numerical
answer being provided by the student, to indicator 6001,
corresponding to an intervention being generated by the sys-
tem. In the visualisation of Session 2 (not shown here) there
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Figure 2: Incoming Transition Matrix (Session 1)

is no occurrence of this transition. This indicates that feed-
back received from the system in Session 1 was carried over
to students’ interactions in Session 2. Such an observation
helps us raise a hypothesis for more detailed analysis or sub-
sequent experimentation (e.g. “are students internalising the
system’s feedback and thus avoiding the same error in subse-
quent sessions or is this simply an artifact of their increasing
familiarity with the system?”).

3. CONCLUSIONS
We have developed several visualisations of learners’ inter-
action data from an exploratory environment. We have dis-
cussed some insights derived from these and how they can
inform decisions with respect to further research and design
of the intelligent support provided by the system. Currently,
our visualisations require the support of a technical expert
in order to create them, using either standard OLAP tools
or ad-hoc visualisations (mostly generated using R scripts).
We plan to improve both their interactivity and their ease of
use, in order to allow stakeholders with less technical exper-
tise to be able to create such visualisations for themselves,
to explore the data from their perspective, and to derive
hypotheses worth further investigation.
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ABSTRACT 
Developmental mathematics is a college course aimed to 
remediate areas missed in high school mathematics. These courses 
are often offered online, which offers new opportunities to deliver 
content and learning aids to students. We utilize cluster analysis to 
identify learning aid use patterns, and then investigate their 
correlation to subsequent exam performance.  

Keywords 

Learning aids, online learning, cluster analysis 

1. INTRODUCTION 
Digital learning aids are often available to university students [7], 
and are used by novices as they solve novel problems and learn 
new material [5]. Indeed, most textbook publishers offer online or 
digital course content to instructors. We focus our research on 
digital learning aids because of their growing use, and research 
suggests that individuals who are engaged in learning seek 
information, such as learning aids, from online sources [2]. 

Digital learning aids can come in various formats, including text, 
videos, animations, and solution guides. Prior studies have shown 
that individuals use various learning aids to increase learning 
[e.g., 3], but it is still unknown what combination of learning aids 
impact student learning. That is, when several types of learning 
aids are available, do students display patterns of preferred 
learning aid use? To address this, we investigate the combinations 
of learning aids used by students, and the correlations of these 
combinations with student exam performance.  

2. BACKGROUND 
There is a great deal of prior work on how various learning aids 
may affect learning. For instance, it may be faster to study worked 
examples than to solve problems on the same skill, and studying 
worked examples enables faster subsequent skill application [8]. 
However, what is needed is a learning-analytic approach that 
examines the use of learning aids in vivo. Moreover, real-world 
use of learning aids reflects student preferences, habits and 
beliefs, distinct from so-called learning styles [6]. Because student 
preferences may differ and these preferences may change over 
time, this calls for a model of how students use learning aids. 
Based on sourcing theory [3], we investigate the learning aid use 

patterns seen in an online learning environment, and examine the 
correlations these patterns have on subsequent exam performance. 

1. What learning aid use patterns are seen among college 
students in a developmental math course using online resources? 

2. Do these learning aid use patterns correlate with subsequent 
exam performance? 

3. METHODS 
We used existing log data on a single course of 160 students. The 
subject was Developmental Mathematics, an introductory course 
for students who enrolled in college but lacked prerequisites for 
further study. We did not separate students into conditions. 
Demographic information was not available.  No compensation 
was associated with the study. Instructor and students participated 
with the course management site as normal.  

The online course management site gave instructors the ability to 
select assignments for their students. We captured learning aids 
available in our study context: animation, calculator, sample 
problem, textbook, and video. Each learning aid was not available 
for all homework problems, so the percentage of use was reported 
(calculated as number of learning aids used divided by number of 
learning aids available). These and other variables are described. 

Animation: short animations of movement and graphics.  

Calculator: provided through the web interface; included even 
though a student could use their own calculator.  

Sample problem: worked example for the problem at hand with 
values that are different from the current problem. Each step is 
demonstrated and explained.  

Textbook: content from the corresponding section in the textbook.  

Video: distinguished from animations in that they are longer, 
include more explanation, and include audio.  

Exam performance: performance that follows the use of learning 
aids; calculated as the number of problems answered correctly 
divided by the number of problems attempted. We do not include 
unanswered exam questions, because a student may know how to 
correctly answer questions they never see or questions they skip 
(e.g., by employing a test-taking strategy wherein they skip 
problems with the intention of returning to them later). 

IRT difficulty: average for all problems on the exam across all 
occurrences of a problem (i.e., across all courses).  

Exam number: sequence number of each exam. 

Pretest Performance: the student’s score on questions from the 
first exam covering whole numbers. 
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4. ANALYSIS AND RESULTS 
What learning aid use patterns are seen among college students 
taking a developmental math course using online resources? 
To investigate learning aid use combinations among college 
developmental math students, we develop a classification with 
cluster analysis [4]. We conduct our cluster analysis in three steps. 
First, we compile the learning aids used by each student between 
exams. Because we are interested in learning aid combinations 
regardless of when the combination appears, we look at all time 
periods between exams for all students. For example, if one 
student takes four exams, we include four learning aid use 
combinations, corresponding to the four time periods that the 
student could have used learning aids. We excluded all exams 
where the student completed less than ten percent of the exam 
questions. In total, the 160 students took 2,989 exams (average 
18.68 exams), resulting in 2,989 learning aid use combinations. 

Second, we clustered the learning aid usages. Hierarchical cluster 
analysis was selected for this analysis, because there was no 
theoretical reason for a priori specification of the number of 
combinations used by students [4]. Clustering was conducted 
using five methods: Ward’s [10], centroid, median, between-
groups linkage, and within-groups linkage.  

Third, we evaluated the cluster solutions. We examined possible 
solutions including three to seven clusters by examining the 
change in agglomeration coefficients, cluster membership (i.e., 
excluding any solutions with very small membership), and 
significance of univariate F-tests [9]. Based on these analyses, the 
solution using Ward’s method with three clusters performed best. 
These three clusters were significantly different (p < 0.001). This 
solution included one large cluster (n=2,351), and two smaller 
clusters (n=228 and n=410), which we describe next.  

To better understand the clusters, we conducted post hoc 
comparisons of the means of each learning aid using Games-
Howell test, because there are more than two clusters and equal 
variances are not assumed [4]. This test conducts pairwise 
comparisons for each learning aid across clusters, and significant 
differences are identified (at a predefined level, p < 0.10 in this 
exploratory study). The test sorts these means into groups, where 
the means of learning aid use within a group are not significantly 
different from others within the same group, but are significantly 
different from those in other groups.  
Table 1. Comparison of Learning Aid Clusters 

  
F-valuesa Cluster 1 

Low Use 

Cluster 2 
Moderate 

Use 

Cluster 3 
High Use 

Animations 47.678 * 0.00% Lb 0.00% L 2.00% H 
Calculators 3413.733 * 0.10% L 24.80% H 1.40% M 
Sample 
problems 3087.162 * 0.00% L 6.50% M 27.00

% H 

Textbook 109.529 * 0.10% L 2.50% H 1.30% M 
Videos 103.285 * 0.00% L 0.00% L 3.00% H 

a Significant at the p < 0.001 level. 
b H, M and L indicate that the mean for the cluster was high, 
medium or low, respectively, based on Games-Howell Test. 
 
Cluster 1: Low Use. This learning aid use combination represents 
a minimalist approach to learning aid use and exhibited 
significantly low levels of all learning aids investigated.  

Cluster 2: Moderate Use. This learning aid use combination 
exhibited greater variability in learning aid use, and exhibited very 
traditional resources when learning.  

Cluster 3: High Use. This learning aid combination exhibited the 
highest overall use of learning aids, with a preference for media.  

We also report the distribution of learning aid combinations used 
by students. 13% of students do not change learning aid use 
combinations throughout the course (all Low). 45% of students 
use two learning aid use combinations during their coursework. 
(Approximately half utilize Low and High Use combinations, but 
not Moderate Use, and half utilize Low and Moderate Use 
combinations, but not High Use; no students use Moderate and 
High Use combinations without Low Use.) 42% of students use 
all three combinations. 

Do these learning aid use patterns correlate with subsequent 
exam performance? 

Armed with these learning aid patterns, we investigate the 
relationship between learning aid cluster and exam performance, 
and conduct a random effects generalized least squares regression 
analysis using cluster (recoded into dummy variables), exam 
number, IRT difficulty, and pre-test score as independent 
variables. The results indicated the predictors accounted for 
30.2% of the variance in exam performance (R2 = .302, 
F(5,2989)=749.67, p = 0.00). Exam performance was significantly 
influenced by IRT difficulty (ẞ = -1.50, p = 0.00), pretest score 
(ẞ = 0.17, p = 0.001), and cluster 3 (High Use) (ẞ = -0.04, p = 
0.00); cluster 2 (Moderate Use) and test number were not 
significant. That is, we find that the high use learning aid 
combination correlates with low exam performance, just as high 
hint use correlates with low proficiency [1]. It is likely that 
students who make the most use of learning aids are weaker 
students, which explains their lower exam scores. The results 
imply that we need to separate the study of learning aid use in 
low-ability students from high-ability students. 
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ABSTRACT 
Designing a good course curriculum is a non-trivial task many 

teachers have to deal with on a regular basis. There are multiple 

learning methodologies available, but some of the basics are 

common; thus, one of the important steps is to identify key 

concepts and knowledge or skills prerequisites for mastering 

them. If this can be done properly, a teacher acting as a course 

designer can think how to sequence the material. After the first 

edition of the course the teacher takes into account what went well 

and what adjustments to the course curriculum would be 

appropriate. With the growing popularity of ITS and recently 

MOOCs there are more opportunities for data-driven decisions on 

how to sequence learning materials and activities to optimize the 

learning process. Personalizing curriculum to different students is 

also becoming possible based on how well students learn or are 

expected to learn. Finding the best possible curriculum for all, a 

group or an individual student is a nontrivial problem that has an 

explore-exploit nature. We can use ideas of reinforcement 

learning and consider course design and learning activities 

sequencing as a kind of multi-armed bandit problem. We illustrate 

how to sequence these activities iteratively by employing the 

genetic process mining framework for generating a population of 

curriculum candidates from historical data and how to choose 

these candidates using the Bandit strategy to address the 

exploration-exploitation trade-off. 

Keywords 

Iterative course design, reinforcement learning, process mining. 

1. INTRODUCTION 
The design of a course curriculum or more broadly instructional 

design has been traditionally an important challenge to educators 

or teachers responsible for construction of a course [2,3]. And it is 

a key part of getting satisfactory results in any teaching and 

learning process. Therefore, teachers have to invest significant 

time and effort in it.  

The design process usually takes a long period of time and it is 

done using what is called a curriculum development and 

implementation cycle [1] as illustrated in Figure 1.  

 

 

The design process may result with a high number of course 

curriculum alternatives with different task sequencing [4, 5], 

which would be difficult to evaluate and compare to each other 

accurately. We propose a new strategy for the curriculum design 

to construct a data-driven process [8] which may automatically 

justify changes in the curriculum design.  

2. LEARNING TO TEACH LIKE A 

BANDIT APPROACH 
Our course curriculum model describes the relations among the 

set of activities that may take place during a course, and the 

resources used with them. To build it, we follow the classical 

curriculum design cycle. In the first phase (Needs Assessments), a 

set of curriculum designs are originally proposed by the course 

teachers based on the course assessments. In the second phase 

(Curriculum Design), the population is considered the starting 

population of solutions for the Genetic Process Mining 

Algorithm. Genetic Process Mining is the technique designed by 

applying genetic algorithms to perform process mining. In the 

third phase (Implementation), once new evolved curricula have 

been obtained, one of them is selected using the Bandit 

Algorithm. The Multi-Armed Bandit Problem can be modeled as a 

Single-State Markov Decision Process [6, 7]. To choose, it 

considers the expected performance distribution of each of the 

curriculums from the population. The selected curriculum is 

implemented, and new information is gathered. Finally in the 

fourth phase (Monitoring and Evaluation), the new data is used to 

update the curriculum performance information. Back to the first 

stage of the cycle, the curriculum population is pruned using the 

updated expected performance distribution. A graphical 

representation of the approach can be seen in Figure 2. 

As a consequence of the running cycle, a multi-objective 

optimization of the model takes place. Each curriculum selection 

stage has the consequence of gathering new data from the high 

performance curriculum implementations. In the long term, the 
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Figure 1 Course Curriculum Design Cycle 
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obtained data log will mainly correspond to high performance 

curriculum implementations. Additionally, each time the Genetic 

Process Mining algorithm is executed, the obtained models are 

optimized to fit the gathered data.  Consequently, the populations 

of models obtained in the long-term execution of the cycle 

correspond to high performance curriculum models that 

accurately describe the real process implemented for the course. 

The described method present serious advantages with respect to 

the straightforward process mining approach: 

Firstly, the inclusion of Multi-Armed Bandit Problem Strategy 

solves the curriculum selection problem in the exploration 

exploitation scenario.  

Secondly, a continuous strategy of curriculum improvement is 

defined. This is so because the evolutionary algorithm will use the 

gathered performance information to transform the population of 

curriculum models. 

Finally, the combination of the Multi-Armed Bandit Problem 

Strategy and Genetic Process Mining solves the multi-objective 

problem of curriculum mining. This problem consists on 

maximizing the model fitting to the data, and the expected 

performance. 

 

2.1 Application Settings 
Different scenarios are suitable for the application of the 

‘Learning to Tech as a Bandit’ strategy. 
On the one hand, when a new course is designed, multiple 

possibilities for the curriculum definition are considered. In this 

case the successive iterations of the course implementation could 

be used to improve the curriculum design. At each iteration, the 

whole classroom would follow the selected curriculum until the 

end. Only after the course is finished, the obtained data from the 

students’ results is analyzed. The information about the evaluation 

of the implemented curriculum is updated and, based on it, the 

next curriculum for the following course is implemented. 

Obviously, it is possible to plan simultaneous courses 

implementing each one a different curriculum. In that case the 

curriculum evolution is faster in terms of time spent to discover 

better solutions. However, higher costs in terms of 

implementation of poor performance curriculum are also 

expected. 

On the other hand, the scenario of student curriculum 

personalization in MOOCs is also a plausible setting for the 

approach. In this case the purpose is not to get the better 

curriculum design for the course. Furthermore, it is assumed that 

there is not a singular curriculum to use in a one-fits-all mode. 

Usually, the group of students of a MOOC is heterogeneous, and 

therefore the use of personalized curriculum for each user is 

advisable. In this case, the strategy would consist on obtaining the 

best fitting curriculum for each. 

3. CONCLUSIONS AND FUTURE WORK 
This paper proposes a novel approach for curriculum design and 

adaptation. The hard problem of curriculum design has been 

formalized in terms of Curriculum Mining. Furthermore, the 

problem of searching the best design has been stated, pointing out 

the exploration-exploitation trade off. The approach tackles this 

issue, with the formulation of a Multi-Armed Bandit Problem. 

Consequently, the cost of implementation of suboptimal 

curriculum is minimized. The approach is valid for different 

settings. It may be either used in the context of new course 

curriculum design or for student curriculum personalization. 

The proposal would need empirical validation to contrast its 

efficiency in comparison with the traditional curriculum design 

and personalization methods. Nevertheless, all the ingredients 

necessary for the implementation are already available: not only 

the Genetic Process Mining algorithms but also the Multi-Armed 

Bandit Problem solvers. Therefore, implementing the approach 

results a straightforward task. 

Learning to Teach as a Bandit, is a first attempt to build a data-

driven approach to curriculum design, incorporating the scientific 

method to a traditionally experience based task. The whole 

educational community would benefit from the approach 

advantages. Teachers would have a solid guide for curriculum 

design and a clear method to improve their courses. Additionally, 

students could have not only courses with a further adaptation to 

their expectations, but also they could minimize the experience of 

poorly designed curricula. 
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1. INTRODUCTION
We have previously shown that argument diagrams can help
students both to read existing arguments [8] and to plan new
ones [4]. We have also shown that student-produced dia-
grams can be graded reliably and evaluated, both by human
graders and automatic analysis, to predict subsequent essay
grades [4, 6, 5]. Argument diagrams are advantageous for
tutoring as they focus students’ attention on key structural
features of otherwise implicit or opaque arguments as well as
supporting empirically-valid automatic assessment and feed-
back [4]. It has not yet been shown that the content of the
argument diagrams closely matches the essay text or that
the two can be automatically aligned. Here we show that
automatic alignment of hypothesis statements and hypoth-
esis nodes is possible.

A sample hypothesis node is shown in Fig. 1. The ontology
used here included nodes representing hypotheses, citations,
claims, and the current study. Students added these nodes
to a flexible workspace and connected them using support-
ing, opposing, undefined, and comparison arcs. Hypothesis
nodes frame the discussion via a simple if-then format. The
hypothesis statement tagged in the associated essay is:

When presented with text-based signs versus signs
with text and images or symbols, individuals will
be more likely to respond to those signs with both
images and text.

Figure 1: A sample hypothesis node drawn from a
student-produced LASAD diagram.

2. ANALYSIS
Data for this study was drawn from work on argument plan-
ning for writing described in [4]. In that study we collected
a set of 105 paired diagrams and essays collected in a course
on Research Methods at the University of Pittsburgh. Stu-
dents in this course conducted a group research project. As
part of the assignment students produced an argument dia-
gram when planning their essay. The diagrams and essays
were graded independently by an expert grader who also
annotated the hypothesis statements within the text. The
reliability of the grading and annotation was evaluated via a
separate inter-grader reliability study where we found 70%
agreement on hypothesis tags. 85 of the pairs contained one
or more hypothesis nodes in the diagram and one or more
tagged hypothesis statements in the essay.

We assessed our primary hypothesis via two types of analy-
ses. In the first analysis we focused on sentence classification
with the goal of determining whether the textual informa-
tion from the hypothesis nodes can be used to train efficient
classifiers or to improve upon existing techniques. We split
the papers into individual sentences using the grader tag-
ging to annotate hypothesis statements. We then extracted
two feature vectors for each sentence. We extracted a static
feature vector for each sentence that reflects the 6 most fre-
quent keyword stems: ‘would,’ ‘likely,’ ‘hypothe,’ ‘study,’
‘expect,’ and ‘predict.’ Ironically the most predictive single
feature was ‘predict.’

We then matched each of the candidate sentences with the
text drawn from the hypothesis node in the associated di-
agram and calculated a similarity vector. This vector con-
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tained five features each of which reflected the output of
an existing sentence similarity metric. The features were:
Levenshtein distance [3, 11], Jaro-Winkler distance [12, 10],
Ratcliff & Obershelp score [9], and two semantic metrics
based upon WordNet [1]: Path [2], and Wu & Palmer [13].
For these latter measures, the similarity scores were calcu-
lated using only the first sense of the words in each sen-
tence. For diagrams with more than one hypothesis node
we computed one similarity vector per node and chose the
best result based upon the Ratcliff & Obershelp score.

We trained two sets of classifiers via 10-fold cross-validation
using these features. One set of classifiers was trained solely
on the static vectors and reflected the predictiveness of the
individual cue terms while the second combined both the
static and similarity vectors for each sentence. We chose five
standard classification algorithms for this purpose: Näıve
Bayes, Nearest Neighbor, Maximum Entropy, Support Vec-
tor Machines, and Linear Regression. All of the classifiers
were trained and evaluated using the RapidMiner toolkit
[7]. For the Linear Regression model we tagged the sen-
tences with a binary output variable and made predictions
based upon a fixed cutoff of 1

2
. RapidMiner performs some

mechanical filtering of collinear terms.

The most precise classifier was a maximum-entropy model
based upon the static features which had a precision of 0.7,
a recall of 0.48, and an F1 score of 0.56. The best overall
classifier was an SVN model based upon the combined fea-
tures which also achieved the highest recall and F1 Scores.
The precision, recall, and F1 scores for this model were 0.65,
0.65, and 0.65 respectively.

In our second analysis we implemented a second linear rank-
ing function that estimates the likelihood of each sentence
being a hypothesis statement based upon the aforementioned
features. The weights in this model were trained using leave-
one-out cross-validation. For each essay we then selected the
sentence or sentences with the highest likelihood of being a
hypothesis statement. For this analysis we compared predic-
tions based on the static features alone, similarity alone, and
the combined set. These algorithms were trained via leave-
one-out cross-validation and were designed to select the best
sentence on a per-paper basis. As in the classification study
we found that the combined model outperformed the static
and similarity models with precision scores of 73%, 66%, and
55% respectively.

3. CONCLUSIONS
We found that combined models which used both the static
static features and the similarity measures were better at
classifying hypothesis statements and ranking candidate state-
ments within a written essay than either the static or simi-
larity features alone. These results lead us to conclude that
it is possible to use this similarity information to link the hy-
pothesis nodes and hypothesis statements most of the time.
In future work we plan to test automatic alignment of other
diagram components and to investigate other linking mech-
anisms. We believe that a hybrid model which incorporates
information from multiple nodes can be more robust than
any individual comparison.
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ABSTRACT
Performance prediction has the potential of ameliorate the
student model of an Intelligent Tutoring System by predict-
ing whether a student mastered or not a specific set of skills.
Recently, it has been shown, by means of a simulated learn-
ing process, how performance prediction methods based on
Matrix Factorization can be used for continuous score pre-
diction and for sequencing contents through a policy inspired
by Vygotsky’s concept of the Zone of Proximal Develop-
ment. In this paper we discuss the feasibility of the approach
analysing a commercial system dataset. We evaluate perfor-
mances of the score predictor and feasibility of the Vygotsky
policy for sequencing tasks and providing adaptive support.

Keywords
Matrix Factorization, Sequencing, Adaptive Support

1. INTRODUCTION & BACKGROUND
In Intelligent Tutoring Systems (ITS), adaptive sequencers
can take past student performance into account to select the
next task which best fits the student’s learning needs. Sim-
ple sequencing policies rely on assumptions such as that a
student will be able to solve an exercise of the achieved dif-
ficulty level but not the more difficult ones without having
completed ones of the previous level. This can be problem-
atic as it requires students to go through all the topics in
the current level even if they can answer them successfully
with the first attempt. Although the power-law-of-practice
[4] would suggest that students should be provided with sev-
eral opportunities to practice, unnecessary repetition can be
detrimental in that it can lead to student frustration and
influence their perception of the reliability of the system.
One way to approach the problem is based on assessing the
student skills and matching them to the required skills and
difficulties of the available tasks. For example, in [2] the less
known skills by the students are selected to be practiced in
the next session. In this scenario two problems arise: 1. Tag-
ging tasks with required skills necessitates experts and thus
is a time-consuming, costly process, and, especially for fine-
grained skill levels, also potentially subjective. 2. Learn-
ing adaptive sequencing models requires online experiments
with students and specific data collection policies, that con-
sists, at the beginning, in many randomly proposed tasks.
Problem 1. extends also to common performance prediction
methods and their extensions: Bayesian Knowledge Tracing
(BKT) [1] and Performance Factors Analysis (PFA)[5].

On the contrary, Matrix Factorization (MF), the algorithm

we use for performance prediction, is domain agnostic. Its
most common use is for Recommender Systems and in pre-
vious work [6] we showed how a score prediction method and
a simple policy, inspired by Vygotsky’s concept of Proximal
Development, could be used for ameliorating sequencing in
a simulated environment. Despite its plausibility, applying
this sequencer in a real use case of an already established
ITS and real students requires design decisions that are not
well documented. In this paper we show promising prelim-
inary results and work in progress toward the use of the
sequencer in a multi-topic commercial ITS. Moreover, we
discuss how the performance prediction indications could be
used to help hint provision, where Machine Learning was
also applied [3]. Our main goal is to present first results to-
wards the integration of the sequencer presented in [6] into
an open architecture while discussing its feasibility.

2. FEASIBILITY DISCUSSION
In this section we discuss how the MF can be applied to a
commercial system which has over 1000 lessons in 20 topics
and was adapted to be used in several countries like United
Kingdom, USA, and Russia. We performed a practical fea-
sibility study using a dataset that is composed by data col-
lected from children from five to fourteen years using the
ITS in classrooms and homes. A lesson is composed of test
and exercise sessions. The exercise session consists of ap-
proximately 10 exercises on a topic and specific learning ob-
jectives. While trying to solve those exercises a student can
consult several hints, one of those is the bottom-out hint,
which displays the solution. In order to pass the exercise
a student must achieve a score of 7 out of 10 (7/10) that
allows them to pass to the test session. There students have
to show what they learned answering 5 questions with a
score greater than 6/10. The lesson sequencing policy relies
on the assumption that a student will be able to solve the
exercises of the achieved difficulty level but not the more dif-
ficult ones without having completed all the lessons of the
previous level. In contrast to state-of-the-art performance
prediction, where the main task is to predict the student’s
correct at first attempt answer, the commercial system uses
the score as student’s performance measurement. The data
granularity level is low if compared with benchmark systems,
since we possess a single score record for the 10 questions of
the exercises and one record for the five test questions.

2.1 Performance Prediction Feasibility
In this paper we use Matrix Factorization (MF) as score
predictor since we do not possess Knowledge Component
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Table 1: Performance Prediction Error
Experiments, score range [0,1] RMSE, ± SD over five experiments

Global average 0.3032796

Biased User-Item Exercise 0.2639167 ± 3.6989 10−5

Exercise Preprocessing 0.26061115 ± 5.97504 10−5

Table 2: Dataset Statistics
Number of Items (Exercise/Topic) 9091/4169

Number of Students 258391

Total Student-Item Interactions 30813070

Total Exercise sessions 17512972

Exercise passed (Score 70-99) 9520278 i.e. 54

Gaming the system (Score 100 + Bottom-out hint) 3988891 i.e. 23%

Total Test sessions 13300098

Test session passed (Score 60-99) 4378461 i.e. 33%

Average score obtained 8.1

information. The matrix Y ∈ Rns×nc can be seen as a
table of nc total tasks and ns students used to learn the
students’ model, where for some tasks and students perfor-
mance measures are given. MF decomposes the matrix Y
in two other ones Ψ ∈ Rnc×P and Φ ∈ Rns×P , so that
Y ≈ Ŷ = ΨΦT . Ψ and Φ are matrices of latent fea-
tures. Their elements are learned with gradient descend
from the given performances. This allows computing the
missing elements of Y for each student i in each task j
of a dataset D. The optimization function is represented
by: minψj ,ϕi

∑
i,j∈D (yij − ŷij)2+λ(‖Ψ‖2+‖Φ‖2),where one

wants to minimize the regularized squared error on the set
of known scores. MF prediction is computed as:

ŷij = µ+ µcj + µsi +

P∑
p=0

ϕipψjp (1)

where µ, µc and µs are respectively the average performance
of all tasks of all students, the learned average performance
of a content, and learned average performance of a student.
The two last mentioned parameters are also learned with
the gradient descend algorithm. We followed the standard
approach in the field to divide the dataset temporally in two
thirds for training and one third for testing, evaluating the
performances with the Root Mean Square Error (RMSE).
The score, as in [6], is represented in a continuous interval
which goes from zero to one. In Table 1 we present Global
Average, i.e. a worst case predictor that assumes students
will always perform equally to the global score average com-
puted on the training dataset. The Biased User-Item pre-
dictor, instead, uses only the biases µ, µs, and µc of Eq.
1, i.e. the latent features number P is set to zero. Conse-
quently, out of Table 1 one can see the contribution of the
single components of Eq. 1 in ameliorating the prediction.
According to the results, the dataset is suitable for the task
and MF is able to predict a continuous interval performance
in a multiple-topic scenario.

2.2 Sequencing and Hinting Policy Feasibility
The Vygotsky Policy based Sequencer (VPS) in [6] is com-
posed of two components: the Vygotsky Policy (VP) and a
Performance Predictor. Given MF as predictor, we want to
sequence tasks in a way that attempts to keep students in
the so-called zone of proximal development (ZPD), which,
in our context, we associate with tasks that are neither
too easy nor too difficult to accomplish without much help.
This concept is formalized by the following formula: ct∗ =
argminc

∣∣yth − ŷt (c)
∣∣, where yth is a threshold score that

will challenge the students and keep them in the ZPD. The
policy will select at each time step the content ct∗ with the
predicted score ŷt at time t most similar to yth.
Considering our use case with a score range for passing of
6-10/10, yth should be set in the middle of the interval, so

that the most exercise selected are predicted with a score of
8. This avoids that, in case of no available tasks predicted
with exactly yth, the policy does not select exercises which
are out of the score range for passing and consequently min-
imizing the risk of MF incorrect prediction. With an RMSE
of ±2.6 (Table 1), the selected lessons are approximately al-
ways in the aforementioned range.
Another use of the performance prediction is to enhance
feedback provision to students as it provides the possibility
of developing ’task-independent’ adaptive support, i.e. hints
that relate to students’ interaction overall rather than the
specific problem solving steps. At least in the case of the
commercial ITS under investigation, problem solving steps
are dealt by different components and in fact operate as indi-
vidual learning objects. Examples of such feedback include
the provision of support at the beginning or end of the ex-
ercise but also during an exercise if, for example, there is no
task-specific help to provide. Accordingly, when students
start their experience, it is helpful to provide suggestions
about which topic(s) to study based on the MF prediction.
The topic having the most tasks in the ZPD, should be pro-
posed. During an exercise, if students attempt to ask for
help but the prediction above indicates that they do not
seem to need it, the system can restrict help depending on
the current answers and attempts on the exercise as in [3].

3. FUTURE WORK
In this paper we discussed the feasibility of employing a
Matrix Factorization prediction to sequencing and providing
adaptive support. Our plan is to apply the sequencer as
task and hint sequencer. However, a still open issue is how
to evaluate the contribution of the VPS. Considering the
number of exercises passed and failed reveals only a part of
the incorrectly sequenced tasks, i.e. the too difficult/failed
ones. We believe there are possible improvements on other
aspects of the interaction such as a reduction of the ’gaming
the system’ behaviour (see Table 2) as indicated by the tasks
that are achieved with 100%, having accessed the bottom-
out-hint and not spending enough time to reflect on it.
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ABSTRACT 
Educational Data Mining (EDM) methods can expand the reach of 
microgenetic research. This paper presents an example of our pilot 
work using microgenetic analysis in the context of fraction game 
data, where we characterize student activity based on clustered 
sequences of actions. We cluster sequences by the similarity 
between them, calculated using optimal matching techniques. 

1. INTRODUCTION 
Microgenetic research investigates processes of learning ([8]; 
[11]), rather than simply focusing on products of learning. Three 
main elements distinguish microgenetic research designs: 1) 
studies occur when the topic is likely to learned, 2) observations 
of learning behavior are dense, and 3) analysis is conducted on an 
instance by instance basis [6]. To date, the grain size for these 
studies has been fairly large, and the number of time points has 
been relatively small. These elements can be greatly improved 
using EDM methods. A few researchers have begun expanding 
microgenetic methodology using EDM methods (e.g., [2]; [4]; 
[5]) but this work is still in early stages. In addition, many EDM 
researchers use methods and conduct analyses that could be 
productive for microgenetic research (even if they do not place 
their work within the microgenetic paradigm). Some of these 
approaches include process and sequence mining, some uses of 
hidden markov models, and dynamic bayesian networks.   

2. REFRACTION 
Third grade students (approximately 8–9 years old) played 
Refraction  (http://play.centerforgamescience.org/refraction/site/), 
an online game based on fraction learning through splitting. In the 
game level used for this study, students create laser beams of 1/6 
and 1/9 using a combination of 1/2 and 1/3 splitters. Students 
played the level twice: once at the start of gameplay (the prelevel) 
and again after playing the series of game levels (the postlevel). 
As students could stop play at any time, we had uneven numbers 
who completed the prelevel (N = 3,258) and the postlevel (N = 
1,127).  

3. ANALYSIS 
Our unit of analysis is a "board state," or the configuration of the 
mathematical pieces of the game after a student makes a change. 
The two attributes of a board state we included in our analysis 
were initial splitter used (1/2 splitter or 1/3 splitter) and node 
depth. Solving the level requires starting with a 1/3 splitter, so the 
initial splitter variable indicates the quality of the board state. 
Node depth is the number of nodes, or levels of splitting, there are 
on a board state. 
We employed the Needleman-Wunsch algorithm for optimal 
matching in R using the package TraMineR version 1.8-8, ([7]; 
[10]). This algorithm computes the "cost" of transforming one 
sequence into another based on insertions, deletions or 
substitutions. We set all costs equally at 1 as our events are all of 

the same type. To account for the discrepancies in our sequence 
lengths (prelevel range 1-82; postlevel range 1- 140), we used 
Abbott’s normalization approach to standardize optimal matching 
distances ([1]; [7]). 

We then used the distance matrix generated with optimal 
matching in a hierarchical cluster analysis [9] using Ward's, single 
linkage, and weighted average methods. We evaluated the number 
of clusters using dendrograms, and referenced group membership 
to ensure no clusters were too small. Finally, we inspected a 
visualization of each cluster solution for interpretation. The 
solution using Ward’s analysis with seven clusters performed best 
(See Figures 1-6). 
 

 
The first number in the pair is the node depth. The second number is for the 1/2 or 
1/3 initial splitter. 

 
Figure 1. Minimal. 

 
Figure 2. Halves. 

 
Figure 3. Exploring Halves. 
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Figure 4. Exploring. 

 
Figure 5. Exploring Thirds. 

 
Figure 6. Thirds (left) and Efficient (right). 
 

4. RESULTS 
a. Minimal (N prelevel = 129; N postlevel = 4): very short 

sequences, very low node depths, and all 1/2 initial splitters. 
b. Halves (N prelevel = 651; N postlevel = 26): medium 

sequences, shift from low node depth to higher, shift from 
mostly 1/2 initial splitter to some 1/3 initial splitters, show 
"reset" pattern, or clearing laser and starting over. 

c. Exploring Halves (N prelevel = 536; N postlevel = 14): very 
similar to the Halves cluster, except longer sequences. 

d. Exploring (N prelevel = 341; N postlevel = 165): greater 
exploring: many long sequences, try higher node depths, use 
both the 1/2 and 1/3 initial splitters. 

e. Exploring Thirds (N prelevel = 359; N postlevel = 90): very 
similar to the Exploring cluster, except mostly 1/3 initial 
splitters. 

f. Thirds (N prelevel = 859; N postlevel = 490): relatively short 
sequences, mostly node depth of 1 or 2, mostly 1/3 splitter.  

g. Efficient (N prelevel = 383; N postlevel = 387): very short 
sequences, nearly all sequences identical: the start state, a 
state with node depth of 1 and 1/3 initial splitter, and a state 
with node depth of 2 and 1/3 initial splitter. 

 
Most students, regardless of cluster membership on the prelevel, 
were in the Thirds or Efficient clusters on the postlevel (see Table 
1). The marginal homogeneity nonparametric test for related 
samples of ordinal data [3] showed that this change was 
significant (p < .001).  
 

Table 1. Change in Cluster Membership From Pre- to Postlevel: 
Percentage of Students 

  

Students in the Thirds and Efficient clusters were more likely to 
succeed on the both the pre- and postlevels than those in the other 
clusters; prelevel χ2(1,6) = 1353.39; p < .001; postlevel χ2(1,6) = 
605.32; p < .001. 
 
5. CONCLUSIONS  
While this case demonstrates the utility of this approach as a 
microgenetic method in EDM, our next steps will be to extend this 
method to examine change over days or weeks of a learning event, 
to further test the utility of this method. 
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Abstract—Computer-based learning environments can pro-
duce a wealth of information on each student action, which can
often be represented at multiple levels of abstraction and with a
variety of features. This paper extends an exploratory sequence
mining methodology for assessing and comparing students’ learn-
ing behaviors by autonomously identifying abstraction levels in a
hierarchical taxonomy of actions and their potential features. We
apply this methodology to action data gathered from the Betty’s
Brain learning environment. The results illustrate the potential of
this methodology in identifying and comparing learning behavior
patterns across groups of students with complex, hierarchical
action and action feature definitions.

I. INTRODUCTION

In order to more effectively teach and promote skills
required in the modern world, computer-based learning en-
vironments (CBLEs) have become more complex and open-
ended. In CBLEs, individual student actions can often be
represented at multiple levels of abstraction and with a variety
of features describing different aspects, contexts, and results
of the action.

Sequence mining is widely used in extracting knowledge
from databases of human-generated activity data. Further, re-
searchers have applied sequence mining techniques to a variety
of educational data in order to better understand and scaffold
learning behaviors. In previous work, we have compared
sequential patterns derived from student activity sequences to
identify ones that differ in usage between two or more groups
of students [1], [2] and over time [3].

In this paper, our approach integrates and goes beyond
work in differentiating student groups by sequential patterns
of behavior [1], [2], as well as work in employing multiple,
hierarchically-defined features/dimensions of information in
identifying frequent sequential patterns [5], [6]. In particular,
the previous work has focused on identifying the most specific,
detailed frequent sequential patterns, which we extend by
identifying a level of specificity (or conversely, generality) that
is most appropriate for representing sequential patterns that
differentiate student groups.

We present example results from the application of this data
mining methodology to learning interaction trace data gathered

during a middle school class study with the Betty’s Brain
learning environment. These results illustrate the potential
of this methodology in identifying and comparing learning
behavior patterns across groups of students with complex,
hierarchical action and action feature definitions.

II. MULTI-FEATURE, HIERARCHICAL, DIFFERENTIAL
SEQUENCE MINING METHODOLOGY

Our approach to effectively mining important patterns in
Multi-Feature, Hierarchical (MFH) learning activity sequences
employs five primary steps:

1) Define MFH action representation to extract MFH
action sequences from student activity traces.

2) Flatten action representation to obtain the most spe-
cific action definitions (within frequency constraints)
for use with sequence mining methods.

3) Employ DSM to identify differentially-frequent (flat-
tened) activity patterns that distinguish the student
groups.

4) Identify hierarchical relationships among mined pat-
terns in the form of directed, acyclic graphs of
patterns incorporating different features and levels of
detail.

5) Identify the best pattern representations by collapsing
more specific pattern nodes into the more general
ones that provide a similar degree of differentiation
between student groups.

In the final step of this methodology, we iteratively identify
and collapse the link for which the parent and child patterns
are most similar in terms of their differentiation of the student
groups. This similarity is calculated as the difference in effect
sizes (by pattern occurrence across the two student groups)
between the parent and child patterns with a consideration of
the direction of the effect (i.e., if the parent pattern occurs
more frequently in one student group, but the child parent
occurs more frequently in the other student group, then the
difference is calculated by summing the effect sizes instead of
subtracting them).
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Root: Read  → Read  → EditLink

EffectSize = 0.31 Dominant = None Depth = 1 

... ... ...

Exp 1:  ReadRel
 <  → ReadTOCRel 

 > → LinkAddRel (top 8)

EffectSize = 0.06 Dominant = None Depth = 6

Leaf 1: ReadOpenRel
 <  → ReadTOCRel

 > 0  → LinkAddRel
+

EffectSize = 1.29 Dominant = Hi Depth = 7

Leaf 2: ReadTOCRel
< #   → ReadTOCRel

> #   → LinkAddRel
-

EffectSize = 0.83 Dominant = Lo Depth = 7

Exp 2: Read<  → Read  → LinkRemoveRel
+ (top 5)

EffectSize = 0.09 Dominant = None Depth = 5

Leaf 3: ReadOpenRel
<  → ReadOpenRel

<  → LinkRemoveRel
+

EffectSize = 1.18 Dominant = Hi Depth = 6

Leaf 4: ReadTOCIrr
 < #   → ReadTOC Irr

> 0  → LinkRemoveRel 
+

EffectSize = 1.57 Dominant = Lo Depth = 6

Fig. 1. Pattern tree illustrating some Hi/Lo behavior differences

III. RESULTS AND CONCLUSION

The data employed for this analysis consists of student
interaction traces from the Betty’s Brain [4] learning envi-
ronment. In Betty’s Brain, students learn about a science
process using a set of hypermedia resources organized into
sub-topics by scientific processes and teach a virtual agent,
Betty, about what they have learned by building a causal
map. In this analysis, we considered the additional action
features listed in Table I to analyze the behavior of 8th-
grade students from a recent middle Tennessee classroom study
in experimental conditions receiving support for identifying
causal relationships in the resources. For the differential aspect
of the analysis, we focus on the difference between the 16
high-performing (Hi) and 8 low-performing (Lo) students as
determined by the quality of their final causal maps.

TABLE I. ACTION FEATURE DIMENSIONS

Actions Dimension Value Symbol
[All except Quiz & Explain] Relevance Yes Rel
[All except Quiz & Explain] Relevance No Irr
Read Previous (Full) Read Yes ]
Read Previous (Full) Read No 0
Read Length Full >
Read Length Short <
EditLink Map Score Change Increase +
EditLink Map Score Change Decrease -
EditLink Map Score Change No Change =

With an effect size cutoff of 0.8 to only consider relatively
large differences between groups, we identified 312 differential
activity patterns, which resulted in 175 pattern trees. In total,
there were 913 hierarchical links in the resulting pattern trees
and 350 intermediate pattern nodes (i.e., those that are not
a leaf pattern identified from the application of DSM nor a
root pattern representing the most general form of a set of
related leaf patterns). With these pattern trees, we employed
the link collapsing described in Section II to identify the most
important pattern nodes and hierarchical relationships.

Figure 1 illustrates part of the pattern tree created for
a sequence of two reads followed by a map edit, which
occurred frequently in both the Hi and Lo group. However,
various features of the reading and editing actions allow us
to clearly distinguish the Hi group from the Lo group in
more specific versions of this pattern illustrated by the lower
layer of nodes in Figure 1. In addition to better understanding
differences in the skills and approaches, these pattern nodes
that are not collapsed into more general versions represent
a minimal level of detail that can be used to predict and

scaffold students during learning with respect to their likely
group characterization.

Conversely, nodes collapsed into their parents represent
additional detail that is not particularly important for dis-
tinguishing the groups. For link editing followed by taking
a quiz and getting an explanation from Betty. Although the
initial DSM analysis identified three patterns for link editing
followed by taking a quiz and getting an explanation of a quiz
question. These leaf pattern nodes, which differed by whether
the edit was adding a (correct or incorrect) link or removing
an (incorrect) link, were collapsed up to the root pattern early
in the search for the best representation level. This indicates
that simply following a link edit by a quiz and explanation is
characteristic of the Hi group, regardless of the specific details
of the link edit, including whether it was correct or not. Thus,
this approach to collapsing links in the pattern trees, not only
allows the researcher to focus on a smaller subset of important
patterns, but also contributes to more accurate interpretation
and student characterization during learning by identifying the
features and level of specificity necessary for differentiating
student groups.
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ABSTRACT 

With the spread of information systems and the increased interest 

in education, the quantity of data about education has exploded 

along with a new field - Educational Data Mining. Predicting 

students’ performance has been approached by several techniques, 

but the combination of supervised and non-supervised techniques 

appeared as a new tool for improving the results. Biclustering 

algorithms have been successfully applied in areas such as gene 

expression data and information retrieval, but not used in the 

educational context. In this paper, we show how to apply biclus-

tering techniques to educational data and to use its results as fea-

tures to improve the prediction of student’s performance. 

Keywords 

Educational Data Mining, Biclustering, Student’s Performance, 

Coherent Evolution Patterns 

1. INTRODUCTION 
The prediction of students’ performance has deserved a significant 

attention in Educational Data Mining (EDM) research, with sev-

eral distinct approaches being proposed, mostly using classifica-

tion and regression techniques. With the advances and stabiliza-

tion of these techniques, it is easy to accept that the accuracy 

results do not depend on the technique used, but on data them-

selves, both on the training data and on the target variable [8]. 

While classification tries to find a model to predict an outcome, 

non-supervised techniques, as pattern mining and clustering, are 

able to explore the data for identifying frequent behaviors. Previ-

ous studies [1, 2] have shown that sequential pattern mining is 

suited to discover patterns able to model students behaviors, 

which in turn can be used to enrich training data, improving glob-

al classification accuracy on more than 10% [2]. 

Clustering is perhaps one of the most important tools for both 

exploratory and confirmatory analysis. Indeed, it is a technique to 

discern meaningful patterns in unlabeled data by grouping togeth-

er data points that are similar. Biclustering algorithms [5] are a 

recent alternative to traditional clustering methods that allows the 

discovery of local patterns rather than global ones. Besides dis-

covering sequential patterns identified by pattern mining algo-

rithms, biclustering is able to discover other sequential patterns 

that reveal coherent evolutions [3, 6].  

Although both the literature on EDM and biclustering topics are 

vast, and the results are positive, the combination of these topics 

is almost nonexistent. Only recently Trivedi et al. [9] applied this 

technique to education. In their work, they used the idea of co-

clustering (namely biclustering) students and their tutor interac-

tion features and interleave it with a bagging strategy which they 

used previously with clustering [10] for prediction of out-of-tutor 

performance of students. The results obtained were better than the 

baseline and also indicated that the dynamic assessment condition 

returns in a much better prediction of student test scores when 

compared to the static condition. However, they used one of the 

most basic techniques of biclustering, using k-means clustering 

algorithm to cluster students and features (rows and columns). 

Separately and then combining both clustering results to derive 

biclusters. This clustering combination is probably the reason why 

they obtained modest improvements compared with their previous 

clustering works. 

In this paper, we propose to explore biclustering to discover new 

patterns in educational data and make use of these patterns to 

enrich training data in order to improve the prediction of students’ 

performance. 

2. BICLUSTERING FOR EDM 
Biclustering can be applied whenever the data to analyze has the 

form of a real-valued or symbolic matrix A, where the value aij 

represents the relation between row i and column j, and the goal is 

to identify subsets of rows with certain coherence properties in a 

subset of the columns. The goal of biclustering algorithms is to 

identify a set of biclusters. Let A be a matrix defined by its set of 

rows, R, and its set of columns, C. Then we can define a bicluster 

B = (I, J) as a submatrix AIJ defined by I ⊆ R, a subset of rows, 

and J ⊆ C, a subset of columns [5]. This set of biclusters Bk = (Ik, 

Jk) satisfies specific characteristics of homogeneity, that can be 

grouped in four categories: a) Biclusters with constant values; b) 

Biclusters with constant values on rows or columns; c) Biclusters 

with coherent values; and d) Biclusters with coherent evolutions. 

The first three classes analyze directly the numeric values in the 

data matrix and try to find subsets of rows and subsets of columns 

with similar behaviors. The fourth class aims to find coherent 

behaviors regardless of the exact numeric values in the data ma-

trix. The type of patterns in a) and c) can be found using pattern 

mining, but the ones in b) and d) are not. The work by Madeira 

and Oliveira [5] presents a deep survey on this topic, describing 

the most important algorithms. 

Studies have demonstrated that sequential pattern mining can be 

successfully applied for mining students [1] and teachers’ fre-

quent behaviours [2], which in turn may enrich training data for 

improving classification. As explained, biclustering is able to 

identify more patterns than pattern mining, in particular, patterns 

that reveal coherent evolutions. In this manner, we propose to 

explore biclustering algorithms for identifying patterns that may 

improve the classification task, as previously performed with 

sequential pattern mining [2]. 

In the educational context, matrix A targeted by biclustering algo-

rithms can be any matrix relating two distinct entities, whose 

relation can be measured, and expresses some result. For example, 
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a matrix relating students and subjects through achieved marks, 

where we might be interested on finding a group of students that 

shows the same evolution in a particular subset of subjects, but 

also a matrix for subjects and time, reporting the average perfor-

mance of students enrolled on the subject in a particular term.  

There are a large number of existing approaches for biclustering 

that finds different types of biclusters and thus different types of 

frequent patterns. In our case we are interested in biclusters with 

coherent evolutions, since existing pattern mining approaches are 

not able to identify them. In this work, we use the algorithms most 

cited in the literature to find these types of patterns, namely Bimax 

[7], xMOTIFs [6], ISA [4] and OPSM [3].  

Table 1 provides an example of a mark matrix with 10 students 

and 7 subjects where we draw examples of the types of biclusters 

these algorithms can find. Bicluster B1 presents students who had 

the same marks on all the subjects - a bicluster with constant 

values that the Bimax can get; B2 has students who have constant 

marks on different subjects – a bicluster with coherent values on 

the rows found by xMOTIFs; B3 has students that have all the 

same notes on the same subjects – a bicluster with coherent values 

on the columns found by ISA; and finally B4 shows students that 

have a coherent evolution between subjects, in this particular 

case, students’ marks satisfy the following evolution pattern: 

Subject 3 < Subject 2 < Subject 1 < Subject 4 - a bicluster with 

coherent evolutions that OPSM can find. 

Table 1. Example of different types of biclusters in a matrix 

with marks of ten students at seven subjects. 

3. CASE STUDY AND CONCLUSIONS 
The data used was gathered from a graduation program (LEIC) at 

Instituto Superior Técnico (IST), Universidade de Lisboa, consid-

ering the student records between 1997 and 2012. The program 

has the duration of three years (6 semesters) with 30 subjects, and 

after it, students usually follow to the master program (MEIC). 

The task was to predict the marks of LEIC students when finish-

ing MEIC. In order to achieve our goal, we analyzed a matrix 

(students x subjects) with 443 students and 20 subjects from 

LEIC, with students' marks in the cells - numbers between 10 and 

20. By applying biclustering algorithms mentioned before to the 

matrix, we obtained 16 biclusters with OPSM, 975 with xMotifs, 

308 with ISA and 39 with Bimax. In addition to the data in the 

matrix, we appended a class label (the mark obtained at the end of 

the master’s program - Fair, Good and Very Good) and obtained 

our training dataset (baseline). As in [2], a new dataset can be 

obtained from the previous one, enlarged by k Boolean attributes, 

one for each bicluster. Each bicluster attribute is then filled with 

the true value whenever the bicluster has the student instance and 

false otherwise. Classification was performed by Weka, with deci-

sion trees, using cross-validation with 10 folds for the perfor-

mance evaluation of decision trees. We then use a feature selec-

tion (FS) method, wrapper, to obtain the best attributes. 

Without FS and biclusters, we got 52.9% of correctly classified 

instances. If we add the biclusters, the precision go down to 

51.8%, this happens because the model is starting to overfitting. 

Using FS without biclusters we had a precision of 60.1%, and if 

we add the biclusters we obtained 65.8% (Figure 1). 

 

Figure 1. Precision of classifiers accuracy. 

With this study we demonstrated that we can improve the accura-

cy of the decision tree model by more than 5% not having any 

strict condition to choose the biclusters that are more interesting 

to use. As such, we believe that after applying more effective 

metrics to choose the biclusters according to their quality, we can 

achieve an even better model accuracy. For future work we will 

develop metrics to apply automated techniques to choose the best 

biclusters, so we can distinguish the biclusters of interest regard-

less of what we have in the rows and columns of the matrix. 
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ABSTRACT
A careful analysis of educational data reveals their multi-
dimensional nature, with several orthogonal dimensions from
students to teachers, courses, evaluation items, topics, etc.
In addition, their historical nature translates into large data
warehouses, which are modeled through inter-connected huge
tables that encompass data from several distinct perspec-
tives. Despite the recent advances in big data research for
this educational domain, the ability to consider these very
large multi-dimensional datasets remains unexplored. In
this paper, we explore a multi-dimensional algorithm in or-
der to find multi-dimensional patterns in education, which in
turn will be used to model student behaviors. Experimental
results in a real case study show a significant improvement
on the prediction of student results, when compared with
the same classifiers trained without those patterns.

1. INTRODUCTION
The long history of education as an institution lead to huge
amounts of data, requiring automatic means for exploring
them. Educational data mining (EDM) [1] gives a first op-
portunity for exploring these data, providing the adequate
tools to predict students performance and dropouts, but also
for understanding student behaviors [4].

Despite the encouraging results, few approaches were dedi-
cated to explore the multi-dimensionality of data. Definitely,
the educational process encompasses a set of different enti-
ties, characterized by distinct sets of attributes. Each kind
of entity is usually known as a dimension (e.g. students,
teachers, courses). In the intersection of these dimensions
occurs the educational process, with the materialization of
its events (e.g. the marks obtained by students). Multi-
dimensional models, such as star schemas, are recognized as
the most usual schemas to model these kinds of data. They
consist in a central table containing the occurring events,
and a set of surrounding tables, comprising the specific data
about each dimension. Figure 1 shows an example in the ed-
ucational domain with 2 star schemas: one modeling student
enrollments and another teachers quality assurance surveys.

Subject( Program(

Term(

Degree(

Teacher(

Lesson(Type(

QA(Item(

Figure 1: Example of an educational data schema.

In this work we propose a multi-dimensional methodology
for analyzing educational data and improve prediction.

2. MULTI-DIMENSIONAL DATA MINING
FOR EDUCATION

The prediction of future outcomes is a task mostly addressed
by classification. However, results are far from being sat-
isfactory, and one of the reasons may be the fact that the
multi-dimensional relations between attributes are not being
considered. Thus, we propose to use a multi-relational data
mining (MRDM) algorithm to find patterns that are able to
characterize different entities and their behaviors, and use
the discovered information to enrich the data used for clas-
sification training, similar to what was proposed in [2].

MRDM [3] is an area that aims for the discovery of frequent
relations that involve multiple tables, without joining all the
tables before mining. Pattern mining, in particular, aims for
enumerating all frequent patterns that conceptually repre-
sent relations among entities. These patterns can be intra-
dimensional or inter-dimensional, if they contain items from
the same or more than one dimension, respectively; or ag-
gregated, if they result from the aggregation of events of the
central table. The works on MRDM has increased, but they
do not often scale with the number of facts. To overcome
this, the algorithm StarFP-Stream was proposed [5], com-
bining MRDM with data streaming techniques, and it is able
to mine both large and growing star schemas.

The methodology proposed has four main steps: multi-dimen-
sional pattern mining, pattern filtering, data enrichment and
classification. The first consists on running an algorithm
for multi-dimensional pattern mining over each star schema.
After finding all the patterns, the next step is to filter the
inter-dimensional and aggregate ones and choose the N best.
We define a set of filters that try to capture the interesting-
ness of a pattern: (1) support – The higher the support,
the more events share the same characteristics represented
in this pattern. However, the smaller the relations modeled;
(2) size – The largest patterns model more relations than
smaller ones. However, they tend to have the smallest sup-
ports; (3) closed patterns – A pattern is closed if none of its
immediate supersets have the same support. Thus, a set of
closed patterns (non-redundant) is more likely to be more
interesting. (4) rough independence – If two events are inde-
pendent, the occurrences of one do not influence the prob-
ability of the other, and therefore they are not interesting.

Thus, RInd({A1..n}) = P (A1∩A2∩...∩An)
P (A1)P (A2)...P (An)

. (5) rough chi-

square – Chi2 evaluates the correlation between variables.
And the more correlated, the more interesting are the rela-

tions: RChi2({A1..n}) = (support(A1∩...∩An)−P (A1)...P (An))2

P (A1)...P (An)
.
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Figure 2: Accuracy and size of the model for B1.

Once we have the best patterns, we can use them as features
for classification training by extending individual records
with the multi-dimensional patterns, represented as boolean
attributes (true or false) whenever an entity satisfies (or not)
the particular pattern. We can then finally run classification
algorithms on these enriched data and observe the results.

3. AN EDUCATIONAL CASE STUDY
In this case study we used the data from the Information
Systems and Computer Engineering program, offered in In-
stituto Superior Técnico – Universidade de Lisboa, in Por-
tugal. From the data warehouse, we have chosen the 2 stars
in Figure 1, modeling student performances in their enroll-
ments and teacher evaluation for their lectures. Our main
goal is to test our multi-dimensional methodology for pre-
dicting student results on the 10 most representative courses
of more advanced years (3rd-5th), based on the frequent be-
haviors found in the first 2 years. There were more than
650 students enrolled in some of those courses and 36 teach-
ers lecturing them. There were 1830 enrollments to predict.
We tested our enriched data with two baselines (without
patterns). The first (B1) consists in the joining of the stu-
dent, course and teacher dimensions, plus the student av-
erage grade, and the second (B2) contains also the specific
grades on the most representative courses of the 1st and
2nd years (23 courses). Student grades were categorized
and classification results are the average of several 10-cross
fold validations, given by C4.5 (available in Weka).

For finding student behaviors, there were more than 17 thou-
sand enrollments that were used for pattern mining. We
used an implementation of StarFP-Stream [5] made in Java
(JVM version 1.6.0 37), and data in the fact table were ag-
gregated per each pair student–term, so that we could find
frequent sets of courses attended per term. We found, e.g.
that it is frequent to succeed to both SIBD, PLD, AM3 and
AN in the same term, and to fail to AN course in the 2nd
season. For finding teacher behaviors, we used the surveys
of the courses we were predicting, in previous years (1088
survey questions). Data in this star schema was aggregated
per survey id, in order to find frequent sets of evaluations
given by students to their teachers.

Figures 2 and 3 (left) show the accuracy of the classification
step, over the B1 and B2, and corresponding datasets en-
riched with patterns from student behaviors (i.e. patterns
of Enrollments Star). As expected, since B2 has more in-
formation about the background of the student, it achieves
better accuracy than B1 (a 35% improvement). It is interest-
ing to see that we can predict 50% of the grades of students
based solely on their characteristics and average grade from
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Figure 3: Accuracy and size of the model for B2.

years 1 and 2 (B1). When we add the patterns, we can see
that the accuracy improves in both cases. In B1, the im-
provement is huge, of about 35%, because we are adding the
behavior information about students, that was not present
before. In B2, it allows classification to achieve an accuracy
of 90%. Although only 4%, this improvement indicates that
patterns are chosen instead of specific courses, and this may
result in models with less over fitting, and therefore more
accurate when predicting new instances. Also, results show
that the more N best patterns are chosen, the better the
accuracy, in general. When analyzing the different filters,
both the size and closed filters achieved better results.

Figures 2 and 3 (right) analyze the size of the trees created
by the classifier (i.e. the size of the model). We can see that
for B2, also as expected, the trees resulting from classifying
the enriched datasets are smaller than the base tree. In
the B1 case, the models of the enriched datasets are larger
because the baseline does not have much information, and
when we add patterns, they are chosen for building the tree.
Nevertheless, for similar values of accuracy (85%), the tree
for B1 is much smaller than for B2.

4. CONCLUSIONS
In this paper we proposed a multi-dimensional methodol-
ogy for mining educational data. It is general, and may be
applied to different domains and with different algorithms.
Experiments on a real case study show that we can take into
account the multi-dimensionality of the educational data to
discover frequent behaviors, and also to improve prediction.
This work is partially supported by FCT – Fundação para a
Ciência e a Tecnologia, under project educare (PTDC/EIA-
EIA/110058/2009) and PhD grant SFRH/BD/ 64108/2009.
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ABSTRACT 

In this paper we explore patterns in student behavior as they 

answer questions about documents they are reading. In earlier 

work [4] we showed that as students answer a question online, 

they can be categorized into one of 4 different clusters of 

“reading-scanning-scrolling” behaviors. Further, their reading-

scanning-scrolling behavior category predicts the quality of their 

answer to that particular question based on the level of that 

question in Bloom’s Taxonomy.  We have performed a second 

experiment that confirms these earlier results. In a third 

exploratory experiment we also show how the reading-scanning-

scrolling clusters already discovered can be refined for use with 

another taxonomy, the Marzano Taxonomy. We are currently 

exploring whether other clusters can be found to help understand 

student behavior in terms of the Marzano Taxonomy. 

Keywords 

K-means clustering, Bloom’s Taxonomy, Marzano’s Taxonomy 

1. INTRODUCTION  
Educational objective taxonomies form a pedagogical framework 

for understanding student learning.  Within the classroom 

environment, these taxonomies are utilized to challenge the 

teachers and instructors to move beyond simple low level 

learning. 

Bloom’s Taxonomy of Educational Objectives and its subsequent 

revision by Anderson [1] is a widely used taxonomy within the 

classroom.  It is comprised of three major domains, the cognitive, 

affective and psychomotor.  The cognitive domain is comprised of 

six hierarchical categories ranged from the easiest cognitive tasks 

to the most difficult cognitive tasks.  The categories, from lowest 

to highest, are knowledge, comprehension, application, analysis, 

synthesis and evaluation (as revised by Anderson et. al. [1]). 

In response to shortfalls found within Bloom’s Taxonomy [2], 

Marzano and Kendall [3] in 2007 introduced their taxonomy of 

educational objectives.  Marzano’s premise is that knowledge use 

is affected by three systems: the cognitive system, the 

metacognitive system and the self-system [3]. When an individual 

is faced with some new situation, the self-system must determine 

if it is better to continue with the current behavior or to adapt 

some new behavior.  The metacognitive system then tries to set 

the goals that are needed to achieve the desired outcome and then 

monitor those goals.  The cognitive system processes all the 

necessary information required to complete the task that is 

obtained from the knowledge system [3]. 

Each of Bloom’s categories for the cognitive domain can map 

over to one of the categories for Marzano’s cognitive domain.  

However, there is no one-to-one mapping possible between these 

domains [2].  So in practice we will find that a problem 

categorized as Bloom level 2 (understanding) may equate to 

Marzano’s level 2 (comprehension) or to Marzano’s level 1 

(knowledge) depending on the context of the problem. 

This paper extends our earlier work [4].  In particular, we wanted 

to confirm the results of our first experiment. Additionally, we 

wanted to see if we could move from the Bloom taxonomy to the 

Marzano taxonomy, and whether this would lead to a more 

refined predictive capability. 

2. METHODOLOGY AND RESULTS 
Our initial and confirmatory experiment was performed to 

determine if there were useful patterns of student usage that could 

be found within a simple learning content management system 

[4].  Students were given multiple documents that contained novel 

information and then were asked multiple questions to determine 

how they had learned the material presented.  The students were 

allowed to freely move between the various articles and questions 

presented to them and could freely interact with the content they 

were expected to learn.  Following the trace methodological 

approach, all of the interactions/events in the system were 

captured and time-stamped.  The events captured included mouse 

clicks, mouse wheel movements, button clicks, typing, and so on.  

Over the two experiments, a total of 50 participants were tested 

generating over 63,738 events. 

Based on the timestamps of these events, we were able to measure 

when students were reading (slowest), scanning, or scrolling 

(fastest) through the document. The time cutoffs used to 

differentiate between the reading, scanning and scrolling 

categories were consistent with other document navigation 

literature,, as discussed in [4]. In the first experiment we found no 

significant differences between the clusters until the level of 

knowledge needed to answer a question in terms of Bloom’s 

Taxonomy was factored in [4]. Then, over many k-mean 

clustering iterations we discovered 6 clusters that allowed us to 

predict the quality of the students’ answers to questions based on 

their Bloom level, with the 4 most predictive as follows: Light 

Reading Cluster (50% reading, 30% scanning, 20% scrolling) 

(50:30:20), Light Medium Reading Cluster (60:30:10),  Heavy 

Medium Reading Cluster (70:30:10), Heavy Reading Cluster 

(80:10:10). In experiment 2, we used the clusters found in [4] 

predictively as metrics and checked to see if we would still obtain 

significant differences between the clusters. 

Table 1 shows that for experiment 2 all of the levels tested have 

significant differences.  This shows that the clusters from 

experiment 1 hold up well in predicting students’ answers to 

questions in experiment 2, thus confirming the results of the first 

experiment. 
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Bloom Level F P F-Critical 

1 23.137 1.04E-6 3.09 

2 33.245 2.47E-7 3.19 

3 21.237 .005796 6.60 

4 50.535 .000854 6.60 

5 25.128 1.18E-6 3.15 

Table 1 One way ANOVA for Bloom Level Experiment 2 

Again as in[4], the clustering does not predict an exact grade on  a 

question but provides a more coarse grained prediction of a 

student’s performance.  For example, question 2, experiment 2 

asked for a student to recollect two pieces of information.  The 

heavy reading cluster almost always involved the student 

achieving a failing grade while those students who performed 

more scanning obtaining a grade greater than 75%.  Those 

students who performed more scanning and who did not receive 

higher grades did so because they misinterpreted the question. 

 
50,30,20 60,30,10 70,20,10 80,10,10 

50,30,20 - 0.19626 0.15202 0.13407 

60,30,10 0.25348* - 0.1896 0.17554 

70,20,10 0.3588* 0.10529  - 0.12412 

80,10,10 0.4651* 0.21159* 0.1063  - 

Table 2 Tukey-Kramer Analysis Bloom Level 2 Experiment 2 

Table 2 demonstrates the differences between the clusters for 

experiment 2. Again we see that there are significant differences 

but those differences tend to be between the 50:30:20 and the 

80:10:10 clusters.  In the second experiment the participants 

consisted primarily of individuals that are heavy computer users.  

This contrasts with the participants in experiment 1 that were 

primarily novice computer users.  The participants from the 

second experiment tended to either perform heavy reading or the 

other extreme with the highest scanning and scrolling ratios.  The 

middle two clusters were under-represented in the second 

experiment.  The reason may be that the more advanced computer 

users have found strategies which allow for successful 

information processing in online environments. 

Recently, Marzano’s Taxonomy [3] has become popular, partly 

because it has finer grained sub-categories. This left us wondering 

if we could make predictions using Marzano’s Taxonomy similar 

to those we did using Bloom. We decided to look at this in a third 

exploratory experiment where we recast the data from the first 

two experiments in terms of Marzano’s categorizations.. 

To this end, questions used in experiment 1 and experiment 2 

were re-categorized in terms of Marzano’s Taxonomy. .Since in 

Marzano the cognitive domain only contains 4 main levels, there 

was a slight generalization from Bloom to Marzano. Table 3 

shows that statistically significant predictions could be made 

about students’ performance on questions at the first 3 levels of 

Marzano using the questions from experiment 2 Level 4 of 

Marzano did not show up as statistically significant.  As with the 

first experiment, there weren’t sufficient numbers of students to 

obtain significant values. However, when we combined the 

questions from both experiments 1 and 2, we can even make 

significant predictions at Marzano’s level 4 (F = 43.86, F-Critical 

= 3.00, p = 6.77E-10). 

Marzano’s cognitive domain contains 4 main levels that can, in 

turn, be subdivided into 14 sublevels (see Table 3).  These 

sublevels offer a much more fine-grained level of detail compared 

to Bloom. We found that our questions from the earlier 

experiments covered 8 of the 14 subcategories of Marzano’s 

Taxonomy. In particular, all three sublevels within Marzano level 

1 were represented. We could predict the quality of student 

answers to sublevel 1 questions with statistical significance, but 

could not do so with the other two sublevels of Marzano level 1. 

Nevertheless, this does give hope that we can make predictions at 

this more fine-grained levels offered by the Marzano Taxonomy, 

although likely larger studies will be needed, with more students, 

to discover the relevant clusters. 

Marzano Level F F-Critical 

1 (Sublevel 1, 2, 3) 120.98 2.73 

2 (1, 2) 62.31 3.07 

3 (1, 2, 3, 4, 5) 52.71 3.91 

4 (1, 2, 3, 4) 0.60 3.58 

All Levels Combined 1.40 2.67 

Table 3 Tukey-Kramer Analysis Marzano Experiment 2 

 

CONCLUSIONS 
Our three experiments lead to the following general conclusions.  

First, the patterns discovered in the first experiment seem to hold 

well for the second experiment.  This provides more confidence 

that they actually represent real behavioral differences, and that it 

is worthwhile to look at student activities in terms of the Bloom 

level of the tasks they are trying to accomplish.  Second, the 

patterns to some degree survived when the questions were 

relabeled in terms of the Marzano taxonomy. This points out that 

there are strong correspondences between Bloom and Marzano, 

and even opens up the idea of perhaps formally exploring these 

correspondences in future through mining actual student behavior 

as they solve problems at various levels of the two taxonomies. 

Third, the promise of Marzano’s taxonomy, with its more refined 

categorizations, to explain why the reading-scanning-scrolling 

behaviors lead to the various outcomes that they do has yet to be 

fully validated 
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ABSTRACT
Despite the benefits that collaborative discussion has on
learning, one difficult problem is the formation of pairs or
groups that enable appropriate discussion. This problem
is even more challenging in the case of unstructured inter-
action with exploratory learning environments. Building on
previous work on supporting individual learners in such envi-
ronments, this paper reports on a tool that generates groups
of students by mining what they have done in the context
of an exploratory activity and then calculating similarities
between their strategies.

1. INTRODUCTION
Exploratory Learning Environments (ELEs) are educational
applications that provide direct access to a domain or to
some alternative representation and offer a context and ap-
propriate tools to scaffold the learning experience. They are
generally aligned with theories of learning that emphasise
the role of learners in constructing their own learning. In
parallel to their recent upsurge, there has been a lot of work
in the field of Computer-Supported Collaborative Learning
(CSCL) with technological advances that are making collab-
orative problem solving and co-construction of knowledge
possible even for remote participants. Research in both
areas (ELEs and CSCL) has demonstrated that working
in groups has the potential to enhance learning, but that
careful planning and structuring of collaborative tasks and
strategic formation of collaboration groups is a necessary
prerequisite [1, 4].

Although the advantages of encouraging students to examine
different approaches to a problem, discuss the benefits and
drawbacks of each, build on each other’s ideas, and benefit
from the reflection that results from interaction with others,
have been widely identified [4, 5]), it can be difficult to form
potentially productive groups i.e. groups that will provide
opportunities for students to engage in fruitful discussions,
enabling them reflect on their approaches to the problem, to
justify and critique their solutions, and thus lead to deeper
learning. This is even more so in the case of courses with a
very large number of students such as Massive Open Online
Courses (MOOCs), where it is infeasible for humans to par-
ticipate in the creation of the groups and any effectiveness
beyond haphazard pairing must be the result of analyzing
students’ work. Once again, exploratory activities can offer
more opportunities due to their richer interaction possibili-
ties.

2. FORMING GROUPS BASED ON
EXPLORATORY LEARNING
STRATEGIES

This paper reports on a tool that aims at helping to over-
come these challenge. Our tool generates groups of students
by mining what they have done in an exploratory activity
and then calculating similarities between their strategies.
The aim is to alleviate teachers/lecturers from the task of
grouping students into meaningful pairs; by meaningful we
mean pairs that maximise the probability that students will
have complementary approaches or strategies to a given task
or tasks, and therefore will have more opportunities for dis-
cussion, reflection, and ultimately learning. Building on for-
mer work aimed at supporting individual students [2], this
tool was first created in the context of the eXpresser mi-
croworld for the learning of algebra [3] but the general princi-
ples are valid for any exploratory learning environment that
is intended to be used with very large groups. Although
we omit the details of the original microworld for the sake
of space, it suffices to say that the microworld allows stu-
dents to create pictorial tile patterns in a square grid, that
patterns can be created in many different ways, and that
they are used as a scaffold towards different kinds of al-
gebraic and pseudo-algebraic formulations of mathematical
problems, thus helping young learners to strengthen their
algebraic generalisation skills.

Figure 1 shows three different ways of creating the same pat-
tern and how the same algebraic formula can be expressed
in different ways. Typically, in the context of a module sev-
eral tasks will be tried; for any given task, students will find
one solution from the set of possible solutions (advanced
students may find several) and its corresponding formula.
In a classroom scenario, these individual tasks are usually
followed by a collaborative task in which pairs of students
must explain to each other how“their” solution is the “right”
one and whether their two solutions are equivalent.

It is evident that, in order for this discussion to be mean-
ingful, students in each pair must have found solutions that
are quite different; this maximises the cognitive conflict and
requires deeper reflection to see the equivalences. Unfor-
tunately, differences in real students’ approaches are rarely
as evident as in the three paradigmatic solutions shown in
Figure 1; even in classrooms with relatively low numbers of
students, teachers find themselves in a situation in which
they do not have the time to make groups effectively, taking
into account all details, and they resort to haphazard cre-
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Figure 1: Example of different task solutions. Different constructions of the pattern lead to different (but
equivalent) expressions.

ation of groups (e.g. based on the order of task completion
or based on student choice). Our tool, on the other hand,
analyses the students’ actions and then suggests pairs that
minimise the similarity among the approaches taken by the
two students in each group.

Different strategies. In the first stages of the design of
this grouping tool we tried to clarify the limits of the task,
namely what were the characteristics of the best group and
the worst group in our context. Although it is obviously
hard to reach an agreement about these general ideas, all
teachers and educators agreed that grouping together two
students who have created exactly the same construction
(i.e. used the same approach for the task) would not lead
to much discussion as there is nothing to compare. There-
fore, the first step was the determination of the definition of
equality of two constructions. In collaboration with the ped-
agogical team, we agreed on the following definition: “Two
constructions are equal from the point of view of collabo-
rative discussion if they have the same number of patterns,
the patterns have the same building blocks, the building
blocks are displaced horizontally and vertically by the same
amount on each iteration, and any expressions used in their
attributes are related using variables in the same way”.

The value of starting the design process by defining equality
between exploratory strategies is twofold. First, the defi-
nition allows us to know when two students should not be
put together in the same group. More importantly, it also
clarifies the factors that determine when two constructions
are different (and how). Our tool represents each student’s
strategy as the combination of three vectors in three dif-
ferent spaces with different metrics: building block related,
numerical, and relationship. Then the overall similarity, s,
is calculated as a linear combination of the inverse of the
distances between the vectors of one student’s strategy and
those of the other:

s = K ×

(
wbb ·

1

1 + bbd
+ wn ·

1

1 + nd
+ wr ·

1

1 + rd

)

where bbd, nd, and rd are the total building block, numerical,
and relationship distances between pairs of patterns in the
two constructions, and the wx are weights. K is a scale
factor related to the number of patterns.

Fine-tuning with experts. Weights wbb, wn, and wr were
initially set to 0.4, 0.3, and 0.3, following discussion with
teachers, but were later modified and fine-tuned to ensure
that the calculations made by the tool were in line with the
perceptions of teachers about similarity between different
students’ constructions. We evaluated the validity of the
suggestions of the tool by a process of gold-standard valida-
tion. This consisted of an iterative process in which our team
of pedagogy experts were presented with several scenarios,
each of them containing different microworld constructions,
and the experts were asked to assess their similarity. At the
end of this process, the average agreement between the tool’s
recommendation and the experts’ was higher than 80%.
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ABSTRACT 

Being able to monitor collaborative learning environments using 

unobtrusive measures is crucial to maximizing students’ 

socioaffective experiences with a system. This analysis uses the 

cohesion of student responses to model students’ feelings of 

power and connectedness to the group, two factors which emerge 

from a principal component analysis of a motivational survey. 

Keywords 

CSCL, educational group chat, group dynamics, power, 

connectedness, cohesion, Coh-Metrix, learning 

1. INTRODUCTION 
Understanding the dynamics of computer-supported collaborative 

learning (CSCL) environments is crucial to providing adaptive 

enhancements or supports to groups of students who are not 

receiving the full benefits of technology-based collaboration [5]. 

One important facet of any learning environment is the student's 

affect during the interaction, which may have a positive impact on 

motivation [4] or may lead to tension and competition if the group 

is experiencing negative emotions due to conflict [1]. Previous 

work on group dynamics and its impact on learning has made a 

sharp division between the social and informational processing 

parts of group discussion [6, 9], but in collaborative learning 

environments, these aspects may be difficult to tease apart, as 

there may be a cognitive component to social side of CSCL and 

vice versa. This may be particularly true when examining cues 

which assess the group's socioaffective state without interrupting 

the flow of conversation to ask for a self-report. Linguistic cues of 

a cognitive nature may be able to detect various socioaffective 

components of CSCL conversations, with the added advantages of 

being performed automatically and covertly based on the flow of 

conversation.  

 

 

 

 

 

 

 

This work uses Coh-Metrix [7] to assess how discoursive deep 

cohesion predicts socioaffective components found in a 

motivational survey [8] administered to students engaged in a 

group chat environment. Deep cohesion is defined as the extent to 

which ideas in the text are cohesively connected at a deeper 

conceptual level that signifies causality or intentionality. 

Therefore, deep cohesion may be one way of exploring how 

cognitive aspects of language predict socioaffective outcomes in 

group conversation. By understanding group dynamics in CSCL 

environments, we may be able to intervene where group 

conversation stagnates or goes awry to maximize the learning 

experience. 

2. METHODS 
Seven hundred forty-eight students in two introductory-level 

psychology classes at the University of Texas at Austin used an 

online educational platform to chat with group members about 

assigned readings. Once logged on, students were randomly 

placed in groups of up to five members, given a 10-item pretest 

about the readings, then allowed to chat for exactly 20 minutes 

about the readings. Discussion questions were given to groups to 

facilitate discussion, but no restrictions were placed on what could 

be said. After the chat session, students were given a 10 item 

posttest and filled out a motivation questionnaire which asked 

about the students' perceptions of the interaction, group members, 

and their own role in the group. More details about this survey are 

given by Niederhoffer and Pennebaker [8]. All data was logged 

for analysis, then cleaned, parsed, and extracted from these logs. 

The chat contributions of each individual were processed using 

Coh-Metrix and then Winsorized. 

3. RESULTS AND DISCUSSION 
The first set of analyses conducted sought to find out the 

relationship between perceptions about the group interaction and 

learning. We conducted a principal component analysis (PCA) to 

create meaningful, broader variables with which to describe the 

students' socioaffective experience in the group. The data fit all 

the standard criteria for factorability (all variables intercorrelated 

with one of variable above .3, a Kaiser-Meyer-Olkin measure of 

sampling adequecy above .6, and a significant Bartlett's test of 

sphericity (2(21) = 1640.31, p < .001). Two components with 

eigenvalues greater than 1 were found, which collectively 

explained 66.6% of the variance. All items from the test loaded 

strongly onto only one component (>.4) with low cross-loadings 

(<.3). The items that loaded onto the first component was 
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concerned with the student's perceptions of how well the chat 

went and how much the student "clicked" with the other members; 

this component was therefore labeled "Connectedness". The 

second component was composed of items about the social status 

of the student and the control they exerted over the group, and 

thus has been labeled "Power." Feelings of power and 

connectedness have both been linked to qualitatively and 

quantitatively better performance in collaborative learning 

environments [2, 3]. These components were then correlated with 

each students' proportionalized learning gains ([Posttest - Pretest] 

/ [1 - Pretest]). Connectedness was significantly correlated with 

learning r(743) = .164, p < .001, but power was not, r(743) = 

.007, p > .05. McGrath [6] has posited that a positive social 

relationship leads to better group performance, so connectedness 

and learning ought to be somewhat linked even in a single 

discussion session, but authority has also been linked to learning 

[3], which was not found here. However, it is possible that power 

component, which is based on self-reports, is not sensitive enough 

to pick up this relationship in a single learning session. 

The second set of analyses examined how the linguistic cue deep 

cohesion predicted feelings of power and connectedness to the 

group by using mixed-effects modeling. Mixed-effects modeling 

was used to account for the nested structure of the data, where 

students are embedded within group. This random factor can 

therefore be controlled for in mixed-effects modeling while 

measuring the effects of the fixed factors. Two models were 

constructed for these analyses: one to examine deep cohesion's 

ability to predict power and one to predict connectedness. Deep 

cohesion was the independent variable, while student (748 levels) 

nested within group (183 levels) was the random factor. Deep 

cohesion was found to positively and significantly predict feelings 

of connectedness to the group, F(1, 744.137) = 12.25, SE = .021, 

p < .001, so that as a student felt more connected to the group, the 

deep cohesion in their language increased. The same was also true 

for predicting feelings of power in the group, F(1, 746) = 11.909, 

SE = .021, p = .001; as a student’s feelings of power in the group 

increased, so did the deep cohesion in their language. This 

demonstrates not only that linguistic cues are a viable source of 

predicting socioaffective outcomes, but that the cues for detecting 

such outcomes need not be restricted to typical emotive cues; a 

person’s feelings about their group experience may also emerge in 

the cohesion of their language, a subtler cue than, for instance, 

their use of emotive language.  

These analyses demonstrate that cognitive linguistic cues may be 

of use in detecting students’ socioaffective attitudes towards 

fellow students in CSCL environments, which may have long-

term consequences for their motivation and continued use of such 

systems. Being able to covertly detect these attitudes may mean 

that interventions are possible. 
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ABSTRACT 
In the current study, we utilize natural language processing 
techniques to examine relations between the linguistic properties 
of students’ self-explanations and their reading comprehension 
skills. Linguistic features of students’ aggregated self-
explanations were analyzed using the Linguistic Inquiry and Word 
Count (LIWC) software. Results indicated that linguistic 
properties of self-explanations were predictive of reading 
comprehension ability. The results suggest that natural language 
processing techniques can serve as stealth assessments of abilities 
within intelligent tutoring systems. 

Keywords 

Intelligent Tutoring Systems, natural language processing, stealth 
assessment, student modeling, reading comprehension 

1. INTRODUCTION 
In the field of intelligent tutoring systems (ITSs), there exists 
some debate to determine when it is most optimal to assess 
students’ performance, skills, and affect during learning tasks. 
System developers aim to avoid repeatedly questioning and 
testing students, as it may disrupt their learning flow [1]. 
However, it is crucial to gather student information because such 
variables can affect the adaptability and sophistication of these 
systems. One way to collect student information (without directly 
testing students) is through the use of stealth assessments [1]. A 
stealth assessment is a measure of student information (e.g., 
engagement, affect, skills, etc.) that is embedded within a 
particular task and seemingly “invisible” to users [2].  

Stealth assessments can serve to inform student models within 
adaptive environments and, accordingly, improve system 
feedback and instruction. By modeling the behavioral and 
cognitive states of students without explicit surveys or tests, ITSs 
can improve student models without disrupting the learning flow 
of the users. This information can then be used to guide the 
pedagogical content that is presented to each student [3].  

1.2 iSTART 
The Interactive Strategy Training for Active Reading and 
Thinking (iSTART) tutor is an ITS that was developed to teach 
reading comprehension strategies to high school and college 
students [4]. The primary focus of the system is on the strategy of 
self-explanation, which has been shown to benefit students on a 
number of higher-level tasks [5]. Within this ITS, there are 

introduction, demonstration, and practice modules that explain the 
purpose and demonstrate the use of these strategies. 

2. STUDY  
The goal of the current study is to examine the extent to which the 
linguistic and semantic properties of students’ natural language 
input can be used as a stealth assessment of their reading 
comprehension skills. To accomplish these goals, we collected 
students’ self-explanations from the iSTART system and 
aggregated the individual, sentence-level self-explanations across 
each text that was read. Students’ aggregated self-explanations 
were then analyzed using the Linguistic Inquiry and Word Count 
(LIWC) software. We utilized this tool in the current study so that 
we could investigate relations between students’ reading 
comprehension ability and the semantic properties of their natural 
language input. 

Participants were 126 high-school students from a mid-south 
urban environment who participated in iSTART training. 
Students’ reading comprehension skills were measured using the 
Gates-MacGinitie (4th ed.) reading skill test (form S) level 10/12.  
 

2.1 Text Analyses 
The linguistic features of students’ aggregated self-explanations 
were calculated using LIWC. LIWC is a text analysis tool that 
uses categorical word dictionaries to provide information about 
texts that corresponds to thematic and rhetorical language use [6].  

To extract linguistic and semantic information from students’ self-
explanations, individual (sentence-level) self-explanations were 
combined for each text read during training. Thus, each student 
was left with one aggregated self-explanation file for each text 
that they read during their time in the iSTART system. This 
aggregation method is discussed in greater detail in previously 
published work [7].  

LIWC indices were then calculated for each of the aggregated 
self-explanation files. For each student, this LIWC output was 
averaged across texts to create an average score on each of the 
linguistic measures. These scores provide a measure of students’ 
aggregated self-explanations at multiple linguistic levels. 

3. RESULTS 
To examine the relations between the LIWC linguistic scores and 
students’ reading comprehension performance, a correlation was 
calculated between students’ reading comprehension scores and 
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their LIWC scores. A stepwise regression model was then 
calculated to assess which properties were most predictive of 
students’ comprehension skills. A training and test set approach 
was used for both regressions (67% for the training set and 33% 
for the test set) to validate the analyses. 

There were 13 LIWC variables that significantly correlated with 
reading comprehension scores (see Table 1). We tested for multi-
collinearity among these variables; however, no variables were 
correlated with each other above r = .90.  

Table 1. Correlations between reading comprehension 
scores and LIWC linguistic scores 

LIWC variable/category r p 

Word count .350 <.001 
Words per sentence -.316 <.001 
Number words .266 <.001 
Past words .224 <.010 
Certainty words .222 <.050 
Filler words -.212 <.050 
Second person pronouns -.211 <.050 
Quantitative words .201 <.050 
Third person pronouns .197 >.050 
Ingestion words -.195 >.050 
Home words .194 >.050 
Social words -.182 >.050 
Vision words .177 >.050 

   

A stepwise regression analysis was conducted on the 90 self-
explanations files with the 13 LIWC variables as predictors of 
reading scores (see Table 2) and yielded a significant model, F(4, 
85) = 9.865, p < .001, r = .563, R2 = .317 with four predictors: 
word count [β =.38, t(4, 85)=4.383, p < .001], words per sentence 
[β =-.29, t(4, 85)=-3.129, p = .002], second person pronouns [β =-
.24, t(4, 85)=-2.58, p = .012], and ingestion words [β =-.22, t(4, 
85)=-2.393, p = .019]. The test set yielded r = .490, R2 = .240. 

Table 2. LIWC regression analysis prediction comprehension 
scores 

Entry Variable added R2 Δ R2 
Entry 1 Word count .120 .120 
Entry 2 Words per sentence .228 .090 
Entry 3 Second person pronouns .271 .043 
Entry 4 Ingestion words .317 .046 

 

4. DISCUSSION 
We leveraged NLP to develop stealth assessments of students’ 
reading comprehension skills. A subset of LIWC indices were 
related to reading comprehension scores – namely, high reading 
ability students were more likely to have longer self-explanations 
(with shorter individual sentences) with an emphasis on numbers, 
words related to the past, and words related to home and vision. 
With regards to writing style, these students self-explained more 
confidently (certainty words), using a greater number of third 
person pronouns and fewer second person pronouns. Follow-up 

regression analyses indicated that word count, words per sentence, 
second person pronouns (e.g., you), and ingestion words (e.g., 
dish, eat, taste) provided the most predictive power in this model, 
accounting for 32% of the variance. Importantly, most of these 
indices were basic indices, rather than semantic categories. Thus, 
while many semantic lexical categories were significantly related 
to students’ comprehension scores, they provided less predictive 
power than basic indices. The ingestion words index was the only 
semantic LIWC variable that was retained in the final model. This 
is likely an effect of the specific content presented within the 
iSTART passages; perhaps better readers provided more specific, 
on-topic information in their self-explanations. This question will 
be investigated more thoroughly in future, qualitative analyses.  

These results are important, as they suggest that students’ abilities 
manifest in the way that they explain concepts in texts. Therefore, 
linguistic and semantic properties of self-explanations may 
provide crucial information about students’ cognitive processes 
during text comprehension. Here, we only analyzed pretest 
reading ability. However, these methods could be applied to 
model a number of relevant student features, such as their 
affective states and prior knowledge. Overall, the results of this 
study (and similar studies) can be used to help researchers develop 
assessments and models that provide more nuanced information 
about students for the purpose of increasing personalized 
instruction and adaptability. 
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ABSTRACT 

Given the increasing number of students registering to MOOCs 

for free, course instructors who want to go beyond automated 

evaluation have no choice but to use peer assessment. Despite 

the increasing use of peer evaluation, very little is known 

regarding the factors that influence assessors’ engagement in the 

process. Based on two editions of Introduction to Project 

Management, the first French xMOOC, we explored the impact 

of learners’ background on their engagement in peer assessment. 

We observed that registrants that took part in peer evaluation 

differed significantly from other participants in regards to time 

constraints and demographic variables such as geographical 

origin.  

Keywords 

Peer assessment, xMOOC, engagement, demography  

1. INTRODUCTION 
The impact of Massive Open Online Courses (MOOCs) has 

considerably deepened since the foundation of edX and 

Coursera in 2012 [3]. Nevertheless, initial enthusiasm has been 

tempered by recurrent criticism over different aspects of 

MOOCs such as their low completion rates [1] or the 

unreliability of the grading process. Many courses rely on peer 

assessment [5] to evaluate at no cost large amounts of 

assignments. This grading process is easily scalable, but has 

faced high level of skepticism given the fact that MOOC 

participants are not trained examiners.  

A deeper understanding of the factors influencing the peer 

grading process is needed in order to increase its efficiency. 

Introduction to Project Management is the first French 

xMOOC; it relies extensively on peer assessment and therefore 

represents an interesting case study in regards to those issues. 

How does participants’ background influence their engagement 

in the peer assessment? 

2. MATERIAL AND METHODS 

2.1 Course description 
ABC de la Gestion de Projet (Introduction to Project 

Management) is a MOOC organized by Centrale Lille, it was 

run twice in 2013, in the spring and in the fall. 1332 participants 

completed and obtained a certificate during the spring edition, 

and 3301 during the fall edition. In the second edition of the 

course exclusively, 579 students from Centrale Lille and several 

other French institutions of higher education registered. They 

were not taken into account in this analysis. When we speak 

about students, we refer to registrants still studying at university 

but not taking the course for credentials. 

The course provided videos, quizzes, weekly assignments and a 

final examination. Two certificates corresponding to two 

different workloads were offered - a basic one and an advanced 

one. To obtain the basic certificate, it was required to complete 

successfully the quizzes and to pass the final exam.  In order to 

obtain the advanced certificate, participants were required, in 

addition to the quizzes and the final exam, to submit weekly 

assignments that were peer assessed. In the spring edition and 

the fall edition, respectively 438 and 809 obtained the advanced 

certificate. Assignments were evaluated four times each in the 

first edition, and five times each in the second. Consequently, 

over the duration of the MOOC registrants could assess up to 16 

and 25 assignments in the first and the second edition, 

respectively. Many registrants skipped some peer assessments in 

the spring edition. In the fall edition, course instructors 

threatened to lower the grades of the participants who had not 

taken part in the peer assessment process. 

2.2 Available data and methods 
In both editions, participants were asked to fill in a survey at the 

beginning of the course. It was responded to by 69% of the 3495 

registrants of the spring edition and by 54% of the 10847 

registrants of the fall edition. Response rate was higher among 

completers, with 99% and 93% in the first edition and the 

second one, respectively. Those surveys provided data on 

participants’ origin, gender, employment status, and the amount 

of time they intended to work weekly for the MOOC. Countries 

were classified into three categories based on their human 

development index (HDI), obtained from UN data [7]. Countries 

with Medium and High HDI were grouped into a “Intermediate 

HDI” category. In order to obtain odd-ratios, we computed 

logistic regressions (glm procedure, family=”binomial”) with R. 

Ref. is the reference for such odd-ratios. 

3. RESULTS 
In both editions, only a fraction of registrants submitted 

assignments and were therefore allowed to take part in the peer 

assessment process. Among them, a significant proportion 

skipped peer assessment. The proportion of participants who 

skipped peer assessment at least once for the assignments they 

had submitted was higher for the spring edition (32.7%), than 

for the fall edition (8.3%).  
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Table 1. Identifying factors affecting engagement in the peer 

assessment process in the spring and the fall edition of the 

MOOC. Numbers represent odd-ratios of a logistic regression. 

For “Assignment submission”, higher O.R means that more 

participants submitted at least an assignment for a given 

category, compared to the reference (Ref). For skipping P.A 

(Peer Assessment), higher O.R means that more participants 

skipped peer assessment at least once. *p-value <0.05, ** p-

value <0.01, ***p-value <0.001 

 Assignment submission Skipping P.A. 

 Spring Fall Spring Fall 

Gender  

Male Ref Ref Ref Ref 

Female 0.97 0.88 0.74 0.90 

Employment status  

Higher management 

positions 
1.27 1.46* 0.81 1.11 

Lower management 

positions 
0.79 0.99 0.96 1.95 

Unemployed 1.23 1.06 1.30 1.26 

Students 0.73 1.01 1.36 1.15 

Others Ref Ref Ref Ref 

HDI  

Low Ref Ref Ref Ref 

Intermediate 1.43* 1.29 1.01 1.31 

Very High 1.98 *** 1.50*** 0.30 *** 0.48*** 

Weekly workload  

Below 2 h 0.31 *** 0.43 *** 1.44 1.62 

Between 2 to 4 h Ref Ref Ref Ref 

Between 4 to 6 h 3.22 *** 2.77*** 1.03 0.91 

Bbove 6 h 4.39 *** 3.86*** 1.17 1.21 

 

Through logistic regressions, we aimed at identifying the factors 

associated with engagement in the advanced certificate (Table 

1). Only registrants who had responded to the initial survey were 

taken into account. We first tried to understand the background 

of participants who had submitted at least an assignment. 

Geographical origin and time constraints were the main drivers 

of selection. As shown in Table 1, registrants from More 

Developed Countries (Very High HDI) were more likely to 

submit assignments and less likely to skip peer assessment than 

those from Least Developed Countries (Low HDI). Time 

constraints were also a very important driver of selection. 

Participants who were not able to spend more than two hours 

per week on the MOOC were unlikely to submit an assignment, 

and consequently to take part in the peer assessment process.  

Given that taking part in peer assessment was encouraged but 

not compulsory to get the certificate, some participants skipped 

it. To analyze this phenomenon, we followed the same approach 

that we had used previously, but only registrants who had at 

least an assignment were taken into account in the logistic 

regression. Time constraints had no longer any statistically 

significant impact. Only geographical origin had a statistically 

significant impact in the spring edition. Participants from More 

Developed Countries were 70% less likely to skip peer 

assessment than participants from Least Developed Countries. 

This trend was also observed in the fall edition. 

4. CONCLUSION 
Among demographic factors, geographical origin, and to some 

extent employment status, were the most influencing factors 

regarding engagement in the peer assessment process. This trend 

had been detected in previous studies [2]. Time constraints were 

also one of the main drivers of selection, which is not surprising 

given that most registrants follow MOOCs during their free 

time. Given the amount of time required by assignments, 

selection based on motivation and availability occurred mostly 

before peer assessment itself. This may explain why no link was 

detected between skipping peer assessment and the number of 

hours participants had intended to spend on the course. Further 

investigations are needed to understand why participants from 

Least Developed Countries show lower levels of engagement 

than those from More Developed Countries, regarding both 

submission of assignments and participation in peer assessment.  

Categorization of participants based on their behavior has been 

carried out mostly at the scale of the course [4]. Such 

approaches could be followed at the scale of the peer assessment 

process. Taking into account demographic parameters in the 

models might enhance the efficiency of strategies [6] aimed at 

increasing the precision and the efficiency of peer assessment. 
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ABSTRACT
In this work, we investigate the role of relational bonds in
keeping students engaged in online courses. Specifically, we
quantify the manner in which students who demonstrate
similar behavior patterns influence each other’s commitment
to the course through their interaction with them either ex-
plicitly or implicitly. To this end, we design five alternative
operationalizations of relationship bonds, which together al-
low us to infer a scaled measure of relationship between pairs
of students. Using this, we construct three variables, name-
ly number of significant bonds, number of significant bonds
with people who have dropped out in the previous week,
and number of such bonds with people who have dropped
in the current week. Using a survival analysis, we are able
to measure the prediction strength of these variables with
respect to dropout at each time point. Results indicate that
higher numbers of significant bonds predicts lower rates of
dropout; while loss of significant bonds is associated with
higher rates of dropout.

Keywords
Student Dropout, Peer Influence, MOOCs

1. INTRODUCTION
Massive Open Online Courses (MOOCs) such as those run
through Coursera1 have rapidly moved into a prominen-
t place in the media. One notable problem with current
MOOCs is the extremely high attrition, which inspires us
to investigate what factors might affect student attrition [3,
2]. Prior work has been conducted to explore the connec-
tion between participation patterns in the discussion forum
and student dropout. However, little attention has been
paid specifically to the formation of relationship bonds dur-
ing participation or how those relationship bonds influence
the continuing commitment to the course. In this work,
we investigate the connection between relational bonds and

1https://www.coursera.org/

commitment to the course, which we refer to as Peer Influ-
ence. We leverage a statistical analysis technique referred
as survival analysis to quantify the extent to which the infor-
mal relationships between students influence their dropout.
First, we design five alternative operationalizations of re-
lationship bonds based on patterns of communication and
common topic focus in posts. We validate these five opera-
tionalizations as a single scale that enables us to construct
three variables describing important aspects of the experi-
ence students have in the MOOC social environment.

2. PEER INFLUENCE EXPLORATION
In this section, we describe five separate operationalizations
of relationship formation that we use to infer peer bonds.

• Reply Interaction: Who replies to whom is an explicit
and direct indication of students’ intention to socialize
with specific other students. We generate a peer can-
didate set for a student based on the number of replies
they have contributed to the posts of each of the other
students as a reflection of their connection with them.

• Co-occurrence Evidence: Even though students are
not talking to others directly, it is possible that they
benefit from others’ posts when they are exposed to
them on the the threads they post to. Furthermore,
participating in the same thread might also indicate
that students share similar interests. Here, peer can-
didates are generated by ranking students based on
number of common threads they have participated in.

• Community Connection: The participation patterns of
students can be viewed as a social network graph, and
we can use a graph partition method to identify sub-
graphs where students are located within that repre-
sentation. Then we count the students within the same
subgraph as more closely associated with one another
than they are to others outside of the subgraph.

• Topic Modeling : Users who share interests usually talk
about similar things. Similarity in topic focus can be
treated as membership in an implicit interest defined
subcommunity. To capture potential relations along
this dimension, we use Latent Dirichlet Allocation [1]
as a model to select students’ peer candidates based
on similarity of their topic distribution.

• Cohort : Cohort tells when the student has started
their participation in the course and could be regarded
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Aggregate Variables Involved Original Variables

Cur Rcur, Ccur, Ocur, Tcur, Mcur

Prev Rprev, Cprev, Oprev, Tprev, Mprev

Num RN , CN , ON , MN

Table 1: Variables organized into sets for constructing ag-
gregate measures

as a proxy for their commitment (since students who
join later tend to be less committed)[3]. Here, we gen-
erate the peer candidates for students based on their
registration time.

3. VARIABLES DESIGN
Building on our five defined relationship measures, we for-
malize what relationship loss means by constructing three
separate variables for each bond definition as follows. Dropout
in current week (Cur), captures how many significant rela-
tions of student u dropped out in the current week; Dropout
in previous week (Prev) captures how many significant rela-
tions of student u dropped out in the previous week; Number
of friends (Num) describes how many significant bonds a
student u has.

For each operationalization, we construct the three vari-
ables described above. Specifically, for reply bonds, we have
Rprev, Rcur, RN , representing the Prev, Cur, Num vari-
ables under the category of reply bonds; For co-occurrence
bonds, Oprev, Ocur, ON are gained; for community connec-
tion, we construct Cprev, Ccur, CN ; for topic modeling, we
get Tprev, Tcur and discard TNum which is the same for
all students; for the motivation cohort, Mprev, Mcur, MN

are extracted. Those 14 variables are organized into three
aggregate variables by simply averaging the same types of
variables as shown in Table 1.

4. METHOD
The course we use to conduct the experiment is a Python
programming course2: ‘Learn to Program: The Fundamen-
tals’. It has 3590 students who are active in the discussion
forum, 24963 posts in total across the eight weeks. After
aggregating the 14 variables into Cur, Prev, Num as de-
scribed above, we then use those as input and conduct sur-
vival analysis to investigate how the three aspects influence
the dropout of students. From the result presented in Table
2, we can observe that, (1) Students are around four times
more likely to dropout if the number of their relation loss
of close peers Cur are higher than average; (2) a student is
62% more likely to drop out if his/her relation loss Prev is
one standard deviation larger than average; (3) Compara-
bly, the number of close peers Num indicates that the more
close peers one student has, 74% less likely this student will
drop out.

Figure 1 illustrates our result graphically. The middle sol-
id curve shows survival with the number of Cur, Prev and
Num all at their mean level. The top curve above this mid-
dle one shows the survival when the number of close peer-
s Num is one standard deviation above the mean (High),
keeping the Cur and Prev at their mean level. It indicates

2https://www.coursera.org/course/programming1

Variable Hazard Ratio Std. Err Z P>|Z|
Cur 5.05 0.264 35.69 0.000
Prev 1.62 0.035 22.09 0.000
Num 0.26 0.014 -26.65 0.000

Table 2: Constructed Variables on Python Course

0
.2

.4
.6

.8
1

0 1 2 3 4 5 6 7
Participation Week

Mean High Avg0
High Avg1 High Avg2

Python Course Survival Curves

Figure 1: Survival Curves on Python Course

that higher Num is correlated with a longer continuing par-
ticipation in the course. The bottom two curves show the
survival when the dropout number of close peers in previous
week or dropout number of such peers in the current week
are both one standard deviation above the mean, keeping
the other variables at their mean level. This reflects the
influences of Cur and Prev again – the more close peers a
student loses, the less likely he/she will continue participat-
ing in the course forum.

5. CONCLUSION
In this work, we propose to measure peer relations in the
MOOC forums and explore how such relations influence stu-
dent dropout. Reliable operationalizations of relations are
constructed as well as variables corresponding to relation-
ship loss. Via modeling of survival analysis , we find strong
evidence that relationship loss is an important factor con-
tributing to attrition. These results argue that attention to
fostering a positive and supportive social environment could
be an important direction for future MOOC development.
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ABSTRACT  

A variety of studies using educational data traced from LMS has 

been conducted to predict students’ performance. However, 

because of the complexity in its implementation, it is still 

challenging to predict students’ learning achievement in blended 

learning environment. As an exploratory study, we selected two 

types of blended learning classes and compared their prediction 

models. While the first blended learning class which involves 

online discussion-based learning revealed a linear regression model, 

the second case, which was a lecture based blended learning class 

providing regular base online lecture notes in Moodle, did not 

present a linear regression model. After that, to examine the 

important variables of each class, RF (random forest) method was 

utilized. The results indicated different important variables in two 

cases. We concluded that the prediction models and data-mining 

technique should be based on the considerations of diverse 

pedagogical characteristics in blended learning.  

Keywords 

Educational Data Mining, Blended Learning, Prediction, Multiple 

Regression, Random Forest 

 

1. INTRODUCTION 
The use of learning management system (LMS) has grown 

exponentially. LMS offers a great variety of channels and 

workspaces to facilitate information sharing and communication 

among participants, to let educators distribute information to 

students, produce content materials, prepare assignments and tests, 

engage in discussions, manage distance classes and enable 

collaborative learning with forums, chats, file storage areas, news 

services, etc. [1]. Further, the large amount of students’ behavioral 

data left in LMS can be accumulated as web-log files, extracted as 

valuable information, and finally utilized to improve students’ 

learning achievement. As a result, a variety of studies using web-

log data to predict students’ performance has been conducted.  

However, despite the abundant amount of research analyzing a 

massive amount of data and controlling student's academic 

achievement, it is still challenging to predict student’s learning 

achievement in blended learning class which is commonly defined 

as an integration of traditional face-to-face and online approaches 

to instruction [2, 3]. In spite of applying the highly complicated and 

advanced data-mining technique, it is found that a single algorithm 

with the best classification and accuracy in all cases are not possible 

[4]. In higher education, there is considerable complexity in its 

implementation with the challenge of virtually limitless design 

possibilities and applicability [5]. This makes it difficult to predict 

student’s achievement by using online learning patterns with a one-

for-all prediction model.  

Although there is no single framework for blended learning, it is 

generally assumed there are several types of blending in practice as 

the previous studies have attempted [6, 7]. Therefore, we intended 

to develop multiple prediction models to predict students’ academic 

achievements according to the pedagogical types of blended 

learning. As an exploratory study, we implemented a different 

approach for two different types of blended learning, and tried to 

confirm the possibility to predict student’s achievement in blended 

learning environments.  

 

2. METHOD 

2.1 Research Context 
We analyzed the web log data of 43 college students of  ‘class A’ 

and 30 college students of ‘class B’ opened in the regular fall 

semester in a large higher educational institution in 2013. While the 

major online activity in ‘class A’ was discussion forum, the second 

class involved a supplemental tool for submitting assignments and 

downloading learning materials. 

2.2 Data Collection  
In both cases, the data source (web-log data) was tracked from the 

Moodle. The independent variables for this study were computed 

by automatic data collection module embedded in the LMS. Total 

log-in time, log-in frequencies, regularities of log-in interval, visits 

on boards, visits on repositories were used as independent variables 

for both courses. Because there was no ‘number of postings’ 

variable for B class, the number of postings was used only for ‘class 

A’, This work used the Total Score as a dependent variable for each 

course.  

2.3 Data Analysis 
The procedure of data analysis consists of two phases. In phase 1, 

we conducted multiple linear regression analysis for both class A 
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and B. While the class A showed a linear regression model, for the 

class B the linear model was neither proper nor statistically 

significant to predict student’s achievement. Hence, as the second 

phase, we implemented Random Forest (RF) algorithm to increase 

the prediction accuracy.  

 

3. RESULTS 

3.1 Case 1: Discussion-based Learning 
In class A, a blended learning which involves online discussion-

based learning, linear multiple regression analysis was conducted, 

and this process generated a ‘predictive model’ of the student’s 

final score (R2 =.646, F=12.551, p =.000). Only two variables, log-

in regularity and the number of postings in online forum, were 

statistically significant contributors. 

 

3.2 Case 2: Lecture-Based Learning 
In class B, a blended learning which involves offline lecture-based 

learning and online supplemental tool, we tried to find a model with 

a linear multiple regression analysis. However, only the total log-

in frequency was significant, and F-test was insignificant with 

pretty low R2 value (R2 =.116, F=1.735, p =.167).  

 

3.3 Random Forest Analysis 
RF (random forest) method was tired in both cases to find important 

variables. As shown in Table 1, the discussion-based learning 

indicated the important variables as visits on board, the total log-in 

time, and the number of posting in forum (Pseudo R2= 0.91), but 

the lecture-based learning indicated log-in regularity, the total log-

in frequency, visits on board, and the total log-in time (Pseudo 

R2=0.70). Here Pseudo R2 was defined as follows.  

 Pseudo R2 = 1 – RSS/SST  

 RSS = Residual sum of squares  

 SST =  Sum of squares of total 

 

4. CONCLUSION 
There is a variety of blended learning classes in universities and 

they are assumed to show different prediction models with a wide 

range of R2 value. In this study, we presented that two different 

types of blended learning class show different models: linear and 

non-linear.  

In case of the discussion-based blended learning course, which 

involves active learner’s participations in online forum, a linear 

multiple regression analysis model explains the student’s 

achievement. But in case of the lecture-based blended learning 

course, which involves submitting tasks or downloading materials 

as main online activities, linear multiple regression analysis model 

was not proper for prediction.  

Additionally, in using a Random Forest approach, we found that 

two cases indicated different important variables which reflect the 

attributes of discussion-based learning class and lecture-based 

learning class, respectively. This result suggests that a future study 

needs to be conducted by clustering the types of blended learning 

classes throughout the students’ online learning behavior data and 

predicting their learning achievement according to the clustered 

models. We conclude that the prediction models and data-mining 

technique should be based on the considerations of diverse 

pedagogical characteristics in blended learning. 

Table 1. Comparison of important variables in two cases 

Important 

Variable 

Case 1 

(Discussion-Based BL) 

Case2 

(Lecture-Based BL) 

N=43, Pseudo R2= 0.91 N=29, Pseudo R2=0.70 

1 Visits on Board Log-in Regularity 

2 Total log-in time Total log-in frequency 

3 Number of Posting in forum Visits on Board 

4 Log-in Regularity Total log-in time 
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1. INTRODUCTION
A number of skills assessment models have recently emerged,
and others have been around for decades. Their predictive
performance have often been compared on a pairwise ba-
sis, but few studies have taken a comprehensive approach
to compare them on a common basis. In this study, we
apply a methodology that adopts both synthetic and real
data for the purpose of this comparison. Synthetic data is
generated from the underlying model of the different skills
assessment techniques. The results show wide differences
of performances between the skills assessment methods over
synthetic data sets. They create a kind of “signature” for
each specific data. If this signature is unique, it might reveal
the latent structure of the skills. We discuss the potential
benefits and the limits of the methodological approach that
consists in exploring the performance of skills assessment
methods based on the comparison of real and synthetic data.

2. SKILLS ASSESSMENT COMPARISON
This work compares a number of skills assessment techniques
over real and synthetic data: the well known single skill Item
Response Theory (IRT), the DINA and DINO models that
rely on slip and guess factors [3], matrix factorization ap-
proaches based on conjunctive and disjunctive Q-matrices
[1], and the POKS approach based on the Knowledge Space
theory Falmagne [2], which does not directly attempt to
model underlying skills but instead rely on observable items
only. For baseline comparison, the expected value and ma-
jority class performances are also reported. The perfor-
mance comparison relies solely on each approach’s ability to
predict item outcome, not on the skills assessment directly
which is not possible with real data.

The synthetic data sets are generated according to the each
technique’s underlying model. We naturally expect to ob-
tain the highest performance when the technique and the
synthetic data underlying model are aligned, but of partic-
ular interest is the relative performance of the techniques
over the different types of synthetic data. An interesting
hypothesis is whether the performance patterns of the dif-
ferent techniques over a synthetic data set is unique and the
extent to which it represents a “signature” of the underlying
skills model ground truth of a data set.

3. RESULTS
Figure 1 and 2 show the performance of each technique over
the synthetic and real data sets. We report the predictive
accuracy of each method, along with the average success rate

of the data set as a comparison point (last column), which
constitutes the performance of predicting the majority class
(or (1−perf) when perf is below 0.5). An error bar of 1 stan-
dard deviation is reported and computed over the 10 random
sampling simulation runs and provides an idea of the vari-
ability of the results. Also reported is the performance of
random data with a 0.75 average success rate.

4. DISCUSSION
The results do show wide differences in the performance of
the techniques for different synthetic data sets. For real data
sets, the differences are smaller, though still significant.

An interesting finding is that the relative performance of the
different skills modeling approaches create signatures over
data sets. According to these signatures, the Vomlel real
data set is closest to the linear compensatory simulated data
set. As could be expected, random data does have a unique
signature of its own: all methods converge towards the score
of the majority class. The EPCE data set is close to this
signature.

Another finding is the small relative differences between the
techniques for the Fraction 2/3 data set compared to the
other Fraction data sets and the Vomlel data set. This data
has the peculiarity that the items were chosen based on a
small number of single skill per item.

Future work will aim to establish if the findings generalize
and the extent to which performance patterns generalize,
but the approach of comparing these patterns of multiple
models and techniques over real and synthetic data sets ap-
pears promising.

References
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matrix from data with non-negative matrix factoriza-
tion. In 4th International Conference on Educational
Data Mining, EDM, pages 41–50, 2011.

[2] M. C. Desmarais, P. Meshkinfam, and M. Gagnon.
Learned student models with item to item knowledge
structures. User Modeling and User-Adapted Interaction,
16(5):403–434, 2006.

[3] B. W. Junker and K. Sijtsma. Cognitive assessment mod-
els with few assumptions, and connections with nonpara-
metric item response theory. Applied Psychological Mea-
surement, 25(3):258–272, 2001.

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 409



www.manaraa.com

Random Data Bayesian POKS IRT−2pl IRT−Rasch

Performance Accuracy

Co
rre

ct 
pr

ed
ict

ion

0.0
0.2

0.4
0.6

0.8
1.0

Random Data Bayesian POKS IRT−2pl IRT−Rasch

Performance Accuracy

Co
rre

ct 
pr

ed
ict

ion

0.0
0.2

0.4
0.6

0.8
1.0

    
    

    
Ex

pe
cte

d

    
   P

OK
S

   I
RT

    
    

    
 N

MF
.C

on
    

  D
IN

A
    

    
    

NM
F.C

om
p

    
  D

IN
O

    
    

    
    

    
    

 AV
G 

Su
cc

es
s r

ate

    
    

    
Ex

pe
cte

d

    
   P

OK
S

   I
RT

    
    

    
 N

MF
.C

on
    

  D
IN

A
    

    
    

NM
F.C

om
p

    
  D

IN
O

    
    

    
    

    
    

 AV
G 

Su
cc

es
s r

ate

    
    

    
Ex

pe
cte

d

    
   P

OK
S

   I
RT

    
    

    
 N

MF
.C

on
    

  D
IN

A
    

    
    

NM
F.C

om
p

    
  D

IN
O

    
    

    
    

    
    

 AV
G 

Su
cc

es
s r

ate

    
    

    
Ex

pe
cte

d

    
   P

OK
S

   I
RT

    
    

    
 N

MF
.C

on
    

  D
IN

A
    

    
    

NM
F.C

om
p

    
  D

IN
O

    
    

    
    

    
    

 AV
G 

Su
cc

es
s r

ate

(a) Non Q-matrix based
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(b) Q-matrix based

Figure 1: Item outcome prediction accuracy results of synthetic data sets
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(a) Independent data sets
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(b) Subsets of the Fraction data set

Figure 2: Item outcome prediction accuracy results of real data sets
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ABSTRACT
We introduce R-PFA, a new model for predicting whether
or not a student will answer an item correctly based on
the student’s history of practice. The key idea in R-PFA
is to represent history as a recentcy-weighted proportion of
correct responses. In an evaluation on a dataset from the
Assistments tutoring system, we find that R-PFA improves
predictive accuracy over other logistic regression model vari-
ants, including PFA and AFM.

Keywords
performance modeling, moment of learning, linear logistic
test model

1. INTRODUCTION
An interactive learning environment (ILE) can adapt its be-
havior to what the student does and does not know. For
example, an ILE may hold a domain model in terms of
knowledge components (KCs) to be taught to students [5],
and estimate each student’s proficiency with a KC based on
the student’s practice with problems involving the KC. One
popular model for estimating student proficiency in this set-
ting is Performance Factors Analysis (PFA) [6]. PFA is a
parameterization of the Linear Logistic Test Model [3] that
predicts performance on the current item using the entire
history of success and failures on previous items addressing
the same KC (Eq 1).

We introduce Recent-Performance Factors Analysis (R-PFA),
which extends PFA via a simple variable transformation. R-
PFA includes information about whether or not a moment
of learning has occurred [4]. We demonstrate that R-PFA
shows improved predictive performance over PFA as well as
over the Additive Factors Model (AFM) [2]. We also con-
tend that the simplicity of R-PFA provides it with a distinct
advantage over the methodology in [4] for prediction.

2. METHODS
R-PFA is based on a simple observation: If a student has
already experienced a moment of learning then recent per-
formance is likely to consist primarily of successful attempts.
If a moment of learning has not yet occurred, then recent
performance is likely to contain more failed attempts. In
effect, recent history serves as a proxy for whether or not a
moment of learning has occurred.

We compare the performance of R-PFA (Eq 2) to PFA (Eq
1), AFM, and a simplified version of PFA using success
only, on the Assistments data used in the original “moment
of learning” work [1]. The data contain first attempts by
4138 students on problem sets involving 54 knowledge com-
ponents (KC), for a total of 187,309 first attempts. Each
problem is coded with only a single KC. Table 1 lists the
features in each model.

logit(pijt) = θi + βj + αjSijt + ρjFijt (1)

logit(pijt) = θi + βj + γjTijt + δjRijt (2)

We use the notation:

j KC indicator
i student indicator
Xijt binary correct/incorrect, student i, KC j, trial t
Sijt count of previous successes, up to trial t
Fijt count of previous failures, up to trial t
Tijt count of past opportunities, Sijt + Fijt

Rijt recency-weighted proportion of past successes
pijt Pr(Xijt = 1).

Table 1: Terms in predictive model variants.

Student KC Success Failure Totals Weighted
Proportion

AFM θi βj γjTijt

sPFA θi βj αjSijt

PFA θi βj αjSijt ρjFijt

R-only θi βj δjRijt

R-PFA θi βj γjTijt δjRijt

As a measure of ‘recent’ history, we introduce Rij , an expo-
nentially weighted proportion of successes.

Rijt =

∑t−1
p=−2 b

(t−p)Xijp∑t−1
p=−2 b

(t−p)
(3)

The decay factor b is a tuning parameter that controls the
weights, and thus controls whether ‘recent’ means just the
most recent trial or the entire history of practice. We com-
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pare values of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
for b.

One potential issue with Rij is that the proportion of recent
successes is very noisy on the first few trials. To adjust for
this noise, we stipulate ghost attempts Xij−2 = Xij−1 =
Xij0 = 0. The ghost attempts are an explicit assumption
that at time 0, the student has not already learned the KC.
These ghost attempts affect only the value of Rijt, i.e., they
are not extra instances in the data set.

3. RESULTS
We fit a total of 23 models to the Assisstments data, using
the glmer function in the R package lme4 to fit all models.
We compared models in terms of AIC and BIC. Both ranked
our models in the same order for this data, so we only report
AIC scores in Figure 1.

All models that include Rij (R-PFA and R-only) outper-
form all existing models by a wide margin. As in previous
work, PFA outperforms AFM [6]. Finally, the count of prior
successes alone (sPFA) is a better predictor than total op-
portunities (AFM).

When b = 1, Rij is the overall proportion of successes, so R-
PFA and R-only use the entire history of performance. Yet,
proportion of success (R-PFA and R-only) is more predictive
than the number of successful attempts (PFA). For any fixed
decay parameter b, R-PFA is better than R-only. The total
number of practice opportunities is still informative above
and beyond the recent history.

Figure 1: AIC scores for all models (lower is better).
The red triangle indicates the lowest AIC.

4. DISCUSSION & CONCLUSIONS
The R-PFA model differs from PFA in two significant ways.
First, unless b = 1, R-PFA values recent evidence more than
older evidence. Second, the ghost attempts reduce the noise
of predictions on the first few attempts that a student makes
on any particular KC by incorporating the belief that stu-
dents are unlikely to already know the KC and are unlikely
to perform well on a skill on their early attempts. With these
two modifications, all variants of R-PFA outperform PFA
and other models in terms of predictive accuracy. Ghost at-
tempts and decay weights matter in combination. The ghost
attempts necessarily have the greatest influence on practice
strings that are relatively short, and there are many such
occurrences in our dataset. The ghost attempts reduce the
noise that would otherwise be present in Rij for these at-
tempts. The weighting that controls the window of “recent”
performance considered is also key. The difference in AIC
scores between R-PFA with b = 0.6 and b = 1 is as great
as the difference between sPFA and PFA. However, while
R-PFA with b = 0.6 performed best on this dataset, that
specific value of b may be due to the mastery criterion (a
streak between 3-5 trials) in the Assistments software.

There are a number of tunings of R-PFA that we may ex-
plore in future work. First, there may be a relationship
between the optimal number of ghosts attempts and the de-
cay parameter b. Second, should there be different b values
for different knowledge components? Third, should first-
attempt hint requests be distinguished from first-attempt
incorrects, by incorporating separate proportions for these
prior practice outcomes? We hope that R-PFA sees widespread
use in the toolset of educational data mining.
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ABSTRACT 

Learning sciences needs quantitative methods for comparing 

alternative theories of what students are learning. This study 

investigated the accuracy of a learning map and its utility to 

predict student responses. Our data included a learning map 

detailing a hierarchical prerequisite skill graph and student 

responses to questions developed specifically to assess the 

concepts and skills represented in the map. Each question aligned 

to one skill in the map, and each skill had one or more 

prerequisite skills. Our research goal was to seek improvements to 

the knowledge representation in the map using an iterative 

process. We applied a greedy iterative search algorithm to 

simplify the learning map by merging nodes together. Each 

successive merge resulted in a model with one skill less than the 

previous model. We share the results of the revised model, its 

reliability and reproducibility, and discuss the face validity of the 

most significant merges. 

Keywords 

Learning Maps, Iterative Search, Cognitive Modeling, Skill Graph 

1. INTRODUCTION 
Cognitive models are used to represent how one’s knowledge 

may be organized. As such, they contain descriptions of 

component pieces of knowledge and connections among the 

components to indicate how understanding develops in a specified 

domain [4]. Different authors have described various cognitive 

models, including learning maps [5], learning trajectories [2], and 

learning hierarchies [3]. Learning maps use linear sequences of 

learning goals and are useful for instructional planning [5]. A 

learning trajectory includes a learning goal, a developmental 

progression defining the levels of thinking students pass through 

as they work toward the defined goal, and a set of learning 

activities or experiences that assist students in reaching the 

defined goal [2]. Learning hierarchies model prerequisite 

knowledge components in hierarchies, allowing multiple 

pathways to extend from one prerequisite skill to multiple 

learning goals [3].  

In the present study we examine a small section of the 

learning map and investigate the effects of permuting the topology 

of the hierarchy. Skills and concepts are represented by latent 

nodes in the learning map. Directed edges represent the 

prerequisite relationship among latent nodes and also represent 

the relationship between those nodes and their associated test 

items. We present a simple method for improving the predictive 

power of the learning map by combining latent nodes. 

This work connects with literature on searching for better 

fitting cognitive models. Several non-hierarchical cognitive 

models have been developed to represent the relationship between 

knowledge components (KCs) in the form of prerequisite skill 

maps. These cognitive models have been developed to help 

intelligent tutors, as well as experts, determine student mastery of 

KCs. A number of technical approaches have been developed to 

evaluate cognitive models developed by domain experts. One 

approach is Learning Factors Analysis (LFA), developed by Cen, 

Koedinger and Junker [1] to help the Educational Data Mining 

(EDM) community evaluate different cognitive models. LFA 

incorporates a statistical model, item difficulty and a 

combinatorial search to select the model. Our work is different 

from the flat Item Response Theory (IRT) models presented in [9] 

in that IRT does not deal in any way with hierarchical 

relationships between knowledge components. 

In this work we follow the process described by Cen, 

Koedinger and Junker [1]. This technique can be used to analyze 

hypothesized learning maps and consider whether small 

improvements to the model result in a better fit to the data. In this 

method two different approaches were studied to determine the 

best skill map from an initial graph. Cen, Koedinger, and Junker 

suggested three types of operations, i.e., merges, splits, and adds 

[1]. However, in this study, we used only merge operations given 

the already highly granular quality of our initial, subject matter 

expert derived learning map. 

2. Initial Learning Map 
This study examined a section of the learning map containing 

15 concepts and skills related to understanding integers. The map 

was developed using mathematics educational literature 

describing how students learn to understand and operate with 

integers. The set of integers includes the whole numbers and their 

opposites, presenting many students their first exposure to 

negative numbers [6].  

The data for this study was gathered from responses of 2,846 

students to 25 test items aligned to 15 skills. All of the test items 

were multiple choice questions, with four answer options per 

question. Each skill was assessed by one or more items. As part of 

the test development process, subject matter experts confirmed the 

alignment of each item to its associated skill, meaning that the 

item was judged by experts to evoke the intended skill. 

Furthermore, due to the hierarchical structure of the learning map, 
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items associated with skills lower in the learning map were 

assumed to be more difficult, i.e., require more skills, than items 

associated with skills higher in the learning map. 

3. Experiment 
In all of the experiments our sole manipulation of the map 

was to merge latent nodes. A merge operation occurred when two 

skills adjacent to each other in the map were combined into one 

skill. Items from both skills that were merged were reattached to 

the new single skill. The prerequisites of the constituent skills 

became prerequisites of the merged skill and the same applied to 

the post-requisites.  

To evaluate the models, we used per student per item cross 

validation with 5 student folds and 3 item folds. Our student and 

item folds were chosen randomly for the evaluation; however each 

item fold consisted of the same random partition of items. More 

details about how the cross-validation was done as well as other 

details on the algorithms used in this experiment can be found in 

the technical document [8]. We used the Root Mean Squared 

Error (RMSE) of the predictions to evaluate the results of the 

experiment. A lower RMSE means the model is performing with a 

higher accuracy. 

Figure 1 shows a graph of the results from the iterative 

search. The search started at iteration 1, which was the initial skill 

map consisting of 15 skills before any merges were applied to it. 

The search ended at iteration 15, which is a graph consisting of 

just one skill with all the items attached to that one skill. The best 

models from each iteration are shown in Figure 1. We used 

RMSE to choose the best model at each iteration and to guide our 

search. As the number of iterations increases, the number of skills 

decreases since skills are merged. 

Performance of the Number of Skills 

 
Figure 1: Performance for each number of skills.  Each merge 

operation reduces the number of skill by 1.  After iteration 1, 

there are a total of 15 skills.  After iteration 15, there is only 

one skill   

The results show that the best RMSE obtained was from the 11-

skill map at iteration 4 with an RMSE of 0.372. This is slightly 

better than the original skill map with RMSE of 0.375. The 11-

skill map has a small but significant improvement (p <0.01) from 

the original skill map. The effect size was negligible (0.01). 

4. Contributions, Conclusions and Future 

Work 
The main contribution of this paper is the provision of a 

greedy algorithm that simplifies learning maps. We showed that 

this simplification is possible without losing the predictive powers 

of the learning map. Even though this simplification could be 

done by hand, this algorithm will be useful in situations where the 

learning map being simplified is large.  

This paper presents an initial experiment in this novel area of 

EDM. Instead of focusing all our attention on the flat IRT model, 

the community needs to pay a closer attention to and explore 

models that deal with hierarchical relationships between 

knowledge components. These studies and contributions thereof 

can assist domain experts to produce better fitting models which 

should impact student learning positively.  

Since merging skills increased accuracy, these results suggest 

that the original skill map was too fine-grained (given the number 

of questions per skill and the number of students who took the 

test.). In some cases the test items did not adequately distinguish 

between the skills that were merged; hence such skills were 

merged. The results of algorithms like this can help the content 

experts who are creating skill maps and test items to either 

reconsider thinking of two skills as separate, or prompt them to 

write different test items to better distinguish between students 

that have mastered one of the skills but not the other skill. As 

future work, we intend to examine the other operations of the LFA 

method for refining learning maps. These include splits and adds, 

which were described earlier. 
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ABSTRACT
Micro-blogging has become increasingly popular in recent
years. Using micro-blogging in a large classroom could be
beneficial for learning. However, sometimes addressing the
large number of posts could be cumbersome to a reader who
has only limited time in a classroom. We propose a novel
solution for predicting the relevancy of a question asked in a
class by looking at the questions asked in previous semesters,
the similarity of the question to the lecture material, as well
as a set of question features such as the number of stu-
dents’ votes, number of replies, the length of the question,
and whether it was asked anonymously. To identify similar
questions asked previously, topic modeling and feature selec-
tion are used. Empirical results show that topic modeling
leads to better prediction performance score as compared to
feature selection. The similarity of the question and its cor-
responding lecture material further improves the relevancy
prediction of the questions.

Keywords
Text Categorization, Micro-blogging, Topic Modeling, Fea-
ture Selection

1. INTRODUCTION
Using micro-blogging, students are able to ask questions
about the material without interrupting the class, which
increases student participation. However, answering these

∗This author is also a student in the Department of Com-
puter Science at Purdue University.

questions could be a cumbersome activity as the posts pile
up and there is only limited time during the lecture.

In this paper, we propose a novel solution for predicting the
relevancy of a question asked in a class by looking at the
questions asked in previous semesters and the course lecture
material. We also use a set of features such as the number
of replies and votes the question received, the length of the
question, and whether the question was asked anonymously.
To identify similar questions asked previously, topic model-
ing and feature selection are used. The data consists eight
semesters of a Personal Finance course offered at Purdue
University.

Cetintas et al. [2] propose a few approaches to this by us-
ing the correlation between questions to identify the most
relevant and irrelevant questions. In [1], Cetintas et al.
propose a text categorization approach that uses personal-
ization, correlation between questions themselves, and stu-
dents’ votes on questions. However, Cetintas et al. do not
explore using topic modeling, nor did they explore using
feature selection for their classification task. The use of
topic modeling for microblog content has been explored by
Remage et al. [3].

Empirical results show that topic modeling leads to a better
prediction score as compared to feature selection. The simi-
larity of the question and its corresponding lecture material
further improves the relevancy prediction of the questions.

2. MODELS
For purposes of training and testing the models, the data
were divided into two parts in time, which means that the
train data corresponds to previous semesters, while the test
data belongs to future semesters. Cross validation and reg-
ularized were used in all models.

2.1 Model using Post Features
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A model was built using features from the posts. These
features are: the length of the post, the number of votes the
post received, the number of replies the post received, and
whether or not the post was posted anonymously. These
features are referred to as Post Features and the model that
only uses these features is called LR Post.

2.2 Topic Modeling
In order to find which posts are relevant and which ones are
not, we first find what topics the students are talking about.
The intuition behind this is that we might find that some
posts are about topics directly related to the course, while
other topics are regarding projects, assignments, exams, etc.
We used Latent Dirichlet Allocation, or LDA, to find a set
of topics from the posts.

2.2.1 Model using LDA
The output of the Latent Dirichlet Allocation algorithm
is a set of topics with the probability distribution of each
post belonging to them. These probability distributions are
used as prediction features for this model, along with the
Post Features discussed in section 2.1. We call this model
LR LDA Post. We experimented using different number of
topics and terms and chose 10 topics with 15 terms in each
since we observed the best performance with this combina-
tion.

2.2.2 Model using feature selection
Another approach to topic modeling used was to take the
most popular terms of each topic and only consider those
terms, disregarding all other terms belonging to the topics.
For the top terms of each topic, we find the term frequency
in the post. We then have a set of features, which are the
frequencies of these terms in the posts. We call this model
LR FeatSel Post.

2.3 Model using the lecture material
An important factor when considering the relevancy of a
post is what was actually being discussed during that par-
ticular lecture. It could happen that the post is relevant to
the overall course, but not relevant to the current lecture.
For this matter, the similarity of the post to the lecture
was calculated. The Kullback-Leibler divergence, or KL di-
vergence, was used. For this, the lecture was divided into
smaller overlapping chunks and the similarity between these
chunks and the post was then calculated. We explore using
different sizes of chunks and chose a size of 100 characters
since we observed the best performance. This feature is re-
ferred to as KLD. KLD, together with Post Features, forms
another model called LR KLD Post.

2.4 Model Comparison
The different models were evaluated using the F1 score. Fig-
ure 1 shows a comparison of the models. All the differ-
ent models shown in this figure include the Post Features
described in section 2.1. The Basic model in the figure
contains only the Post features, i.e. model LR Post. Fol-
lowing this model, we show the models LR FeatSel Post,
LR LDA Post, and LR KLD Post. Then we show the mod-
els which include the post features together with topic mod-
eling features and KLD features, i.e. LR FeatSel KLD Post
and LR LDA KLD Post. From this figure we can see that
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Figure 1: Model comparison

having the Post Features alone yeilds the lowest performance
score of 0.72. Adding feature selection to it gives us a perfor-
mance of 0.782, while adding the LDA features to it achieves
a performance of 0.795.

Comparing the two topic modeling approaches to the KL di-
vergence approach, we can see that the KL divergence per-
forms better. With the LR KLD Post model we obtain a
performance score of 0.850. Including the KLD Feature to
both topic models achieves a better performance. When the
KLD Feature is added to the Feature Selection model, the
performance goes up to 0.870. Similarly, when the KLD
Feature is added to the LDA model, the performance of the
model goes up to 0.880.

3. CONCLUSIONS
The experimental results show that all the features used in
our models are helpful in predicting the relevancy of ques-
tions. LDA performs slightly better than feature selection
for our application. We also show that adding the similar-
ity of the posts to the lecture material further improves the
performance of the techniques.
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ABSTRACT 
After bachelor, many students strive to select the masters’ courses 
that are most likely to meet their interests. Although this decision 
may have a big impact on students’ motivation and future 
achievements, usually no support is offered to contest this 
problem.  The use of recommendation systems to suggest items to 
users has well-known success in several domains, and some of the 
most successful techniques use Singular Value Decomposition 
(SVD) to capture hidden latent factors in reduced dimensionality 
and produce high quality recommendations. In this paper, we 
propose to use SVD, with a contextual mapping to the educational 
paradigm, to capture relationships between courses grades and 
recommend masters’ courses that are suitable to students’ skills 
given their bachelor achievements. Our results show that using 
SVD to predict the masters’ courses marks has potential to serve 
as basis for the recommendation production. 

Keywords 

Courses recommendation, Singular Value Decomposition 

1. INTRODUCTION 
The decision that students have to make on which master’s 
courses to enroll has way more impact than it looks: this choice 
can have a direct effect on their academic and personal goals. A 
bad choice of courses may demotivate a student, which can cause 
the student to drop out or to not take advantage of the fullness of 
his capabilities. Therefore, understanding students’ particularities 
is needed, so as to recommend courses that are not only 
interesting to them, but also adequate to their capabilities. Current 
solutions have a tendency to recommend courses based on its 
contents or potential interest to the students, not considering how 
those courses can affect students’ overall academic performance 
[1]. Therefore, we propose the creation of a system that, with the 
minimal user-participation, recommends masters’ courses that add 
value to students’ academic achievements, given their bachelor 
path. To do it, we explore Singular Value Decomposition so as to 
capture hidden factors in the historical students marks and then 
identify the best courses to recommend 

With the Netflix challenge [2][3], there was a huge trend to use 
latent factor models, in order to reveal the hidden latent features 
that somehow explain the observed ratings. The most successful 
technique in these models is Singular Value Decomposition, due 
to its accuracy and scalability. This technique factors an m x n 
matrix R, into three matrices as in ( 1 ), 

𝑅 = 𝑈×𝑆×𝑉′ ( 1 ) 

where U and V are two orthogonal matrices of size m x r and n x r 
respectively, while r represents the rank of the matrix R. Matrix S 

is a diagonal matrix, and its entries are stored in decreasing order 
of their magnitude. Each entry of matrix S represents a hidden 
feature and the stored value in it stands for the weight the feature 
has to the variance of the values on R. The sum of the values of all 
entries represents the total variance on matrix R. SVD has many 
applications of particular interest, but it is especially useful as a 
way to find the best rank-k approximation, Rk, to the matrix R, 
such that the Frobenius norm of R - Rk is minimized. The 
Frobenius norm (|| R - Rk ||F) is defined as the sum of squares of 
elements in R - Rk . To reduce the rank r to k, where k < r, one 
should only use the first k diagonal values of the matrix S (the 
singular values), and then reduce both U and V accordingly. The 
result is the closest k-rank approximation Rk = UkxSkxV’k.  

The usual idea, when using this technique on recommendation 
systems, is to use R as a users-items matrix, where m is the 
number of users and n the number of items. The value of each cell 
holds the rating that a user has given to a certain item. The idea is 
that after the decomposition we can calculate both the users-
features and items-features spaces and use them to predict ratings. 
In the users-features space, 𝑈! 𝑆! − let!s  call  it  𝑃 − each row is 
a vector with the preference values of a user over the discovered 
features. On the other hand, in the items-features space, 
𝑆!𝑉!! − let!s  call  it  𝑊 - each row is a vector that represents how 

the item is weighted in each feature. Hence, this consists on the 
decomposition of the usual user-item matrix into a k-dimensional 
space where just the k most relevant features are taken into 
account: the noise in the data is reduced, and this enables the 
production of better quality rating predictions.  

However, SVD is known for not dealing well with sparse 
matrices, where there are a lot of missing values. Gladly, Simon 
Funk found a solution to this problem [3]. He proposed to use a 
gradient descent algorithm in order to compute the best rank-k 
matrix approximation using only the known ratings of the user-
item matrix R. This process follows the same idea than the 
training on neural networks. With the error in a prediction of user 
i to item j being (Rij – Rkij), Funk’s approach takes the derivative 
of the square of the error with respect to Pik and then with respect 
to Wjk. Since R is constant, and Rk = PxW’ (note that in this 
approach P and W contain the S matrix, that usually results from 
the matrix decomposition), the updates for the user and item 
spaces, P and W then become (2) and (3), respectively: 

𝑃!" 𝑡 + 1 = 𝑃!" 𝑡 + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒   ∗ 𝑅− 𝑅𝑘 𝑖𝑗 ∗𝑊𝑗𝑓 𝑡  (2)  

𝑊!" 𝑡 + 1 = 𝑊!" 𝑡 + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒   ∗ 𝑅− 𝑅𝑘 𝑖𝑗 ∗ 𝑃𝑖𝑓 𝑡  (3)  

  
In summary, the final solution of this learning problem is the 
combination of feature weights on both P and W such that the 

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 417



www.manaraa.com

error in the approximation Rk is minimized. This solution is 
determined iteratively, as the gradient of the error function is 
computed at each iteration step. Note that in this approach all 
features vectors are initialized with the global rating average 
along with some introduced random noise. 

2. SVD-BASED COURSES 
RECOMMENDATION  
As we stated above, we aim for exploring SVD to recommend 
masters’ courses to students given only their bachelor’s courses 
marks. Hence, we must start of an historical record over triplets in 
the form of  <Student, Course, Mark> into a structure that SVD 
can explore. As we have seen, SVD makes use of a matrix R that 
holds knowledge over the ratings that users gave to items. In usual 
representations, users are placed in rows and items in columns, 
and each cell Rij in the matrix corresponds to the rating that the ith 
user attributes to the jth item.  

As a first step to map our problem to the educational context we 
must transform our historical students’ marks record into a matrix 
R that holds our knowledge over students’ capabilities in each 
course taken. Our proposal is that matrix R will have students 
represented on rows and courses on columns, and each entry Rij 
will be filled with the mark obtained by the ith student on the jth 
course. When students didn’t enroll, the mark is the zero value. 
This is a natural mapping, as we want to recommend the courses 
with the predicted best marks, while having the constraint of 
recommending only a subset of the courses, the masters’ courses. 
Our idea is to apply SVD to the matrix described above, so as to 
predict the marks of every student on all masters’ courses and 
then use those predictions to recommend a specific set of courses. 
We will use Funk’s gradient descent algorithm to calculate SVD, 
and, consequently, produce both the users and courses spaces. 
Applying Funk’s gradient descent to the student-courses matrix R 
(with N number of features to discover) we get matrices P and W. 
Matrix P represents the user features dimensional space, where 
row i stands for student i features vector, which relates the student 
with each of the N features. Likewise, each row of matrix W 
shows how each course is related to each one of the N features. 
The product PW’ constitutes a N-rank approximation of the 
original matrix R.  

At this moment, we can use matrices P and W to predict the 
students’ masters’ marks. The predicted mark of a student i on 
course j corresponds to the dot product between the ith row of P 
and the jth row of W. This dot product represents how the student 
is related with the course according the several features. The 
predicted mark may need some bound restriction in order to be 
between acceptable values. Finally, we can just recommend the N 
masters’ courses with the best-predicted marks. 

3. EXPERIMENTAL RESULTS 
We tested our approach with data from a bachelor and a masters 
program at Instituto Superior Técnico, Universidade de Lisboa, in 
Portugal. This dataset describes 9149 courses’ results achieved by 
251 students on both bachelor and masters. The marks scale goes 
from 0 to 20, where 10 is the minimum grade that a student must 
achieve to be approved on any course. 

To evaluate our results we follow the belief that the overall 
quality of the recommendations, independently of the method 
used to produce them, depends a lot on the quality of our 
predictions. To have a comparison to our grades’ predictions 

results we used two baselines. The first sets the predicted mark of 
each student as his average mark on bachelor. The second 
baseline uses the average mark achieved in each masters’ course. 
To do our prediction experiment, we started by constructing the 
251 x 94 students-courses matrix R. We then applied Funk’s SVD 
to produce both the students and courses features spaces and 
predicted every student’s marks on all masters’ courses. The 
achieved results in terms of the Mean Absolute Error (MAE) can 
be seen on Figure 1, and it is clear that our SVD approach has a 
smaller error than any of the baselines. In average, our predictions 
are 1.97 points deviated from the real mark, while both baselines 
have error values near 2.15. Hence, our predictions sustain an 
above average basis from where to recommend masters’ courses 
to students.  

We did another experiment to see how the recommendations may 
affect students’ masters’ average mark. In this case we also used 
two baselines approaches: one recommends the most frequented 
courses in the historical training data while the other recommends 
the courses with best average mark on the same data. Table 1 
shows the average mark of followed recommendations on the test 
data for all the approaches. We can see that the average mark 
achieved with the recommendations of our SVD approach is 
better than any of the baselines.  
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Best Grades Most Popular  SVD 

13.6 13.4 14.6 
 

Table 1 – Average grade on followed recommendations. 

 
Figure 1 –MAE with the variation of the number of features 

and comparison with baselines 
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ABSTRACT
Nowadays, centrality measures from social network analy-
sis are being used for discovering underlying relationships
among different actors or elements whose connections can
be modeled as a graph. Their application in the educational
domain has not been studied thoroughly, but the informa-
tion that these metrics provide, as well as their predictive
power, justify their use to model the students’ social profile,
as this paper shows.

Keywords
SNA, centrality measures, student performance

1. INTRODUCTION
Technology has provoked a great change in the way of teach-
ing and learning. Its use in classrooms has supposed a
change in the learning paradigm, from a teacher-centered
model to a student-centered one, boosting students to con-
struct their own knowledge whilst only being guided by the
teacher. Also, social media is currently contributing, in an
informal way, to train new skills to look for information, dis-
cuss, and elaborate new knowledge collaboratively. There-
fore it is conceivable that, in a not very far future, social
networks might be re-thought as a support for learning [2].

This has led us to study metrics that help us measure stu-
dent social behavior in order to assess their predictive power
to build student performance classifiers. In particular, we
review centrality measures provided by social network anal-
ysis (SNA) and evaluate those that are suitable to build the
student social profile and those that contribute to achieve
better student performance models.

2. METHODOLOGY
First of all, we extracted all measurable activity variables
for each student from the Moodle database. Next, we built
a social network with the answers given in the forums. That
means, we designed a graph in which students and instruc-

tors were defined as nodes and the answers given to questions
or answers written by students were gathered as directed and
weighted edges, being the weight the number of times that a
student answers questions initiated by the student to whom
is connected. Secondly, we utilized the ORA social network
application [1] to calculate 10 node level SNA metrics [3].
Next, we interpreted the meaning of these SNA metrics in
the educational context and associated each one to a social
behavior. Then, we added them to previous datasets and
carried out a feature selection process using Weka. This
process allowed us to find out the subset of input variables
of each dataset that had relevant predictive information for
the pursued objective.

3. DATASETS
For this study, we chose two virtual courses taught at the
University of Cantabria, entitled “Calculus” and “Gender
Equality in Institutions” (GEI) with 115 and 48 students
enrolled, respectively. These were selected because the ac-
tivity in the forum was remarkable. In the former, the forum
was used by students to ask for help and suggestions to their
peers and instructor, and in the GEI course, it was used as
a discussion tool.

4. RESULTS AND DISCUSSION
Table 1 shows the top 5 scoring nodes side-by-side for those
centrality measures of the “Calculus” course. From its anal-
ysis, we can discover the different educational roles and the
social behavior of each individual.

Node 3254 leads almost all the ranking categories. This is
usually associated with the instructor of the course since it
is often the one that starts the threads and makes others
intervene. Node 5036, though not as prominent as 3254,
can be thought as a co-instructor or a teaching assistant: it
asks and responds noticeably (high indegree and outdegree),
happens to be well-connected (high betweenness and low
closeness) and seems to be both an authority and a hub.
Node 4046 also presents an interesting behavior: somewhat
in between the teacher mode of operation and the students’
one. It is an active node (high degree) but its reputation is
not as high as the previous nodes’ (low eigenvector, hub, and
authority values). It could be a not-so-active co-instructor
or a highly collaborative student.

Regarding the students’ behavior, node 12722 seems to have
a remarkable attitude towards the course as a student. It
answers a high amount of questions (high outdegree) and
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Table 1: Top 5 scoring nodes for the centrality measures
Degree Indegree Outdegree Eigenvector Closeness Information Betweenness Hub Authority

3254 3254 3254 3254 3254 3254 3254 12722 3254
5036 4046 5036 12722 5748 5036 4046 6837 6826
4046 5036 12722 6837 5036 12722 5036 5036 5036
12722 6837 4046 5036 4046 4046 6685 5077 6821
6837 5630 6837 5077 6821 6837 5630 6821 6837

its responses are of great value (high hub). This permits it
to reach a majority of the people through its answers (high
eigenvector). It does not seem to ask too much. It would
rather respond than ask. Finally, node 6837 presents the
behavior of a good student, but participating in the forum
in a radically different way than the previous node. This
node tends to ask more than answer (high indegree) and the
questions it makes are appreciated by the rest of students
(it is in the top 5 authority ranking).

We used ClassifierSubSetEval and SubSetEval techniques for
the feature selection process. Both were run using 10-cross
fold validation. Therefore, the relevance of each attribute for
the classification task is measured from 0 to 10 (no relevant
to highly relevant). Table 2 shows the attributes selected by
both techniques in the GEI course. The relevance of some
SNA metrics is exceptional, such as degree and hub (stu-
dents who answer those who receive many answers, learn,
and have a higher probability to pass), as well as activ-
ity metrics, such as the number of initiated discussions in
the forum and the number of visits to the course resources,
though to a lesser extent.

Table 2: SubSetEval in the GEI course
Attribute Relevance (0-10)

SubSetEval Degree 7
Hub 3

ClassSubSet Hub 10
NäıveBayes Authority 3

InformationCentrality 6
ClickMembership 4
DegreeClustering 3

N initiated discussions 3
N views resources 9

ClassSubSet Hub 5
J48 ClickMembership 3

Betweeness 3
N Initiated discussions 4
N read discussions 3

Table 3 displays the result obtained in “Calculus” course. It
can be observed that the SNA measures have also an out-
standing importance in order to build the prediction models.

Finally, we built classification models from these datasets
with and without including SNA measures as attributes.
Table 4 shows the accuracy (Acc.), sensitivity (Sens.) and
specificity (Spec.) of the models built, as well as the im-
provement obtained using SNA attributes.As can be ob-
served, the models obtained using SNA measures are more
accurate in 75% of cases and present significant improve-
ments. Due to the fact that students’ involvement in the

Table 3: SubSetEval in the “Calculus” course
Attribute Relevance (0-10)

CfsSubSet Degree 4
N attempts quizzes 6

ClassSubSet Eigenvector 3
NaiveBayes Authority 4

ClusteringDegree 3
N read discussions 8
N view resources 8
N attempt quizzes 9

ClassSubSet Betweeness 3
J48 N view resources 7

N read discussions 7
N attempt quizzes 8

“Calculus” course is 40%, whereas in the GEI is 100%, it is
to be expected that SNA measures show a higher predictive
power in the latter, as it can be confirmed by our results.

Table 4: Accuracy, Sensitivity and Specificity ob-
tained with J48 and NäıveBayes in both courses

SNA No SNA Improv.

GEI J48 Acc. 76.74% 62.79% 13.95%
Sens. 76.9% 65.4% 11.5%
Spec. 76.5% 58.8% 17.7%

NB Acc. 51.16% 48.84% 2.32%
Sens. 57.7% 53.8% 3.9%
Spec. 41.2% 41.2% 0.0%

“Calculus” J48 Acc. 76.52% 70.43% 6.09%
Sens. 86.0% 80.2% 5.8%
Spec. 48.3% 41.4% 6.9%

NB Acc. 64.34% 65.21% -0.87%
Sens. 82.6% 83.7% -1.1%
Spec. 10.3% 10.3% 0.0%

These results allow us to conclude that SNA measures, ex-
tracted from the interactions of the students in forums from
e-learning courses, are very informative to predict the stu-
dents’ performance and help to improve the classification
models. Of course, the more the forum is used in a course,
the more useful SNA measures are for this purpose.
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ABSTRACT
University professors of conventional offline classes are often
experts in their research fields, but have little training on
educational sciences. Current educational data mining tech-
niques offer little support to them. In this paper we propose
a novel algorithm, Analyzing CurrIculum Decisions (ACID),
that leverages collective intelligence to model student opin-
ions in order to help instructors of traditional classes. ACID
mines publicly available educational websites, such as stu-
dent ratings of professors and course information, and learns
student opinions within a statistical framework. We demon-
strate ACID to discover patterns in learner feedback and
factors that affect Computer Science instruction. We inves-
tigate the choice of a programming language for introductory
courses and the grading criteria for all courses.

Keywords
offline teacher support, web mining, collective intelligence

1. INTRODUCTION
University professors of conventional offline classes are often
experts in their research fields, but have little training on
educational sciences. For example, studies have identified a
lack of pedagogical training preparing research-based grad-
uate students to teach in higher education [3]. It is not clear
how existing educational data mining technologies can uti-
lize the power of internet to learn student opinions in order
to support traditional offline instructors.

We propose a novel algorithm, Analyzing CurrIculum Deci-
sions(ACID), which is able to discover the effect of teaching
decisions in the classroom by mining the increasing amount
of information available online from educational websites.
ACID develops resources and scripts to make use of collec-
tive intelligence and leverages this hierarchy of information
within a statistical framework. ACID supports instructors of
traditional offline courses by extracting from the web teach-
ing syllabi data, and using crowd-sourcing to pair it up with
students’ course ratings and opinions to analyze the rela-
tionship between the two.

Algorithm 1 ACID pseucode

n universities to analyze, z reviews to analyze

procedure ACID

while |R| < z do

s← sample of n universities

s← Remove non-English speaking universities

R← Search The Web For Reviews(s)

R← ratings rated by more than ε students

Q← CrowdSource Questionnaire(R)

Analyze Data(Q)

This paper reports a case study of using the ACID methodol-
ogy to answer questions that instructors of computer science
courses face when designing their courses:

1. For introductory classes, which programming
language do students associate with clearer in-
struction? The choice of a first programming lan-
guage likely affects students’ decision to continue edu-
cation within the field of computer science. It is thus
valuable to model data capturing learner sentiment.

2. What grading rubric do students associate with
clearer instruction? Instructors want to optimize
their grading criteria with respect to student learning
and the student experience. The question of how to
implement a grading rubric determines what students
focus on within a course.

2. ANALYZING CURRICULUM DECISIONS
We use publicly available self-selected ratings of professors
from a third-party website, Rate My Professor [4]. This site
allows students to rate the professors and the courses they
have taken. The website contains data from over 13 million
ratings for 1.5 million professors. They collect ratings on
a 1—5 scale (being 1 the lowest possible score, and 5 the
highest) under the categories of “easiness”, “helpfulness” and
“clarity.”’ Additionally students may fill out an “interest”
field in which they indicate how appealing the class was
before enrolling, and a 350 character summary of their class
experience. We focus on perceived clarity because of the
direct link between clarity and quality of instruction.

We first select a random sample of 50 international universi-
ties that teach Computer Science from the Academic Rank-
ing of World Universities [2]. From our sample of 50 univer-
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Table 1: Programming Language Statistics

Value Std.Err t-value Pr<|t| n
C 3.38 0.32 10.58 0.0000 109
C++ 3.30 0.31 10.65 0.0000 214
Java 3.62 0.19 19.33 0.0000 353
Python 3.70 0.26 14.50 0.0000 133
Scheme 4.06 0.47 8.61 0.0000 32
Scratch 3.91 0.84 4.67 0.0000 49

sities, 41 universities are English speaking. The nine non-
English speaking universities are removed from our sample.
We scrape and parse the reviews of the ratings website for
all professors within the computer science departments of
the universities in our sample. We remove the ratings from
faculty that were rated by fewer than 30 students. This
narrows our final sample to 10,655 different reviews of 180
different professors teaching 1,112 courses at 22 universities.

We use Amazon Mechanical Turk [1], a crowdsourcing plat-
form, to find course features for each of the courses in our
ratings sample. We do this by asking respondents to fill out
a survey. The survey requests to find the online syllabus
that corresponds to the course and professor from which we
have ratings that is closest to the date of the student re-
view we collected.Then, using the syllabus, respondents are
asked to to provide the programming language(s) used, the
textbook(s) used, and the percentage of the grade that was
determined by homework, projects, quizzes, exams.

From our original sample of 1,112 courses taught by a unique
professor, respondents find an online syllabus matching the
professor for 342 courses (∼31%). We hypothesize three ex-
planations for the missing syllabi: (i) the syllabi may be
accessed only with a password through a course manage-
ment system, such as blackboard, (ii) the syllabi may not
be available only, or (iii) the respondents are not able to
find the syllabi.

3. LEARNING STUDENT OPINIONS
We make use of the ratings and syllabi data collected to pro-
vide insights into which programming languages beginning
students associate with clear instruction. We filter the data
to only include introductory level courses (one which does
not require any prerequisite coursework in computer sci-
ence). Our restricted sample includes 1024 reviews. We ex-
plore the relationship between clarity ratings and program-
ming language using general linear mixed modeling with ran-
dom professor and course effects. We do not report program-
ming languages with less than 30 student reviews. Table 1
summarizes the perceived clarity of courses by programming
language (higher is better). An intercept is not modeled in
order to make the results easily interpretable. The mean
clarity rating for introductory courses is 3.599.

We found C and C++ had the lowest coefficients (i.e. com-
piled languages were less clear). Observe that Scheme and
Scratch have the highest clarity ratings followed by Python
and Java. We note that the standard errors are smallest
for Java and Python and largest for Scheme and Scratch.
There is more variation in reviews of courses using Scheme
and Scratch than there is for courses using Java and Python.
Students in our sample associate clearer instruction with in-

Table 2: Grading Criteria Statistics

Clarity Std.Err t-value Pr<|t| n
Exam Heavy 3.23 0.12 26.91 0.000 726
Equal Mix 3.52 0.14 26.04 0.000 484
Exam Proj 3.65 0.13 27.76 0.000 610
Exam HW 3.12 0.13 23.53 0.000 415

terpreted languages rather than compiled languages.

To assess students’ course ratings of clarity based on the
percentage of the grade due to exams, quizzes, homework
and projects, we created a factor made up of four clusters
representing four ways of weighting homework, projects, ex-
ams, quizzes and miscellaneous (such as extra credit) for the
students’ grade. We sort the data to only include observa-
tions in which the grading criteria is available and sums to
100. There are 2225 observations with full grading criteria.
We use k-means clustering to partition the 2225 observa-
tions with complete grading criteria information based on
the five aforementioned variables. We optimize our number
of clusters by examining how the BIC and AIC of the mix-
ture model change based on the number of clusters selected.
A four cluster solution optimizes the AIC and log-likelihood
of the model. The cluster membership is modeled using ran-
dom professor and course effects.

The exams and projects cluster has the highest estimate of
clarity. We find that weighting projects equally with exams
is associated with a clearer course experience. The equal
mix cluster also is associated with higher clarity estimates.
The exam heavy cluster and the exam and homework heavy
clusters are associated with lower student clarity ratings. We
find that a rubric that weights exams and projects evenly is
correlated with clearest instruction.

4. CONCLUSIONS
We demonstrate how the Analyzing CurrIculum Decisions
(ACID) methodology can be used to leverage collective in-
telligence and learn student opinions. In introductory com-
puter science courses, we find that students that are taught
interpreted languages find their classes clearer. We also that
find students who are given an even weighting of exams and
projects find their classes clearer. Our study does not nec-
essarily suggest that teachers should change their program-
ming language. Further research is needed before drawing
causal inferences. Student evaluations often include free
form text where students can describe their experience in
the course. One extension is to regress text sentiment on
course features. ACID is a useful tool to discover patterns
in student opinions. Syllabus data and course ratings data
are becoming increasingly available on the Web. This data is
used by millions of students and worthy of further research.
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ABSTRACT 
In this research, we use Item Response Theory based model for 
computing procedural knowledge of a sample of primary school 
children solving fraction addition exercises. For each exercise, 
the model needs to automatically construct a solution graph. We 
have explored different strategies for building such graphs and 
the effects they have on the quality of the model predictions. 
The results obtained shed light on the applicability of Item 
Response Theory for the task of measuring procedural skills and 
provide recommendations on the choice of IRT model 
adjustment. 

Keywords 

Student Modeling, Item Response Theory, Problem Solving, 
Procedural Knowledge. 

1. INTRODUCTION 
Intelligent tutoring systems (ITS) are designed to provide 
individualized computer-supported learning. One of the most 
important characteristics of a good ITS is a high-quality student 
modeling component, that maintains representation of student 
knowledge and helps the ITS to support personalized tutoring 
helping each student improve her knowledge in the optimal way. 

High-quality student modeling starts with accurate knowledge 
assessment. The classical approach to infer procedural 
knowledge is based on exposing students to problem solving, as 
it is the most natural way for a student to demonstrate 
procedural skills. 
In the field of testing, Item Response Theory (IRT) [2]is known 
to provide accurate and invariant measurement of declarative 

knowledge. In [5], we have proposed a model that employs IRT 
for procedural knowledge assessment and can be used in 
problem solving environments. As a part of this approach, 
dynamic problem solution graphs are automatically constructed 
from student logs. Such graphs are updated and improved every 
time a new student interaction with a target exercise has been 
registered. The work presented in this paper explores different 
alternatives for constructing the graphs, and analyses how 
various evidence aggregation techniques influence the quality of 
the resulting IRT models and the accuracy of knowledge 
assessment they support. 

2. PROCEDURAL ITEM RESPONSE 
THEORY 
There are three types of IRT-based models, according to how 
they score student responses to the test items (questions) and 
update student knowledge [3]: dichotomous, polytomous, and 
quasipolytomous models. Dichotomous models consider only 
two scores per item (correct/incorrect); polytomous models 
assume different scores for different answers, thus, being more 
informative than dichotomous models, but requiring more data 
to calibrate [2]; quasipolytomous models [4] are halfway 
between dichotomous and polytomous: some possible answers 
have their own scores and others are clustered into aggregate 
options. 

The process of solving a multistep learning problem can be 
represented as a graph that contains all the steps and actions a 
student could perform, where nodes correspond to the states of 
the solution process and the arcs to the actions of a student 
transitioning her from one state another. In this work, instead of 
using pre-constructed graphs, we data-mine individual problem 
solution graphs from the student activity logs. 
The procedural IRT mode makes an analogy between problem 
solving and testing by considering a students’ path through the 
process of solving a multistep learning problem as a testing 
sequence. Each node could be understood as an item and each 
step as an item response. 
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3. PROBLEM SOLVING ENVIRONMENT 
AND DATA USED 
The data used in this study comes from the controlled 
experiment conducted in Spring of 2012 in Dresden (Germany) 
with 6th- and 7th-grade pupils. Students had to solve simple 
fraction problems in the computer-based learning environment 
ActiveMath [6][7]. The overall experiment contained several 
phases and covered several topics of fraction arithmetic. In this 
paper, we have focused on multistep problems on “Adding 
Fractions with Unlike Denominators” that students were solving 
during the posttest phase of the experiment. After filtering out 
subjects who did not manage to try the target set of problems, 
we have 61 students (25 males and 36 females) contributing to 
the final dataset.  

The problems were based on an interface allowing students to 
construct individual solution paths by providing structured 
templates for intermediate steps [1]. While solving a problem, a 
student could choose a type of the operation to perform on the 
next step and then fill in the corresponding template. Only 
students defined the number and sequence of steps that they 
needed to reach the final solution. 

4. EXPERIMENTAL MODELS  
We have explored three different strategies to generate problem 
solution graph from the log data. First, we have applied our 
approach in a straightforward way – by generating one graph per 
problem without any aggregation and applying the IRT to this 
graph. We have called this model Direct Application (DA). The 
second model seeks to increase the supporting evidence per 
single steps by merging the states that represent the same 
semantic operation in a problem solution graph. We call this 
model Semantic Operation (SO). Finally, the Common Graph 
(CG) model logically develops the approach of the SO model by 
aggregating semantically equivalent operations across problems. 
As a result, a single graph is constructed to represent the entire 
subset of isomorphic problems related to “Adding Fractions with 
Unlike Denominators”. 

5. EVALUATION 
We have used two sets of problems in this research: the target 
set consists of three multi-step problems on adding fractions 
with unlike denominators; the assessment set contains 13 one-
step problems on fraction expansion, fraction reduction and 
adding fractions with a common denominator. 

In order to evaluate the quality of each model in terms of its 
predictive validity, we compare the obtained estimates with the 
knowledge scores students achieve on the assessment problem 
set. These scores are also computed using the IRT approach. 
Each of the 13 assessment set problems is a single-step problem, 
therefore it corresponds to a single test item. We have looked 
into which model produces better predictions of student 
knowledge assuming that a better model will be closer to the 
control assessment. 

We have used different quasipolytomous models depending on 
the supporting threshold of arcs (understanding threshold as the 
minimum acceptable support of steps) being a threshold = 1 a 
pure polytomous model and the maximum threshold a pure 
dichotomous. 

Table 1 shows the results of our experiments, the two columns 
contain the maximum and the minimum values for Pearson’s 
correlation (r). The values depend on the support threshold 
chosen for a particular quasipolytomous IRT setup as described 

above. Essentially, all models produce knowledge predictions 
that are significantly positively correlated with the controlled 
assessment. In all three cases, the maximum correlation effect 
size is rather high; however, the difference between the 
straightforward DA model and the SO/CG models semantically 
aggregating students’ results is considerable. 

Table 1. Correlations of the scores on the assessment test 
and the target tests produced by the experimental models 
Model / 
Test 

rmax (threshold) rmin (threshold) 

DA .42 (9) .27 (15) 
SO .54 (5) .34 (21) 
CG .51 (3) .35 (90) 

6. CONCLUSION 
In this paper we have studied different strategies to elicit the 
problem solving graph for assessing the student procedural 
knowledge with an IRT-based model. We have distinguished 
three different strategies: building a graph directly from student 
behavior graph, building the graph grouping states by semantic 
operations, and building a graph that represents more than a 
single problem. Results suggest that all of the strategies could be 
valid to infer procedural knowledge but we get better results 
when we group some states. However, when we use the same 
graph for more than a problem we have not obtained any 
advantage, even SO model obtains better results. 

The use of IRT in a problem-solving environment for assessing 
procedural ensures that the results obtained are invariant and 
well-founded, since they are computed using data-driven 
statistical procedures. Results of our work are promising but we 
should to test them for larger student samples. 
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ABSTRACT 
Homework has been a mysterious world to educators due to the 
fact that it is hard to collect data with regard to homework 
behaviors. Little is known about when a student works on 
homework, how long it takes him to complete the homework, how 
much time he spends on a problem and whether and where he has 
struggled, etc. Such information not only have implications on a 
student’s performance level on assigned skills, but also are 
potential indicator of his non-cognitive status, such as engagement 
with homework and whether he was persistent. In this paper, we 
present our initial effort to uncover the mysterious world through 
exploratory analyses of the system logs from the ASSISTments 
platform when 690 7th grade students in the state of Maine did 
their math homework in the system.  
Keywords 

Homework, math, online tutoring. 

1. INTRODUCTION 
Homework is a well-established practice in schools, despite all the 
controversial discussion regarding its influence on learning 
(Kohn, 2006), and the research knowledge base for the 
effectiveness of homework is also well established (Cooper et al., 
2006). Yet, without explicit interventions, homework has been 
commonly underutilized for improving teaching and learning. 
Educational technologies have gained popularity in schools (e.g., 
Khan Academy, DreamBox, IXL.com), but not at home. Most of 
the computer programs for homework are for college-level 
populations (e.g., WebAssign, Mastering Physics, OWL), but not 
in K-12 settings. Homework has been a mysterious world to 
educators partly due to the fact that it is hard to collect data. 
However, information from homework, such as when a student 
works on homework, how long it takes him to complete the 
homework, how much time he spends on a problem and whether 
he has struggled, has not only implications on a student’s 
performance level on assigned skills, but also is potential indicator 
of his non-cognitive status, such as engagement with homework 
and whether he was being persistent. 

2. BACKGROUND 
ASSISTments (www.assistments.org) is an online tutoring system 

that provides “formative assessments that assist.” Teachers choose 
(or add) homework items in ASSISTments and students can 
complete their homework items online. As students do homework 
in ASSISTments, they receive feedback on the correctness of their 
answers. Some problem types also provide hints on how to 
improve their answers, or help decompose multistep problems 
into parts. Teachers receive reports on their students’ homework 
and can use this information to organized more targeted 
homework reviews, to assign specific follow-up work to particular 
students, and to more generally adapt or differentiate their 
teaching.  

Prior research also has established the promise of ASSISTments 
for improving student outcomes in middle school mathematics 
through homework support (Mendicino et al., 2009; Singh et al., 
2011; Kelly et al., 2013). Building on this prior work, a large-
scale efficacy study is being conducted with ASSISTments in the 
state of Maine where a one-to-one laptop program was well 
established, to evaluate the efficacy of ASSISTments for online 
homework support. This randomized controlled trial involves 45 
middle school schools that were randomly assigned to treatment 
or control (i.e. “business as usual”) conditions. The intervention is 
implemented in Grade 7 math classrooms in treatment schools 
over 2 consecutive years. In the treatment condition, teachers 
receive professional development and use ASSISTments to assign 
homework for their students during the school year.  

3. METHOD 
3.1 Data 
For this study, we collected homework log of 690 7th grade 
students from classes of 17 teachers in 9 middle schools that 
participate in the efficacy study. The data set includes 779 
homework assignments made by the teachers during January and 
February 2014. These students have been using ASSISTments to 
do their homework since the beginning of the school year and 
their teachers started using ASSISTments since September 2012. 
We excluded the problems that took students over 10 minutes to 
complete, considering students were likely to be off-task and thus 
the measure of completion time might not accurate. On average, 
each student solved 181 problems, and the number varies a lot 
among students (standard deviation = 163). In addition to student 
homework log, we also collected teacher’s usage data, in 
particular, when they have opened a report provided by 
ASSISTments.  

Based on the student log and teacher usage data, we calculated the 
following metrics 

• %Correct—student’s average percent correct on all 
problems in an assignment 
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• AvgAttempt—the average number of attempts 1  a 
student made on a problem in an assignment 

• AvgFirstResponseTime—the average amount of time it 
took a student to respond to a problem in an assignment 

• AvgTotalTime—the average total time it took a student 
to complete a problem in an assignment 

• StartHour—the hour of the day when the student started 
working on an assignment 

• CompletionIndicator—whether an assignment was 
completed on time, late or not completed.  

• CompletionRate—a student’s overall homework 
completion rate during the time period 

• %ReportOpening—a teacher level metric, the 
percentage of assignments for which a teacher has 
opened related ASSISTments reports. For example, if a 
teacher has made 10 homework assignments to her 
students, but only looked at reports for 4 of the 
assignments, then %ReportOpening will be 40%.  

3.2 Analysis and Findings 
Our analysis was mostly exploratory. First, we plotted the data 
(see Figure 1) to see when students started working on homework, 
and if there is any association between when a student started and 
whether the assignment was completed on time or not. We 
observed that for the 8573 instances of assignments that were 
completed on time, most of the time students started around 11am, 
or 12pm, or early in the morning at 9am. The assignments that 
were not completed tended to start a bit later at 1pm or 10am.  

 
Figure 1. Time students start working on homework 
Then we looked to see whether there was any difference in 
student’s performance or behaviors when they completed 
homework assignments on time or not. We found that for 
assignments that were not completed, students were significantly 
(unpaired t-test, p < .01) low on %Correct metric, yet high on 
AvgFirstResponseTime, and AvgTotalTime, comparing to their 
performance on assignments that were completed on time, 
indicating students were struggling with the problems in those 
assignments. Meanwhile, students were also significantly low 
(upaired t-test, p < .01) on AvgAttempt, suggesting they were not 
as persistent when trying to solve the problems.  

Teacher’s review of homework performance report is a critical 
step in the ASSISTments logic model and teachers are encouraged 
to look at the reports to direct their homework review with 
students and adapt their instructions. During the interviews 
(another data collection activity of the efficacy study), teachers 
indicated homework review time has been largely reduced 
because of that the ASSISTments reports have made the review 
more targeted. While we don’t have the classroom observation 

                                                                    
1 In ASSISTments, students are allowed to make multiple attempts at 

problems until they solve the problem correctly.   

data yet, we consider %ReportOpening as an indicator of how 
often the homework review was done. We discretized 
%ReportOpening into 3 bins: low, medium and high, and 
aggregated other metrics across students within each bin. We 
found in the bin where %ReportOpening was low, students’ 
average %Correct and CompletionRate were significantly higher 
yet AvgFirstResponseTime and AvgTotalTime were all 
significantly lower, comparing to those for the “high” bin. While 
this finding was against our initial instinct, it is too early to draw 
any conclusion regarding a casual relationship between teacher’s 
review practices and student’s homework performance from this, 
given that the analysis wasn’t tracking changes in the same 
teacher’s classes longitudinally, and didn’t account for any 
incoming homework performance data of the students (e.g. 
homework completion rate, %Correct, etc). Teachers who knew 
their students had problems with completing homework may 
choose to look at reports more often to monitor student’s progress.  

4. CONCLUSION 
In this paper, we presented some initial results from analyzing 
student homework logs and teacher’s usage of an online 
homework support program as a part of an efficacy study. The 
analyses here represent the beginning of our efforts to understand 
the world of homework. In the future, we plan to link student’s 
homework log data with their unit test scores (as proximal 
measure of their knowledge) and end of year standardized test 
scores to investigate the relationship between homework and 
learning outcomes. We also plan to analyze student homework log 
data, teacher’s report usage data and test scores together 
longitudinally and triangulate the results with findings from field 
classroom observations to further investigate the impact of 
teacher’s review practices on student’s learning outcome and on 
how students do their homework.  
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ABSTRACT 

This paper presents our method based on similarity measure 
between contiguous pairs of sequences to yield automatic 
detection of significant behaviors from raw and continuous traces. 
The traces, produced by a simulation-based Intelligent Tutoring 
System dedicated to percutaneous orthopedic surgery, are related 
to perceptual-gestural behavior and ill-defined tasks involved in 
this domain. Preliminary qualitative evaluations have been 
conducted on real data from five simulation sessions and showed 

the relevancy of our method and adjustments that need to be 
realized for further experiments. 

Keywords 

Sequences similarity, Perceptual-gestural behavior, Ill-defined 
task, Simulation-based ITS, Learners modeling. 

1. INTRODUCTION 
The learning process of orthopedic surgery is composed of two 
parts: a theoretical part involving declarative knowledge and a 
practical part involving perceptual-gestural knowledge related to 
surgical gestures. This knowledge is qualified as perceptual-
gestural because it is tacit and mostly accessible empirically 

through repeated practices. Tasks related to this knowledge are ill-
defined as different strategy patterns can be applied to execute a 
given operation and no precise way can be defined in advance to 
satisfy their validation criteria. As demonstrated in [6], there is a 
gap in the learning process that can hardly be bridged by 
traditional teaching methods. TELEOS learning environment aims 
at providing the missed intermediate phase of apprenticeship. 

For offering tutoring services in adequacy with perceptual-
gestural and ill-defined knowledge, some constraints must be 
considered like the impossibility to define an exhaustive 
theoretical framework, the importance of designing an opened 

knowledge model and the difficulty to assess perceptual-gestural 
knowledge in the diagnosis process. To overcome these 
constraints, we want to set up a hybrid approach [2] combining a 
data-driven paradigm including automatic acquisition of 
knowledge from traces, with the existing expert-oriented 
paradigm. The purpose is to keep the knowledge model opened 
and incremental. To achieve this, we need to capture and model 
learners’ strategies in the execution of simulated operations. That 

requires on first hand that we foster automatic detection of 
significant execution behaviors from the continuous raw traces 
recorded by the simulator. 

2. BACKGROUND 

The most recent related work reported in the literature is 
CanadarmTutor, a simulation-based ITS for training astronauts for 

the handling of an articulated robotic arm [4]. It provides a 3D 
simulated environment where leaners train in moving the robotic 
arm from an initial configuration to another predetermined one. 
As explained in [1] this task is complex and ill-defined. 

For offering convenient tutoring services considering these 
constraints, a hybrid approach combining expert system, model-
tracing and automatic acquisition of partial task from experts has 
been proposed [5]. Like in our case, this work seeks to extract 
parts of solution paths that are frequently applied to be reused 
later for supporting key tutoring services. One of the main 
differences between this work and ours is the importance in our 
case to link extracted resolution patterns with the phase in which 

they lie as some actions give different performance insights 
depending on the phase in which they were executed. 

3. METHOD 
To capture perceptual-gestural behavior in TELEOS learning 
environment, we use two complementary devices with the 
simulator: an eye-tracker for tracing perceptual behavior, that is, 
points and areas of interest gazed during the execution actions [3] 
and a haptic arm to capture gestures-related actions executed with 
the trocar [4]. (Traces from the three tools are recorded 

independently. They are heterogeneous regarding their content 
types, their content format and their time granularities. To link 
each sequence of action to the associated sequences from the 
complementary devices, we merge their parameters so that each 
sequence from one source contains the parameters of sequences 
from the two other sources at the moment it occurred. After this 
treatment, an action is represented by a subset of sequences that 
defines its continuum until the next action is executed.) 

3.1 Characterizing Significant Behaviors 
Our case study is centered on vertebroplasty1. This surgical 
operation is conducted in three phases: the patient preparation, the 
drawing of the cutaneous marks and the trocar insertion. As 
opposed to classical open-heart surgery, surgeons are guided all 
along the operation by X-rays. Validation criteria of each 
executed action are evaluated by visual analyses of these latter. 
The first phase of a vertebroplasty is validated if the X-ray 

appliance (the fluoroscope) is positioned as to generate both face 
and profile X-rays that render properly the position of the targeted 
vertebra. In the second phase, the cutaneous marks are validated if 
their drawing overhangs properly the targeted vertebra on the X-
rays. The last phase is validated if the X-rays confirm the correct 
trajectory of insertion of the trocar. 

                                                             
1 Vertebroplasty is a percutaneous orthopedic surgery that is 

practiced to treat fractured spine bones with cement injected 
with a trocar inserted through small incisions in the skin. 
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However, validated actions can need to be revised if not executed 
correctly. These corrections can take place within the same phase 
or can require that the intern returns to a previous phase. They can 
be the consequence of different behaviors. For example, the intern 
may not take enough time to analyze generated X-rays or not 

enough X-rays to guide his or her actions. On the other hand, 
another intern can often ask for visual guidance if his or her 
strategy is to progress with slight and prudent adjustments where 
another one can ask for very little visual guidance but take more 
time to analyze each generated X-ray. 

Thus, we want to automatically detect, from the simulation traces, 
phase changes, corrections within the same phase and taken step 
back to decide on next action or to validate passed action. To 
achieve this, we need to identify the amplitude of displacements 
of the simulation environment tools step by step, that is, from one 
sequence to the next. We need also to identify the elapsed time 

between these sequences. In fact, similarity between sequences of 
the same action continuum is supposed to be high and important 
changes, marked by contiguous sequences with low similarity. 
The elapsed time between contiguous sequences gives also 
insights on the learners’ behavior as it can point out the time taken 
for modifying an action, for thinking on the next action to execute 
or on the validation check of a passed action. 

Based on observations of simulation sessions realized by interns 

at the university hospital of Grenoble, we made the assumption 
that small temporal gaps coupled with low similarities are more 
likely to represent phase changes; large temporal gaps coupled 
with low similarities are more likely to represent corrections 
within a phase and large temporal gaps coupled with high 
similarity are more likely to represent step back for deciding on 
next action or to check the validation criteria of passed action. 

3.2 Computing similarity 
We used the cosine similarity measure to calculate the similarity 
between pairs of contiguous sequences. This measure is given by 
the following formula:  
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This metric excerpt the proximity of the orientations of the vectors 

A and B based on the angle θ that they form and consequently, the 
level of similarity of the sequences that they represent. Its 
outcomes are bounded in [0,1]: 1, representing a perfect similarity 
between the elements of the two vectors and 0, a strong 
dissimilarity between them. 

4. EXPERIMENTS 
We conducted a preliminary qualitative experimentation based on 
traces from five simulation sessions of vertebroplasty. Each 
session was executed by one different intern surgeon at the 
University Hospital of Grenoble and was screen video recorded. 
We proceeded to the comparison of behaviors listed from videos 
with the list of automatically detected behaviors from the traces as 
to identify accurate, missed and false detections. As reported in 
Table 1, the automatic detection method demonstrated good 

performance for the detection of phase changes. Indeed, all of 
those that it reported were relevant, bringing the precision of 
detections for this category of behavior to 1.00. However, 60% of 
these changes were missed. This explains the poor recall score 
(0.40) for this category of behavior, as for the detections of 

corrections within phases for which the recall is only of 0.33. 
High precision (0.91) and recall (0.76) are recorded for the 
detections of taken step back for the five sessions. 

F-Score 

Behaviors 
Precision Recall F1-score 

Corrections within phases 0.60 0.33 0.42 

Phase changes 1.00 0.40 0.57 

Step back 0.91 0.76 0.83 

Table 1. Measures of Precision and Recall of the automatic 

method compared to observations from video recorded 

simulation sessions. 

5. CONCLUSION 
These evaluations, specially the obtained recall scores, reveal the 
sensitivity of sequences similarity outcomes in presence of other 
factors that were not considered in this experiment like the level 
of experience or competence of the interns. The choice of 
similarity and temporal gap thresholds should be adapted 
regarding these factors in future evaluations. This work is the first 
step in achieving more fine-grained diagnosis by integrating in the 
process learners’ simulation execution strategies along with 

evaluation of their single actions. The planned next step is to yield 
automatic recognition and categorization of significant behaviors 
signatures in addition to the mere detection of their occurrences. 
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Abstract: 
The goal of this work is to transform informational and instructional content into adaptive and personalized training experiences. We have 

developed semi-automated methods to do this that parallel the traditional “ADDIE” (Analysis, Design, Development, Implementation, and 

Evaluation) process. The source content can include documents, presentations and manuals and existing courseware. The techniques use 

artificial intelligence (AI), data mining, and natural language processing and generally belong to the discipline of “educational data 
mining.”  This poster/demo demonstrates the processes and discusses the algorithms used.  

1. PROBLEM STATEMENT 
Today’s digital environment is rich with learning content, but 

much of it is purely didactic in nature. This content includes 

manuals and presentations not intended for instructional purposes 
and e-learning that consists of presentations and lectures with 

multiple choice questions. As online learning replaces instructor-

led training in corporations, government agencies, and 

educational institutions [10], its effectiveness can be improved by 
transforming  this wealth of didactic content into more interactive 

and adaptive learning experiences [5].  

Here, we address aspects this transformation problem in the 

context of multiple research and commercial projects. A large 
portion of the work we report here comes from a U.S. Army 

Small Business Innovation Research (SBIR) project called Tools 

for the Rapid Generation of Expert Models, or TRADEM, that 

applies data mining to (a) deconstruct existing content at a deep 
and granular level and (b) reconstruct it in a form that can be used 

to create adaptive intelligent tutoring systems. This process 

automates many steps in the “ADDIE” (Analysis, Design, 

Development, Implementation, and Evaluation) process [1] 
commonly used to develop instructional content.  

1.1 Motivation 
The three primary benefits of applying EDM to automate a 

process such as ADDIE are cost, speed, and the effectiveness of 

the training produced.  

Data about e-learning development [3] shows that about 40% of 

the cost involves analysis and design tasks, which includes the 

expensive activity of engaging with subject matter experts. Using 

EDM to extract the domain analyses and instructional designs 
from existing content is more cost-effective than going through 

the entire ADDIE process each time instruction is developed. For 

example, in Army Civilian Affairs training using TRADEM, 

simulations provide experiential learning on how to conduct 
civilian affairs in current, real-world situations. The content 

changes frequently, requiring continual repetition of the ADDIE 

process.  As a result, manual processes are too slow and too 

expensive, but automated the generation of up to date domain 
models, concept and skill maps, and instructional content allows 

the Army Civilian Affairs Corps to rapidly deploy new training in 

response to a real and changing world. 

Providing highly effective training also drives the development of 

TRADEM. Classroom instruction and most existing e-learning 

falls far short of the effect sizes that have been shown to be 

achieved with intelligent tutoring systems [4; 13]. While 

TRADEM can be used to develop and implement many different 
types of learning environments, our work has focused on 

producing intelligent tutors.  

2. DESCRIPTION OF TRADEM 
 

ADDIE’s design step consists of determining learning objectives, 
sequencing instruction, and writing assessments. TRADEM 

automates this step via an assisted full workflow solution.  

Workflow: First, TRADEM extracts a topic map from a user-

input corpus of content. This topic map visualizes a set of topics 
that cover the core topics present in the input corpus. For each 

node (topic) in the concept map, TRADEM then selects the 

pieces (granules) of the initial input corpus most associated with 

that topic. Next, TRADEM builds an assessment for each topic 
based on the granules associated with that topic. On demand, 

these assessments are then exported in an intelligent tutoring 

format for use in instruction. 

Topic Generation: TRADEM ingests a corpus of content and 
performs a front-end analysis that results in a concept map 

consisting of a directed tree of topics. The topics are extracted 

from the corpus using topic-detection techniques [9] that are 

applied as described in [12]. The number of topics generated 
optimizes coverage of the input corpus, but the user can alter the 

number of topics based on pedagogical needs. This is necessary 

in real-world applications. For example, the user may wish to 

match a list of topics that appear in standardized curricula.  

To determine topic relationships and order, TRADEM calculates 

a relation strength for each pair of topics, creating a graph with 

relationship strengths between all topics.  This fully connected 

graph is transformed into a directed tree spanning all topics by 
inferring directionality using a precedence metric and tree 

selection algorithm based on aggregate relationship strength. We 

interpret this tree as representing optimal learner paths between 

any two topics in the input corpus. This mirrors the way classical 
instructional designs progress through a subject, including 

intermediate learning objectives leading to a terminal learning 

target [12].  

Content Granules: To identify the pieces of the input corpus 
most closely aligned with each topic in the topic tree, TRADEM 

decomposes the input corpus into granules of content. For 

standard text, these are paragraphs, while slides and bulleted lists 
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may end up as single or multiple granules. A sentence parsing 

algorithm is used to selecting which sentences in the granule are 
best suited to generate assessment questions using assessment 

generation  techniques based on the work of Mitkov, Ha, Heilman 

and Smith [8; 11]. These techniques produce template forms that 

can be transformed into essay or multiple choice questions using 
a manual process. Additionally, each granule is automatically 

tagged with suggested relevant instructional types. For example, 

the Generalized Intelligent Framework for Tutoring (GIFT) 

includes an Engine for Macro- and Micro-Adaptive Pedagogy 

(EMMAP), that recognizes four pedagogical strategies: Rule, 

Example, Recall, or Practice [5]. This allows granules associated 

with each topic to be selected by an intelligent tutor based on its 

pedagogical needs. Thus, extracted topics are associated with 
meaningful chunks of corpus content that become the basis for 

real instruction driven by an intelligent tutoring framework. 

Tutor Implementation: The target intelligent tutor we currently 

produce is dialogue-based tutor that we call T-Tutor. It is 
described in more detail in [2]. T-Tutor engages the learner in 

conversation in one panel and displays content in another. A chat 

bot powered by ChatScript [14] gives T-tutor the capability to 

engage in human-modeled conversation. Student responses are 
evaluated against target responses using ChatScript’s innate 

functionality and standard semantic analysis techniques like those 

used by the AutoTutor family of tutors [6; 7].  

T-Tutor uses GIFT as its core adaptivity engine[5]. GIFT guides 
the learner through a topic sequence from the extracted topic tree 

and guides learner-level pedagogy by adaptively selecting 

granules based on pedagogical need and learner state. In order to 

provide a dynamic link between the analyzed content and specific 
intelligent tutor, TRADEM generates on-demand JSON files that 

encodes all of the information needed for an intelligent tutor to 

adaptively and interactively implement a pedagogical plan.  

Evaluation: In our Topic Detection, we use AI and data mining 
techniques to extract topics and sequencing data. This results in 

an a priori model based implied by the source materials. Our goal 

in evaluation is to use actual learning outcomes to update this 

model. To this end, TRADEM enables the delivery system to 
report observed assessment results, with each result mapped to 

one or more learning outcomes or topics. Once data is gathered, it 

will be processed to determine the goodness-of-fit between the 

observed data, the existing topic model, and other potential 
variants of this model. 

3. THE BIGGER PICTURE 
The processes we have described brings data mining and 

practices into the realms of training and education to improve 

speed, quality, and flexibility of content production. In addition, 
this approach allows for direct comparison between pedagogical 

approaches. TRADEM’s automated methods produce 

standardized machine-readable data with testable topic models 

analyzed based on observed learning outcomes. In other words, 
we can mine data generated by users and determine how well a 

given model fits the data. Markov modeling and structural 

equation modeling can be used to infer learning effects if the 

model or pedagogy is changed, and will immediately update 
tutors constructed from the models.  In other words, the use of 

EDM to automate ADDIE creates standardized data structures 

upon which e-learning content is built which, in turn, enables 
EDM to be used to improve the structures and make the e-

learning more effective. 
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ABSTRACT 

In this paper, we propose multimodal learning analytics as a new 

approach for studying the intricacies of different learning 

mechanisms. More specifically, we conduct two analyses of a 

hands-on, engineering design study (N=20) in which students 

received different treatments. In the first analysis, we used 

machine learning to analyze hand-labeled video data. The findings 

of this analysis suggest that one of the treatments resulted in 

students initially engaging in more planning, while the other 

resulted in students initially engaging in more building. In 

accordance with prior literature, beginning with dedicated 

planning tends to be associated with improved success and 

improved learning. In the second analysis we introduce a 

completely automated multimodal analysis of speech, actions and 

stress. This automated analysis uses multimodal states to show 

that students in the two conditions engaged in different amounts 

of speech and building during the second half of the activity. 

These findings mirror prior work on teamwork, expertise and 

engineering education. They also represent two novel approaches 

for studying complex, non-computer mediated learning 

environments and provide new ways to understand learning.   

Keywords 

Learning Sciences, Qualitative, Computational, Constructionism 

1. INTRODUCTION 
Despite the many years that humans have studied learning and 

human cognition there are still many unanswered questions in 

how people learn. This has partially been the result of limitations 

in the ways that we are able to study learners. More specifically, a 

large portion of prior research was limited by a tradeoff between 

the types of learning environments that could be studied, and the 

scale at which a given phenomenon could be analyzed.  

However, as the tools of educational data mining and learning 

analytics continue to advance, we are beginning to dismantle this 

tradeoff. We are now able to analyze a far greater variety of 

learning environments and at unprecedented scales. In this study, 

in order to keep the analysis verifiable, we do not yet venture to 

tackle big data as it relates to a large number of participants. 

Instead, we tackle the big data question as it relates to analyzing 

extremely high frequency data, from several data streams. We use 

multimodal learning analytic [1, 2] techniques to study speech, 

gesture and electro dermal activation among pairs of students as 

they complete a hands-on engineering design task. 

The context for this paper is an extension of our prior work [3], 

where we present two different approaches that students use in 

engineering design: example-based reasoning – using personal 

examples from the real-world as an entry point into solving a task; 

and principle-based reasoning – using engineering fundamentals 

as the basis for one’s design. These two reasoning strategies 

complement prior work on learning by analogy [4], expertise [5, 

6] and forward-backward reasoning [7]. In [3] we describe 

example-based reasoning and principle-based reasoning in 

qualitative terms, and then proceed to use these two approaches in 

a controlled study (N=20) that compares how each approach 

impacts learning gains and performance during a collaborative 

hands-on activity. In that study we found that principle-based 

reasoning improves the quality of designs (p < 0.05) as well as the 

learning of important engineering principles (p < 0.002). The goal 

of this paper is to expound upon why these differences may have 

arisen between the two conditions. As such, we employ 

multimodal learning analytic techniques as a way to 

systematically study how example- and principle-based reasoning 

are associated with different multimodal behaviors as observed in 

the each student’s process. 

2. METHODS 
In this paper, we briefly present results from two complementary 

analyses of example- and principle-based reasoning. The overall 

approach closely mirrors our previous work [8, 9] on analyzing 

design strategies and success in hands-on engineering tasks. 

Specifically, in the first analysis we manually annotate the 

students’ actions, and segment the data based on when they 

explicitly evaluates their structure. The proportions of actions in 

the different segments are used to find representative clusters, 

which are subsequently used to re-label each user’s sequence of 

segments. Finally, we compare sequences across participants. 

In the second analysis we again use clustering to reduce the set of 

multimodal states from several hundred, down to four. However, 

it differs from analysis 1 in that all of the data is automatically 

derived from speech, gesture and skin conductance data. 

Additionally, instead of segmenting the data when students 

evaluate their structure, we use fixed 30-second time windows. 

3. RESULTS 
The results from the first analysis, which combined qualitative 

coding with X-means clustering, demonstrated that students in the 

principle-based condition were more likely to start the task by 

planning (see PREPARE in Figure 1). Planning has been 

associated with increased success in several domains 

[10,11,12,13,14]. In contrast the example-based condition was 

typified by students who immediately began to build their projects 

and overlooked the importance of thinking about and planning 

their structure (see IMPLEMENT in Figure 1). Furthermore, the 
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first analysis also found that success correlates with students 

beginning with planning. Hence the principle-based conditioned 

was associated with increased planning, which may have 

facilitated their improved performance.  

 

Figure 1 - Scaled Frequency of Cluster Use by Condition - the 

y-axis is the count of times used, and the x-axis is the different 

clusters, or states of user actions, as derived from clustering 

In the fully-automated multimodal analysis our initial results 

suggest that students in the example-based condition are much 

more likely to transition towards an increase in speech during the 

latter half of the activity. This is in contrast to the principle-based 

group which shows no significant changes in speech, gesture or 

stress, over the course of the activity. In our ongoing work we are 

looking to better understand the nature of the multimodal 

interactions and what caused the students in the example based 

condition to engage in significantly more dialogue. We have 

several initial hypotheses that we will describe in future work. For 

example, an initial analysis of student speech during the 

intervention phase of the experiment found significant differences 

between the two conditions. Namely, students in the principle-

based conditions generated more speech during the intervention 

phase than the example-based condition. This may have helped 

the students be better prepared for the activity, and allowed them 

to circumvent the talking observed in the latter half of the 

experiment for the example-based condition. However, additional 

analysis is required to determine a link between the speech during 

these two phases of the experiment. 

4. CONCLUSION 
Taken in concert, these two analyses provided initial explanations 

concerning why principle-based reasoning produced higher 

quality designs and greater learning gains than example-based 

reasoning. Based on the analysis of hand-labeled process-oriented 

data, in conjunction with machine learning, we were able to show 

how students in the principle-based reasoning condition were 

more likely to begin the task with planning. In contrast, students 

in the example-based condition were more likely to start by 

building. These findings aligned with previous observations made 

in a number of disciplines. In the second analysis, we used a 

completely automated multimodal algorithm to construct 

generalizable multimodal states and found that students in the 

principle-based condition had less variation in their speech, 

gesture and skin conductance over the course of the activity. This 

difference was particularly noticeable during the second half of 

the activity. Both of these seem to point to students being better 

prepared after participating in the principle-based reasoning 

intervention. Thus, we have shown that in addition to producing 

differences in learning and success, the two conditions resulted in 

different processes. This is important because it provides 

researchers with a more fine-grained representation of how the 

two treatments differed. Examining the underlying mechanics of 

different treatments provides educators and designers with a more 

complete set of strategies to adopt and utilize in their teaching and 

designing. To this end, beyond simply saying that the conditions 

are different, multimodal learning analytics provides us with a 

tool that explains how they are different, and, in so doing, starts to 

answer questions around why they differ. That said, there remain 

a number of important questions and opportunities in studying the 

mechanics of successful learning interventions. We intend to more 

closely examine the findings reported in this paper, and 

investigate additional hypothesis that would explain the noted 

differences in student outcomes in our ongoing research.  
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ABSTRACT
Construction of a mapping between educational content and
skills is an important part of development of adaptive ed-
ucational systems. This task is difficult, requires a domain
expert, and any mistakes in the mapping may hinder the po-
tential of an educational system. In this work we study tech-
niques for improving a problem-skill mapping constructed
by a domain expert using student data, particularly prob-
lem solving times. We describe and compare different tech-
niques for the task – a multidimensional model of problem
solving times and supervised classification techniques. In
the evaluation we focus on surveying situations where the
combination of expert opinion with student data is most
useful.

1. INTRODUCTION
One of important aspects of development of adaptive edu-
cational systems is the construction of a mapping between
educational content (questions, problems) and latent skills
(also denoted as knowledge components or concepts). This
mapping is important for student skill estimation, which
guides the adaptive behaviour of systems, and is typically
constructed by a human and since it is a difficult process,
it requires a domain expert. The labeling of items, par-
ticularly for large item pools, may be time-consuming, and
consequently the process is rather expensive. Another ap-
proach is to use automatic construction of the mapping from
the data (e.g. Q-matrix method [1, 2]). To be reliable, the
automatic approach needs large amount of data. Synergy
of these two approaches (e.g. [4]) may bring useful results.
We can use a human expert to provide initial labeling of
problems and then automatic methods can be used to de-
tect errors that the human might have introduced and to fix
them.

Depending on the quality of the provided expert labeling
and amount of data, there are three possible scenarios. If
the number of expert errors is small or the data are insuf-
ficient, it is best to use just the expert opinion (donated as

E-zone). If the expert makes lot of mistakes and large data
are available, then it is best to use just the data (D-zone).
We are interested in the region between these two cases,
when it is most advantageous to combine both the expert
input and available data (ED-zone). Our aim is to explore
techniques for such combination and to map the size of this
region.

2. TECHNIQUES
In the following we assume that we have a set of students S,
a set of problems P , and data about problem solving times:
ts,p is a logarithm of time it took a student s ∈ S to solve
a problem p ∈ P . We have an expert labeling lE : P → Σ
where Σ is the set of skills. The expert labeling may contain
some mistakes when compared to a correct hidden labeling
l. The output of our algorithms is some other labeling lA
that may be different from lE . The goal of our algorithms
is to provide a more accurate labeling (according to l) than
lE .

2.1 Model with Multidimensional Skill
In this section we introduce a extension of model described in
[5] for predicting how much time it takes a student to solve a
particular problem. The model uses a few latent attributes:
problem difficulty bp, student skill βs, problem skill vector
qp and a student skill vector θs. It assumes the following
relationship between the attributes: ts,p = bpβs + qᵀpθs + ε.
The vector qp represents the weight of individual skills in the
problem p. The vector θs can be interpreted as the values
of skills the student s has.

This model is supervised in a sense that it is learning to
predict the student solving times. As a byproduct we get
the Q-matrix Q which represents the problem-skill mapping
that we are interested in. The objective of the model is to
minimize the squared prediction error. To get the values
of the parameters we use stochastic gradient descent with
initial Q-matrix provided by expert labeling. After the al-
gorithm terminates we can check for discrepancies between
the expert Q-matrix and the Q-matrix outputted by the pa-
rameter estimation algorithm. We will assume that these
discrepancies are expert mistakes.

2.2 Supervised Learning
The main idea of using supervised classification methods can
be illustrated by the most straightforward approach which
uses k-NN (k-nearest neighbors) algorithm and Spearman’s
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correlations r(pi, pj) of problems pi, pj as a measure of prob-
lem similarity. We assume that the most correlated prob-
lems belong to the same skill and thus have the same labels.
So for problem pi a new label lA(pi) will be the most com-
mon label (provided by expert) among the k most correlated
problems from P with problem pi. This approach can find
some mistakes, however it brings only small improvement of
expert labeling lE .

Similarly we can use different classification methods with
different metric. A problem pi can be represented as a
vector rpi = {r(pi, pj)}1≤j≤|P | and Euclidean distance of
these problems can measure similarity of problems (we as-
sume that two similar problems have similar correlations
with other problems). As classifier we have chosen logistic
regression, which is more sophisticated but still computa-
tionally fast.

Figure 1: Comparison of techniques for particular
situation. The ED-zone is marked for the model.

3. EVALUATION
3.1 Data and Experiment Setup
To evaluate our algorithms we used real data from a Prob-
lem Solving Tutor [6]. It is a free web-based tutoring sys-
tem for practicing problem solving; it is available at tu-

tor.fi.muni.cz. To simulate multiple skills for the eval-
uation purposes we mixed data from k problems together.
Each problem type represents a single skill (or label). An
expert is simulated by taking the correct labeling and intro-
ducing some random mistakes with rate pe ∈ [0, 0.5]. Hence
in this situation (as opposed to standard setting), we know
the correct “latent” skills and thus we can measure accuracy
of a method as the portion of the final labels assigned cor-
rectly. The expected accuracy of an expert (E) is 1 − pe.
Spectral clustering method (see [3]) was used for the eval-
uation of the D approach. Finally the expert labeling was
used in the ED approaches described in section 2.

3.2 Results
Figure 1 shows the comparison of the accuracies of the E,
ED and D approaches. We can denote three zones within
expert error rate based on which approach (E, ED or D)
performs the best. We are interested particularly in the
ED-zone, where the newly introduced approaches are the

best, specifically in its position and width, which tells us for
which values of pe these approaches are a good choice.

The figure shows that the algorithm based on k-NN brings
only small improvement. The other two approaches are sig-
nificantly better and to each other comparable, however
the algorithm based on logistic regression is significantly
faster, because it works only with correlation vectors, which
substantially reduces the amount of data. On the other
hand approach based on model gives more information about
problem-skill mapping, because it provides Q-matrix and
not only labeling.

Experiments for other problem combinations showed that
the size of the zone grows with decreasing performance of D
approach and with number of skills. For larger numbers of
skills the zone becomes dominant.

4. DISCUSSION
Our experiments address two types of questions: “how” and
“when”. The “how” question is concerned with the choice of
suitable technique for combining expert opinion and student
data. Here the results suggest that on one hand the choice
of technique is important – note that two similar supervised
approaches (k-NN, logistic regression) achieve quite differ-
ent results. On the other hand, two significantly different
approaches (the multidimensional model and logistic regres-
sion) achieve very similar results. The “when” question is
concerned with mapping when it is useful to use the combi-
nation of expert opinion and student data. The results show
that this “zone” is sufficiently large to deserve attention and
it is useful to combine the expert opinion with student data
for large range of quality of expert input.
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ABSTRACT 
In this paper, I describe part of my doctoral dissertation in which I 
have attempted to automatically detect a phenomenon known as 
the chameleon effect in collaborative learning settings. The 
chameleon effect refers to non-conscious mimicry of other 
comportments (e.g. postures, mannerisms, facial expressions), 
such that one's behavior passively and unintentionally changes to 
match a partner’s behaviors. As described below, social mimicry 
is associated with more productive collaborations and potentially 
higher learning gains in classroom settings. I describe several 
studies where I was able to show that visual synchronization (i.e. 
joint attention), and verbal synchronization (i.e. discourse 
coherence) were associated with higher learning gains and better 
collaboration in groups of students, while body synchronization 
and grammatical mimicry did not predict any of those outcomes. I 
conclude by discussing implications for educational data mining 
and describe future work using additional measures such as voice 
synchronization (e.g. variations in pitch and volume) and arousal 
synchronization (i.e. variations in heart beat rhythms). 

Keywords 
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1. INTRODUCTION 
Over the past decades, collaborative learning has been seen as one 
of the most promising approaches for fostering deep conceptual 
understanding of complex science concepts. However, even 
though educational researchers and psychologists have 
constructed a rich corpus of studies showing the promises of 
socio-constructivism, much remains to be leaned about effective 
collaboration among students. As Dillenbourg puts it [3], 
collaboration in itself is neither good nor bad; there exists 
conditions that can support productive interactions between 
students and it’s the goal of researchers to discover them. 
Moreover, he suggests that studies should focus more on process 
variables rather than learning outcomes: “empirical studies have 
more recently started to focus less on establishing parameters for 
effective collaboration and more on trying to understand the role 
which such variables play in mediating interaction. […] we argue 
that this shift to a more process-oriented account requires new 
tools for analyzing and modeling interactions”. This is precisely 

the approach that I am taking in this paper: I use new technologies 
such as sensors (e.g. eye-trackers, Kinects) combined with data 
mining algorithms to discover new patterns in collaborative 
learning settings. More specifically, I used network analysis, 
natural language processing, supervised and unsupervised 
machine learning algorithms to make sense of transcripts, eye 
tracking, and gesture data. My approach is theory driven in the 
sense that I take advantage of concepts in psychology, ethology 
and the learning sciences to drive my analyses. One concept that I 
am closely looking at is the chameleon effect. 

2. THE CHAMELEON EFFECT 
The chameleon effect is defined as “the nonconscious mimicry of 
the postures, mannerisms, facial expressions and other behaviors 
of one's interaction partners, such that one's behavior passively 
and unintentionally changes to match that of others in one's 
current social environment.” [1]. The main hypothesis behind my 
work is that a high level of mimicry in a small group of students is 
associated with more productive interactions (not only in terms of 
learning gains, but also in terms of students’ quality of 
collaboration). I do not postulate a causal link between those two 
variables, even though I showed in one experiment [10] that it is 
possible to create interventions supporting collaborative learning 
groups by increasing synchronization between students. On a 
more theoretical level, previous literature has shown that the 
chameleon effect is indeed associated with more satisfying and 
productive interactions. In the next sections, I will briefly 
summarize the literature suggesting that enhanced levels of 
coordination support students’ learning for each type of 
synchronization (visual, verbal and postural). I will then present 
my results and conclude by mentioning implications for designing 
learning environments. 

2.1 Visual Coordination 
The first example of synchronization is visual coordination. 
Historically, there is a plethora of work (summarized in [10]) 
showing that joint attention plays a crucial role in any kind of 
social interaction: From babies learning from their caregivers to 
parents educating their children, students learning from teachers, 
students collaborating on a project or for any group of adults 
working toward a common goal, joint attention is a fundamental 
mechanism for establishing common ground between individuals.  

In my experiment, 21 dyads (N=42) remotely worked on a set of 
contrasting cases; students had to discover how the human brain 
processes visual information. The experiment had four distinct 
steps: first, students were welcomed and assigned to two different 
rooms. They then took a pre-test measuring their existing 
knowledge on the topic taught (step 1). In the second step, they 
collaborated via a microphone when working on the contrasting 
cases.  
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Figure 1: Results of the experiment conducted in [10]. 
In one condition, members of the dyads saw the gaze of their 
partner on the screen; in a control group, they did not have access 
to this information. They spent 15 minutes trying to predict how 
different lesions would affect the visual field of a human brain. In 
the third step, they then read a text for another 15 minutes on the 
same topic describing how the visual pathways of the brain work. 
Finally, they individually took a learning test to assess their 
understanding of the topic (step 4). 

Results indicate that this intervention helped students achieve a 
higher quality of collaboration, as measured by [10] (F(1,10) = 
24.68, p < 0.001) and a higher learning gain (F(1,40) = 7.81, p < 
0.01). Additionally there was an interaction effect between two 
factors (experimental conditions and a follower or a leader) on the 
total learning score: F(1,38) = 5.29, p < 0.05. Followers learnt 
significantly more when they could see the gaze of the leader on 
the screen. They learnt less when they could not (for more detail, 
see [10]). Interestingly, participants in the “visible-gaze” 
condition achieved joint attention more often than the participants 
in the “no-gaze” condition: F(1,30) = 22.45, p < 0.001. More 
importantly for the context of this paper, the percentage of joint 
attention was one of the only measures correlated with a positive 
learning gain: r = 0.39, p < 0.05. That is, visual coordination was 
our best measure for predicting students’ learning. 

I then used network analysis techniques to further exploit this 
dataset. To construct graphs from gaze data, I divided the screen 
students had to study into 44 different areas (for more details, see 
[7]). In this approach, the node size in the dyad graphs is 
proportional to the number of times dyad members looked at the 
respective screen area at the same time. Edges are created 
between nodes when we observe saccades between the 
corresponding screen regions. The weight of an edge is 
proportional to the number of saccades between the corresponding 
screen end-points. Small graphs with few nodes are characteristic 
of poor collaboration (Fig. 2, left side), and large graphs with 
highly connected nodes show productive dyads (Fig. 2, right side).   

 

 

Figure 2: Graphs based on dyads' data. The size of each node 
reflects the number of moments of joint attention members of 
the group shared on one area of the screen. 

Based on this new dataset, we computed various network metrics. 
I found that in the visible-gaze condition, there were significantly 
more nodes (F(1,30) = 8.57, p = 0.06), with bigger average size 
(F(1,30) = 22.15, p < 0.001), more edges (F(1,30) = 5.63, p = 
0.024), and more reciprocated edges (F(1,30) = 7.31, p = 0.011). 
Those results indicate that we can potentially separate our two 
experimental conditions solely based on network characteristics. 
In [7], I also show that various network metrics correlate with 
different aspects of a good collaboration (e.g. the number of nodes 
(and edges) in the graph were associated with a better ability to 
reach consensus; betweenness centrality was correlated with the 
ability of students to sustain mutual understanding; and so on).  
In summary, this first study shows that visual coordination is 
indicative of productive interactions in small collaborative 
learning groups. I will now turn to the second example, verbal 
coordination among students. 

2.2 Verbal Coordination 
Danescu [2] mentions how verbal coordination has been shown to 
enhance communication in organizational contexts, 
psychotherapy, care of the mentally disabled, and police-
community interactions. Thus, there is some evidence showing 
that verbal mimicry leads to productive interactions. Moreover, I 
can further divide this concept in two different categories: what 
Danescu calls convergence (i.e. superficial coordination, such as 
grammatical resemblance) and what other researchers call 
coherence [3] (i.e. deep coordination, such as repeating ideas 
being expressed by a partner).  

Concretely, Danescu used 9 categories from the LIWC corpus 
(Linguistic Inquiry and Word Counts - http://www.liwc.net/) to 
compute converge measures. Those categories are: articles, 
auxiliary verbs, conjunctions, high-frequency adverbs, impersonal 
pronouns, negations, personal pronouns, prepositions, and 
quantifiers. The way convergence is computed is relatively trivial: 

 
The first expression is the conditional probability of seeing word 
type t expressed by person b in answer to person a, given that a 
used this word type in the previous utterance. The second 
expression is just the probability of seeing a particular word type 
in the entire corpus. Subtracting the second expression from the 
first one gives us a measure of convergence.  

 
Figure 3: A replication of Danescu's results on my dataset. 
Errors bars show standard errors. Non-overlapping error 
bars show statistically significant differences. Light blue bars 
show the conditional probability of using a particular word 
type, given that an interlocutor used it in the previous 
utterance. Dark blue bars show the probability of using a 
particular word type in the entire corpus. 
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Reusing the dataset from [10], I was able to show that students 
were indeed mimicking their partners’ grammatical structure (Fig. 
3). However this measure was not correlated with students’ 
learning gains or quality of collaboration. I then computed the 
coherence of students’ discussion (for more details, see [11]): by 
segmenting the transcripts and computing document similarity 
measures between those sequential segments (i.e. tf-idf, followed 
cosine similarity measures), I was able to compute the extent to 
which students were reusing ideas cited earlier in their discussion. 
I found that students in the “visible-gaze” condition were 
significantly more coherent than students in the “no-gaze” 
condition and that this measure was positively correlated with 
students’ learning gain: r(19) = 0.540, p = 0.011. 

In summary, those results suggest that not any kind of 
synchronization is indicative of productive patterns of 
collaboration. I found that coherence was associated with higher 
learning gains, but convergence was not. 

2.3 Postural Coordination 
In previous research, I was able to show that joint attention was 
beneficial to establishing a common ground, which in turn 
positively influenced how much students learned during an 
activity [10]. Other lines of research (in ethology as well as in 
human psychology [1]) suggest that body synchronization is also 
associated with more productive collaborations. I was inspired by 
those results and decided to compute a metric for gestures 
synchronization using the Kinect data. The dataset comes from a 
study conducted with a tangible interface, where students had to 
reconstruct the human hearing system [8].  

My approach was to first take pairs of data points (one from each 
student) and computes the distance between them. Distance was 
calculated by taking the absolute value of the difference between 
the joint angles of each participant. Those differences were then 
averaged for each time point. I created graphs with time series of 
those data points as well as an overall measure of body 
synchronization. Statistical analyses did not reveal any significant 
correlation between body synchronization and learning gains: 
r(16) = 0.189, p = 0.453. I thus conducted a second attempt that 
was inspired from the literature in eye-tracking studies: it usually 
takes +/- 2 seconds for participants in a collaborative situation to 
adjust their gaze to their partner’s behavior. It is possible that 
body language obeys the same rules. Thus, I repeated the 
procedure above, but this time, for each data point we looked at 
the minimum distance in their partner body posture +/- 2 seconds. 
The correlation with students’ learning gains did not reach 
significance: r(16) = 0.184, p = 0.466. It suggests that even though 
gaze synchronization is a strong predictor for students’ quality of 
collaboration and learning, body synchronization does not hold 
the same properties, at least in the context of this experiment. 
Successful students were not more likely to coordinate their action 
based on their partner’s behavior.  

3. DISCUSSION 
The work described above shows a first step in computing 
multimodal metrics of the chameleon effect. I showed how visual 
coordination and verbal coordination were associated with higher 
learning gains. I also found that grammatical coordination and 
body synchronization was not significantly correlated with 
students’ quality of collaboration or learning gains. This means 
that the chameleon effect is not universal: at least in educational 
settings, it varies in its form and intensity according to different 
modalities.  

Future work should focus on alternative measures of the 
chameleon effect (e.g. voice features, heart beat rhythms) and 
assess whether other kinds of synchronization are associated with 
positive learning outcomes. Future work should also explore the 
approach described in [7] to a greater extent: building network or 
probabilistic models on top of large datasets is likely to lead to 
additional insights in terms of students learning processes. 
Implications of this work are manifold. We can imagine feeding 
those features into a machine learning algorithms to predict 
students’ quality of collaboration; this prediction can then be used 
by a teacher of by a learning environment to propose various 
scaffolds supporting students’ learning. Finally, those metrics can 
potentially lead to a greater understanding of human social 
interactions by isolating where and when the chameleon effect 
actually applies. This understanding can lead to the development 
of new feedback loops, such as the one described in [10] (i.e. the 
gaze-awareness tool used by students). 
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ABSTRACT 
In this paper, I describe the beginnings of some research into the 
use of student confidence or certainty to predict student behavior 
and represent the structure of knowledge. 
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1. RESEARCH TOPIC 
1.1 Background 
The broader educational landscape is being altered by the ease 
with which new assessment formats can be administered through 
Internet-based applications. The workhorse of educational 
assessment, the multiple-choice question, can now be expanded 
and altered in ways that were not feasible even a decade ago. A 
popular expansion has been to collect information about what 
students think about their answers along with those answers; 
whether they think they have performed well or poorly, whether 
they are guessing, or how certain they are in their answer. The 
family of formats that utilize this strategy is large, including 
metacognitive assessment, certainty based assessment, and self-
efficacy assessment. One common format change is to simply ask 
students how certain they are in a given multiple choice answer. 
This format, named a probabilistic multiple-choice question 
(PMCQ), has been of interest to educational research for at least 
100 years.1 Presently this format is being incorporated into several 
online assessment systems including the McGraw-Hill 
LearnSmart system.  

Consensus is mixed as to whether the probabilistic multiple 
choice question adds value above and beyond the multiple choice 
format though. Indeed, interpretation of confidence is somewhat 
disputed. During the mid-1970s the PMCQ format was dismissed 
as flawed on the basis of experimental psychological research that 
had demonstrated that human beings suffered from 
overconfidence bias – the tendency for people to overestimate 
their own accuracy.2 Furthermore, a reliable and interpretable 
scoring method was never agreed upon within the psychometric 
community despite increases in reliability.3 

1.2 Topic 
There are two aspects of Probabilistic Multiple Choice Questions 
that I have been pursuing. The first is whether student confidence 
data produces any improvement in the prediction of student 

performance when compared to student correct/incorrect data. The 
second is whether or not student confidence might provide a way 
of structuring representations of individual student knowledge. 

2. PROPOSED CONTRIBUTIONS 
2.1 Projection 
With respect to the first contribution, I have preliminary data that 
supports the psychometric theory of 4–6). The suggestion of which 
is that whether or not student confidence outperforms 
correct/incorrect may depend on the level at which the prediction 
is made. 

We performed a test in which students were shown a multiple 
choice item, but instead of choosing a single, correct answer they 
reported their confidence in each of the possibilities. They were 
asked to do this four times for each item, but each time the item 
was shown two answers were removed.  

In this test student confidence appeared to be better at predicting 
student level performance over time, but worse at predicting class 
level performance over time. The interpretation according to 
theory is that student confidence retains information peculiar to 
each student that is useful for predicting their individual behavior, 
but creates a very noisy signal when trying to predict the average 
behavior of the group. 
 

Table 1. Prediction accuracy of student confidence vs. 
correct/incorrect at student and class level projecting first 

administration and second item administration. 

 Confidence Correct/Incorrect 

Student Level 0.697 0.781 

Class Level 0.956 0.853 
 

 

2.2 Structure 
If confidence is useful for predicting individual student 
performance we have some hope that confidence measurements 
may provide insight into the structure of knowledge for individual 
students. This makes sense at an intuitive level, if I am an expert 
in history I will likely be more confident in history than biology 
and this will be demonstrated in a test that includes both history 
and biology items. 
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But simply plotting out confidence levels seems to provide only a 
gross relationship and does not tell us the relationship between 
domains or topic or skills. For example, we can use a rudimentary 
social network analysis to map out items on a test according to a 
student’s confidence in the correct answer. Edges represent the 
difference in confidence between different items and nodes 
represent items the image is iteratively resolved so that all nodes 
are the correct distance from each other but the structure is not 
necessarily meaningful: 

 
Figure 1. Social Network Analysis of one student’s confidence 
in test items. History items are in black and biology items are 

in grey.  
 
These structures seem to hint at something, but it isn’t clear how 
to interpret the clustering. In an effort to bring structure to these 
diagrams I have developed an algorithm based on the Cognitive 
Bayesian work of Griffiths and Tennenbaum.7  
 

2.3 Prediction 
The fundamental idea behind applications of Bayes Theorem to 
people's thinking such as Decision Theory8 and Cognitive Bayes 
7,9 is to change the vantage at which it is applied. For example, 
instead of conditioning on the situation from the perspective of a 
researcher or an assessor (e.g. – the probability of the student 
being correct given the item) we condition on the situation from 
the perspective of the person being assessed (e.g. – what is her 
hypothesis, and on what data is she conditioning). For example, if 
we were studying a student as they answer the following item: 

Koalas are: 

A. Carnivores  
B. Omnivores  
C. Herbivores  
D. Calmivores 
 

We could devise a model for the way they approach each answer 
A, B, C & D: 

 

In this model students weigh the likelihood of the data they have 
on hand against their prior beliefs, and as more data are presented, 
they are able to update those beliefs. For example, we might show 
a student pictures of koalas and every time we revealed a new 
picture we asked the student whether she thought the koala was a 
herbivore. We could model the process of the student’s opinion as 
a Bayesian process where each new picture was a datum that 
changed the likelihood, generated a posterior and then that 
posterior became the new prior. This formalization is analogous to 
Snow’s separation of internal and external factors: the internal 
factors are represented by the prior probability and the external 
factors are represented by the likelihood. The process whereby 
new data is incorporated into the prior is called Bayesian 
updating. Essentially, this allows us to directly account for 
different sources of data in a dynamic fashion, with the final 
iteration being the best estimate of student knowledge, accounting 
for external factors. The updating idea underlies features of 
Decision Theory and Cognitive Bayes, and is used in the classic 
student knowledge-tracing algorithm BKT. Where Decision 
Theory and Cognitive Bayes part ways though, is over the 
efficiency of that updating mechanism. 

The Decision Theorist will assume that updating is efficient or 
rational 10 and that there is error in the individual's reporting of 
her posterior. Decision Theoretic questions tend to be along the 
lines of “Do financial analysts make rational decisions about 
market conditions?” The Cognitive Bayesian, however, presumes 
the individual can state his own posterior probability accurately, 
but that the incorporation of new information is rarely performed 
efficiently. Data may not be attended to, nor may they be wholly 
incorporated into a person’s beliefs. A Cognitive Bayesian 
question tends to be drawn more from experimental psychology, 
asking questions such as “How do the following conditions 
impact peoples' prior probability in a specific task?” 

The bottom line for the purposes of bringing structure to 
individual student confidence data is that the Cognitive Bayesian 
Model splits student confidence in two: the prior (what the student 
brought to the test inside their head) and the likelihood (the way 
the student is weighting new data during the test). This 
rudimentary but important categorization can be mapped onto the 
work of Snow 11 who conceived of student goal driven behavior 
as the interface between internal factors (cognitive, conative 
affective) and external factors (demand, opportunity). Ostensibly 
Snow’s internal factors are represented by the prior probability, 
the posterior is the student behavior and the likelihood is how the 
student is mediating external factors. 

 
Figure 2. Snow’s conception of the interface between internal 

(person) and external (situation) factors. 
 
To investigate whether this algorithm is worth anything we plan to 
compare it to BKT and a variant of BKT developed by Wang & 
Heffernan12 that has been successfully used in predicting partial 
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knowledge (KTPC). Confidence data is currently being collected 
through the ASSISTments system. 

Rudimentary results have been tested using Wang & Heffernan’s 
partial knowledge data. This data is generated by scoring student 
performance based on how much assistance they receive (hints, 
trials, advice). The algorithm did not outperform KTPC in this test 
though partial knowledge generated in this way may be a poor 
proxy for confidence data.  
 

3. Advice Sought 
There are three areas I would like advice on. The first is that my 
background is in measurement and psychometrics. I would like to 
seek advice on how to adapt and change my approach and 
language to be appropriate for the EDM community. Second, but 
related, I am looking for advice on how to approach validity, in 
particular how to approach validity when using time series data. I 
can interpret the confidence data I will collect in terms of 
reliability, and compare the predictions of different models 
through correlation and standard error but I am quite adrift how 
this relates to a validity framework or whether it needs to? 
Thanks in advance. 
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ABSTRACT 
Nonverbal communication plays a vital role in determining the 
success or failure of people in their ordinary life and professional 
careers. In a classroom, successful teacher-student communication 
has a critical effect on teaching proficiency and student learning. 
The majority of interpersonal communication is nonverbal 
including kinesics, proxemics, and paralanguage. This research 
examines the applications of nonverbal techniques such as hand 
gestures, body postures and proximity as powerful communication 
skills exhibited during teaching in a virtual classroom called 
TeachLivE™. A reflection tool, TeachLivE After Action Review 
System (TeachAARS), is used for data collection from two 
perspectives: 1) evaluate the effectiveness level of teachers with 
ratings based on observational data, and 2) annotate the 
constructive and unconstructive body movements of these 
teachers in the virtual classroom environment. Teaching 
effectiveness ratings combined with collected kinesics tags from 
five participant teachers were analyzed. The analysis indicates 
that nonverbal cues, especially open hand gestures and proximity, 
may play an important role in the preparation of an individual for 
teaching. In future, the data set will be analyzed with machine 
learning techniques such as regression to design a predictive 
model of classroom preparation based on nonverbal 
communication skills. The goal is to use objective metrics as part 
of teacher preparation, helping prospective and in-service teachers 
to reflect on and improve their classroom performance.  

Keywords 

nonverbal communication, virtual reality, after action review, 
teacher preparation 
 

1. INTRODUCTION 

Establishing a good communication between students and the 
teacher introduces successful steps for both learning and teaching 
process. Communication is more than words, and it is important 
for teachers to understand the nonverbal messages they are 
sending and receiving in the classroom [2, 8]. Nonverbal 
messages include facial expressions, eye contact or lack of eye 
contact, proximity and closeness, hand gestures, and body 
language [8]. Much of the research about nonverbal 
communication indicates that as little as 7 percent of 
communication is spoken words and the majority is nonverbal and 
paralinguistic cues [1]. Hence it is critical for teachers to learn to 
apply nonverbal communication signals in the classroom. 
Apart from the theoretical courses and references that help novice 
teachers to passively learn about teaching proficiency basics such 
as communication and management skills, simulation-based 
training systems provide a safe and comfortable environment for 
them to interactively practice teaching skills in a realistic 
classroom. TeachLivE™ is an immersive, mixed-reality virtual 
environment, designed at University of Central Florida, for 

teachers to rehearse and hone their classroom skills. In this virtual 
classroom, teachers interact with student avatars that are 
controlled in real time by a human-in-the-loop system. Having 
good communication skills, specifically nonverbal, is critical for 
teachers in a real classroom and, as such, in the virtual classroom.  

This study is intended to discover and understand the correlation 
of classroom teaching preparedness to nonverbal signals exhibited 
by teachers while interacting in the virtual classroom-
TeachLivE™. The study mainly emphasizes body language and 
proximity. These types of nonverbal behaviors are reviewed and 
annotated manually by experts with an after action review tool 
(TeachAARS) that keeps a record of each teaching session. 
Additionally, teaching effectiveness is also assessed based on 
Danielson’s [3] teacher evaluation criteria. This approach involves 
four observers who tag the behavior of five teacher participants 
from the above two different perspectives. The analysis of results 
at this point of the study indicates that nonverbal signals are 
effective indicators of teaching proficiency/preparedness. 

2. SIMULATION AND TRAINING 

Simulation-based training systems provide learners a low-cost and 
hazardous-free environment in which they may practice and 
improve their skills. As a consequence, simulation and modeling 
are broadly used in a variety of fields and across different 
applications. As an example of simulation research that is more 
closely related to the focus of this study, Luciew and colleagues 
[6] present the details of developing interview procedure for 
Immersive Learning Simulations (ILS). Concurrent research of 
body language, facial expression and proxemics relative to the 
interview process are discussed in the research. Their work is 
focused on nonverbal expressions of human and avatar subjects 
that indicate the impact of nonverbal expression studies in 
simulation. There are many other applications of the use of 
modeling and simulation in education, that TeachLivE is one of 
the pioneers.  
One of the main capabilities of training systems based on 
simulation is the provision of assessment and feedback. As a 
result, the majority of simulation-based training systems are 
paired with an after action review (AAR) tool that makes it 
possible for supervisors and reviewers to oversee the trainee’s 
simulation sessions and provide feedback.  
The TLE-TeachLivE™ (TLE represents for Teaching Learning 
Environment) was designed at the University of Central Florida 
explicitly to help in-service and practicing teachers hone their 
teaching skills, including those associated with classroom 
management, pedagogy and content delivery.  
In the TeachLivE™ environment, there is typically one student 
who is in focus and the others who are out of focus. The student in 
focus is the one currently being addressed by the teacher [4]. That 
student is inhabited by a human-in-the-loop, called an inter-actor, 
who controls behaviors and interactions.  Students who are out of 
focus are controlled by agent-based software that can be 
influenced by the inter-actor who can choose a behavior genre. In 
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a)                      b) 

general, that selection is influenced by the classroom management 
skills of the teacher. Teachers walk into a room with a big TV 
screen, one camera, one wireless microphone and one Kinect 
sensor that is connected to the client machine. Teachers can see 
the virtual classroom and five student avatars in the TV and 
approach to students by entering to their virtual zones. For vocal 
interactions, there is a Skype connection between client (teacher) 
and server (the inter-actor station).  

Every teacher can provide a lesson plan for her intended teaching 
session, and also determine the level of behavior escalation (0-5) 
in order to hone her effective teaching behaviors. Behavior 
escalation levels are defined for treatments of student avatars that 
vary from no misbehavior to intense misbehavior in the virtual 
classroom. These settings help teachers with professional 
development in areas of targeted need. 

In order to facilitate the process of teacher assessment, 
TeachAARS, or TeachLivE After Action Review System, was 
designed and integrated into the TeachLivE system. TeachAARS 
does direct video/audio capturing that contains both the virtual 
classroom and the participant video in a paired window. In 
addition to directly recording sessions, TeachAARS has the 
capability to support behavior tagging. Each tag is associated with 
a sequence of frames, and thus allows selective viewing during 
reflection or debriefing procedure. Figure 1 displays the 
TeachAARS environment for teacher assessment. TeachAARS is 
integral to this study, as it is used to tag the nonverbal messages 
and body signatures that teachers use in the classroom.     
  

 
Figure 1. TeachAARS as a review tool. In the primary view, 
left window shows the virtual classroom, right window shows 
the teacher participant while interacting with the classroom. 
An observer annotates tags associated with observed 
behaviors, e.g., the closed tag if the teacher exhibits a closed 
posture. 

3. STUDY PROCEDURE 
Nonverbal communication refers to all of the elements of 
communication excluding the actual words used [7]. Nonverbal 
communication strategies are consistently noted in approaches to 
teacher training.  The effects of strategies like eye contact, 
prolonged gaze, and proximity can have positive or negative 
effects on student behavior and classroom management, 
depending on the situation and context [9]. In this research, 
nonverbal communication skills are indicated as a major factor of 
teaching preparedness [3]. Two types of nonverbal expressions 
are investigated in this study: a) proximity b) open vs. closed body 
posture.  

Proximity can be used to encourage student participation and 
strategically redirect them. Proximity also helps teachers to have 
better management in the classroom because the students’ 

disruptive behaviors are controlled by approaching them [5]. On 
the other hand, proximity means attention, affirmation and 
closeness of the teacher to the speaking student [2]. In 
TeachLivE™, the simulation has been designed to enable the 
teacher to move close to the student avatar within the virtual 
environment. While moving, the visual perspective moves with 
the teacher, even allowing eye-to-eye communication. Proximity 
behaviors of teachers are tagged in TeachAARS by observers, to 
understand how frequently teachers use proximity in their 
teaching sessions. 

Another effective measure for nonverbal cues is open vs. closed 
posture [10]. Open posture is often used as a measure of 
closeness, receptivity, and interest. Open postures illustrate 
positive feelings to others and show that the person is open and 
positive to the listener, whereas closed postures are often cited to 
indicate defensiveness, aggression, and avoidance [10]. In 
general, closed body poses demonstrate negative feelings to the 
other person. When somebody folds and crosses her arms, she 
seems to protect herself from the other person and her listener 
feels that she is not open and comfortable in the communication. 
Figure 2 represents some frequent standing open and closed body 
posture models [2] that reviewers use as a reference during the 
coding of nonverbal expressions in this study.  

         

Figure2. Some standing postures for a) closed and b) open 
body language [6]. 

More explicitly, reviewers measure the frequency and the timing 
for teachers withholding open or closed poses. 
In this research, it is hypothesized that there is a correlation 
between positive teaching performance and having good 
nonverbal signals. The first step in data collection is to review the 
teaching sessions of teacher participants in the virtual classroom 
environment, TeachLivE™. As mentioned before, TeachLivE’s 
assessment tool, TeachAARS is used to annotate the nonverbal 
behaviors (proximity and body posture). As the next step, it is 
required to evaluate the teaching skills of the participant teachers. 
Two experts who were blind to nonverbal assessment results, 
were asked to rate the teaching performance of subjects based on 
Danielson’s [8] teacher evaluation reference. In summary, 
Danielson defines a framework for a teaching evaluation 
instrument. Different domains of teaching evaluation are 
discussed in this framework. Some important domains for 
teaching evaluation based on Danielson’s criteria are: classroom 
management, communicating with students, student engagement, 
application of pedagogy and content delivery. The inter-rater 
reliability for body language coding was 0.72 and 0.78 for 
teaching performance rating (for each category, two different 
reviewers observed the videos; four in total).  
The collected data from coding nonverbal signals and teaching 
performance ratings of teachers will be used for designing a 
computational model for teaching practice in TeachLivE™.  
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4. EXPERIMENTAL RESULTS 

This study is related to a national research project funded by the 
Bill & Melinda Gates Foundation.  The research focuses on 
practicing biology high school teachers.  They are asked to 
interact with the virtual classroom to teach a sample scenario 
(Technology applications in biology) in a nine-minute session 
once a month for nine consecutive months. All of the sessions of 
participants are recorded with TeachAARS for later evaluation.  
In this paper, ten video sessions of five biology teachers are 
evaluated from nonverbal and teaching performance aspects. 
Table 1 represents a summary of collected data for these five 
participants. 
Table 1. Mean, Standard Deviation and Range for nonverbal 

variables and teaching performance ratings 
Variable Mean (SD) Range 
# open posture 15.6 9.17 2 - 29 
# closed posture 10.2 3.56 7 - 14 
# proximity 15 6.48 5 - 20 
total # tags 40.8 15.25 14 - 50 
% time open posture  43 % 35% 2% -78 % 
% max time non-interrupted 
open posture  

14.7% 14.9% 0.54% -33% 

% max time non-interrupted 
closed posture 

29 % 28.8% 9.5% -75.9% 

teaching performance rating 7 1.41 5 - 9 

 
Table 2 shows the correlations between nonverbal indicators and 
teaching performance rating in a correlation matrix. The last row 
of the table highlights the strong positive correlation of proximity 
and open body posture; and negative correlation of closed body 
posture with teaching performance. Apart from the maximum of 
non-interrupted open time in percentage (% max-n open) that has 
a small negative correlation with teaching rate, all other nonverbal 
variables have the expected correlation. The strong negative 
correlation between the maximum of non-interrupted time in 
closed body posture and teaching performance is considerable.  
 

5. DISCUSSION 
A successful teacher-student communication in the classroom 
indicates teaching proficiency and student learning. In this study 
two categories of nonverbal communication (proximity and body 
postures) are focused to discover and understand the correlation 
between nonverbal codes and teaching efficiency. According to 
the study, there is a positive correlation between proximity, open 
body posture and total open posture time with teaching 
performance rating. There exists a negative correlation between 
the maximum of non-interrupted closed posture and closed body 
posture with performance rating, too. This research is going to 
move forward in two main directions. The first direction will be 
building robust prediction models for teaching effectiveness with 
advanced machine learning techniques. The models can also 
improve with broader range of subjects, which is the goal for 
future work. The next direction will be collecting automated tags 
using the Microsoft Kinect SDK in real-time, and assessing the 
effectiveness of a teacher’s body movement using predictive 

models to give them real-time feedback. 
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ABSTRACT
Intelligent tutors have been shown to be as effective as hu-
man tutors in supporting learning in many domains. Al-
though they can be very effective, the construction of intel-
ligent tutors can be costly. One way to address this problem
is to use previously collected data to generate domain models
to provide intelligent feedback to otherwise non-personalized
tutors. These data-driven methods for providing next-step
hints have been successful in providing feedback to students
in procedural problem solving tutors. We seek to expand on
next-step hints with other data-driven methods. We outline
three different interventions, all of which can be generated
using previously collected student data.

1. INTRODUCTION
Intelligent tutors have been shown to be as effective as hu-
man tutors in supporting learning in many domains, in part
because of their individualized, immediate feedback, enabled
by expert systems that diagnose student’s knowledge states
[13]. For example, students provided with intelligent feed-
back in the LISP tutor spent 30% less time and performed
43% better on post-tests when compared to other methods
of teaching [1]. Similarly, Eagle, and Barnes showed that
students with access to hints in the Deep Thought logic tu-
tor spent 38% less time per problem and completed 19%
more problems than the control group [4]. In another study
on the same data, Stamper, Eagle, and Barnes showed that
students without hints were 3.6 times more likely to drop
out and discontinue using the tutor [12].

Procedural problem solving is an important skill in STEM
(science, technology, engineering, and math) fields. Open-
ended procedural problem solving, where steps are well-
defined, but can be combined in many ways, can encourage
higher-level learning [2]. However, understanding learning
in open-ended problems, particularly when students choose
whether or not to perform them, can be challenging. The
Deep Thought tutor allows students to use logic rules in dif-
ferent ways and in different orders to solve 13 logic proof

problems for homework.

Although they can be very effective, the construction of in-
telligent tutors can be costly, requiring content experts and
pedagogical experts to work with tutor developers to identify
the skills students are applying and the associated feedback
to deliver [9]. One way to reduce the costs of building tutor-
ing systems is to build data-driven approaches to generate
feedback during tutor problem-solving. Barnes and Stamper
built the Hint Factory to use student problem-solving data
for automatic hint generation in a propositional logic tutor
[10]. Fossati at el. implemented Hint Factory in the iList
tutor to teach students about linked lists[7]. Evaluation of
the automatically generated hints from Hint Factory showed
an increase in student performance and retention [12].

Hint Factory creates hints by modeling previously collected
student data into a Markov Decision Process and generat-
ing a next step policy, when students request a hint they
are directed to the best next step. For this work, we are in-
terested in looking into ways to expand the feedback offered
to students beyond these next-step hints. We have outlined
three different interventions, all of which can be generated
using previously collected student data.

2. THE DEEP THOUGHT LOGIC TUTOR
In Deep Thought propositional logic tutor problems, stu-
dents apply logic rules to prove a given conclusion using
a given set of premises. Deep Thought allows students to
work both forward and backwards to solve logic problems
[3]. Working backwards allows a student to propose ways
the conclusion could be reached. For example, given the
conclusion B, the student could propose that B was derived
using Modus Ponens (MP) on two new, unjustified (i.e. not
yet proven) propositions: A → B,A. This is like a condi-
tional proof in that, if the student can justify A → B and
A, then the proof is solved. At any time, the student can
work backwards from any unjustified components (marked
with a ?), or forwards from any derived statements or the
premises. Figure 1 contains an example of working forwards
and backwards with in Deep Thought.

3. DATA-DRIVEN FEEDBACK
In this section we will outline three different data-driven
methods that we can use to provide hints to students. These
methods are all intended to be used in conjunction with the
next-step hints that have already been shown as successful.
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Figure 1: This example shows two steps within the
Deep Thought tutor. First, the student has selected
Z ∧¬W and performed Simplification (SIMP) to de-
rive ¬W . Second, the student selects X ∨S and per-
forms backward Addition to derive S.

3.1 High Level Hints
Interaction Networks describe sequences of student-tutor in-
teractions [5]. Interaction networks form the basis of the
data-driven domain model for automatic step-based hint
generation by the Hint Factory. Eagle et al. applyied Girvan-
Newman clustering to interaction networks to determine
whether the resulting clusters might be useful for more high-
level hint generation [5]. Stamper et al. demonstrated the
differences in problem solving between two groups by color-
ing the edges between Girvan-Newman clusters of interac-
tion networks based on the frequencies between two groups,
revealing a qualitative difference in attempt paths [12]. Ea-
gle and Barnes expanded this work into Approach Maps [6],
which summarize interaction networks into the higher-level
approaches used by students to solve the proofs.

In order to encouage student planning we can use the higher-
level approaches discovered with Approach Maps to provide
sub-goals to the students. In figure 2 we show a mock up
of how the sub-goal could be presented to the student. We
hypothesize that these hints will help students learn which
parts of the proof to focus on in order to complete problems.

Figure 2: Example of a high level hint. DT offers
the student a sub-goal based on commonly derived
steps from previously collected data.

3.2 Hazard Hints
Stamper et al. in [12] and Eagle et al. in [5] found evi-
dence that students would sometimes spend a lot of time in
approaches that were unlikely to result in a solution. This
discovery is important as interventions can be added to warn
away from regions that do not lead to goals. For example,
we could offer a message that warns them that most students
who attempt the same type of proof are not successful. Fos-
sati et al. showed that human tutors helping students with
the iList tutor, suggest that students delete unproductive
steps [7]. In figure 3, we show an example interface for a
hazard hint. These types of hints would be offered whenever
a student was performing a task that was unlikely to result
in a successful proof, with the goal of reducing the amount
of “wasted” time.

Figure 3: We can warn a student when they ap-
proach the problem in a way that is not productive.

3.3 Time Hints
Eagle, and Barnes used survival analysis to model student
time-in-tutor and student dropout[4]. Survival analysis is a
series of statistical techniques that deal with the modeling
of time to event data [8]. It derived its name from its start
within medical literature. Survival analysis is also known as
reliability analysis or duration analysis.
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Figure 4: The Kaplan-Meier survival estimation and
corresponding 95% confidence intervals show the
percent of students remaining in tutor over time.
The lighter (orange) line is the AFT model produced
from the same data.

We start by first plotting the Kaplan-Meier survival estima-
tor, see figure 4, which is represented as a series of declining
steps which is intended to approach the true survival func-
tion. We perform our experiments on the Spring and Fall
2009 Deep Thought logic tutor dataset as analyzed by Stam-
per, Eagle, and Barnes in 2011[11]. We look specifically at
151 students who stopped using the tutor before completing
all of the questions required for the homework assignment.
Application of the AFT model provides us with coefficients
of the model had the intercept (mean) as 4.20 and the SD
(scale) as 1.44. The median of the survival function, the
location where 50% of people have dropped out of the tu-
tor, is found by eµ = e4.20 = 66.89, meaning that half of
the students had dropped out after about an hour of tutor
interactions. We have plotted the resulting survival curve in
figure 4.

We hypothesize that we can prevent dropout by provid-
ing feedback when students reach certain thresholds of time
within the tutor. To test this we will build survival models
based on past student data, using these models we will pro-
vide feedback in the form of a pop-up window that will en-
courage the student, as well as provide them with resources
if they are struggling. We can augment these models with
information about the students current tutor performance,
to get an idea of how likely the student is to complete the
tutor. Overall, the use of survival modeling will provide us
with more accurate representations of student time-in-tutor,
and we can use this information to create interventions that
will reduce the number of students who quit the tutor with-
out finishing. In figure 5 we show an example of the type of
prompt we can offer a student if our time model shows that
the student is in danger of quitting the tutor.

3.4 Evaluation
Data-driven methods for offering next-step hints have been
successful. We have outlined three new ways to offer feed-
back based on previously collected data that can be added in
addition to next-step hints. In order to test the effectiveness
of these forms of feedback we will seek to repeat studies like

Figure 5: We can remind the student about hints if
student is taking longer than predicted.

Stamper, Eagle, and Barnes’ 2011 Hint Factory study [11].
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ABSTRACT 

This study is an investigation of ways to 
collect student engagement and gameplay data from a 
digital educational game called Quantum Spectre in 
order to understand student engagement in such digital 
environments, and the effect of certain affective states 
on student gameplay behavior. Proposed study 
participants are elementary school students, 5th 
graders, who will play the game over the course of 
multiple class sessions. Previous research findings 
suggest that there is an interesting inter-relation 
between frustration and confusion that requires more 
attention; the indices of frustration and confusion are 
influenced by the amount of external support 
provided. Based on these initial findings, the proposed 
dissertation experiment will concentrate on significant 
patterns of frustration and confusion along with their 
effect on student gameplay and further engagement 
with the environment. 
 
STATEMENT OF THE PROBLEM 
AND STUDY SIGNIFICANCE 

Digital educational games have become a 
popular means of instruction in recent years (Mayo, 
2009; O’Neil, Wainess, & Baker, 2005; Rodrigo et al., 
2008). Many educational concepts (e.g., science, 
technology, engineering, and mathematics education 
concepts) are taught and practiced through digital 
educational game environments. This instructional 
approach is mainly justified with the realization that 
games can naturally motivate students to engage with 
the environments and learn (Prensky, 2001; Kapp, 
2012). From the researcher point of view, games 
provide students with a safe space for failure and 
confidence to persist. From the perspective of 
educational establishments, online games offer a 
unique advantage of simultaneous accessibility for 
thousands of children along with a customizable 
learning pace and ability to follow students’ learning 
trajectories. Overall, scientists consider games as a 
potentially powerful tool for learning (FAS, 2006). 

Lack of student engagement can be a threat 
to the learning environment; disengaged students may 
not take full advantage of the learning opportunities 
offered through these settings. Academic affect is one 
factor that can either benefit or undermine students’ 
engagement and learning. Previous research shows 
there is a complex interaction between affect and 
learning (Baker, D'Mello, Rodrigo, & Graesser, 2010). 

Moreover, affective states trigger different results in 
different human-computer interaction environments 
(Rodrigo & Baker, 2011) and depending on the order 
of affective states, the impact may be negative or 
positive. 

Many researchers acknowledge the 
importance of understanding students’ affective 
responses to success and failure. Two relevant areas of 
research on this topic are Angela Duckworth’s work 
on grit (2007) and Carol Dweck’s work on self-
efficacy (1985; 1991). According to Dweck (2002), a 
learner’s goal orientation (i.e., beliefs about one’s 
abilities and the effectiveness of their effort) may 
influence their affective response to the success and 
failure they experience within an environment. As 
Duckworth (2007) identifies it, grit or persistence is 
about “sticking with things over the very long term 
until you master them,” which includes overcoming 
negative experiences of frustration, confusion, and 
failure. Persistence is currently being researched as it 
is considered to be a key factor in college completion 
or completion of similar academic long-term goals 
(Duckworth, 2007; Duckworth & Seligman, 2005). 
Well-designed digital educational game environments 
should be able to provide support for high levels of 
frustration that could be detrimental for student 
engagement while developing persistence as students 
meet new challenges within the game.  

There have been many studies concerned 
with student affective states and their impact on 
student engagement and motivation in intelligent 
tutoring systems (ITS) (Rodrigo et al., 2012). 
However, this promising work has not yet been fully 
extended to digital educational game environments 
(O’Rourke, Haimovitz, Ballwebber, Dweck & 
Popovic, 2014). Therefore, in the current study I 
address this gap by looking into student behavior, 
affect and the effect of emotions on student learning 
within digital educational game environments. The use 
of digital educational games is becoming widespread, 
however, its technological design is not on the same 
level with intelligent tutoring systems where the 
environment promotes learning through adaptive 
guidance. 

My research is most relevant to the areas of 
research in affective computing, learning through 
digital games for learning, and game development. 
This will inspire game developers to design games that 
will be more responsive to negative displays of affect 
to keep students engaged in their environments. In 
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fact, if we are able to detect negative manifestations of 
certain affective states, game developers will be able 
to incorporate this detection feature into future digital 
education game designs and incorporate recommender 
systems into educational game environments.  
Hence, it is worthwhile to continue research that 
informs game design to include sensorless detection 
(i.e., not based on data collected from external sensor 
devices or other extremely obtrusive methods of data 
collection such as heart rate monitors, eye trackers or 
skin conductance) of affect, which will provide 
students with only necessary hints to persist and will 
not interrupt their beneficial exploration stage. This 
affect detection system might ameliorate students’ 
negative perceptions of their own abilities in the fields 
of science and mathematics by guiding them through 
their confusions and frustrations associated with the 
learning environment.  

However, in order to support learning and 
increase academic goal orientation while students are 
engaged in digital game environments for learning, we 
need to understand student motivation and the 
emotions that affect them. Students’ affective states 
play a critical role in their performance. Potentially 
negative emotional states such as confusion and 
frustration are more crucial to investigate, since 
emotional variability can be one of the moderating 
factors of success and failure in the struggle to 
overcome barriers in goal attainment. Moreover, 
frustration and confusion are two affective states that 
are suggested to lead to boredom state. As literature 
suggest (Baker, D’Mello, Rodrigo, & Graesser, 2010), 
it is better to be frustrated than bored since boredom 
leads to disengagement and makes it much harder to 
bring students back to engagement and concentration 
from boredom emotional state. Therefore, I believe 
that if developed well, digital educational games with 
adaptive support systems may become one of the key 
ways to assisting students to push past confusion and 
frustration and develop persistence regardless of their 
goal orientation. The better and more precise our 

research findings, the more sophisticated and helpful 
our educational games will become. 

While there have been studies looking into 
the effects of frustration or/and confusion on student 
learning and possibility of reducing frustration (Baker 
et al., 2010; Hone, 2006; Klein, Moon, & Picard, 
2002; McQuiggan, Lee, & Lester, 2007), almost none 
of these studies have looked into whether there is an 
interaction and order to the pattern of frustration and 
confusion along with their influence on student 
engagement with the environment (e.g., concentration 
or boredom patterns). Kort, Reilly, and Picard (2001) 
attempted a model of confusion to frustration 
transitions but their empirical evidence did not support 
their hypothesized model. In addition, Perkins and Hill 
(1985) have hypothesized that frustration leads to 
boredom but their analysis did not allow for such a 
conclusion since they illustrated association instead of 
temporal or sequential connection. Yet another study 
investigated the decay rate of certain cognitive-
affective states, however, it did not concentrate on 
patterns of occurrence but rather on the temporal and 
tripartite classification of affect (D’Mello & Graesser, 
2011). This study by D’Mello and Graesser (2011) has 
informed the design of this proposed study. Thus, 
while there have been many attempts at investigating 
frustration and confusion sequential patterns, there 
seems not to be empirical evidence on this subject 
either due to inappropriate analysis method or 
inconclusive results. Thus, my work will contribute to 
current research on frustration and confusion by using 
a sequential pattern mining algorithm on categorical 
affect sequences in order to identifying sequential 
patterns and possible interdependency that need to be 
avoided in order to keep students engaged in digital 
game environments for learning and make sure 
students have uninterrupted opportunity for learning. 
	  
RESEARCH QUESTIONS, 
METHODOLOGY AND 
SOLUTIONS 

I believe that to help students learn better and be 
invested in their own education, we need to 
understand the motivation and the emotions that affect 
them while going through learning processes.  My 
dissertation will be focusing on certain emotions, 
frustration and confusion, manifested while playing an 
educational game (science learning game). In addition 
to investigating both frustration and confusion in EG 
environments, I will be evaluating the relationship 
between frustration and confusion and the 

combination of these two affective states that has 
destructive effect on learning or engagement. 
Some of the research questions that this study will be 
investigating are as follows: 
• What is the relationship between frustration and 

confusion and when is each beneficial or 
negative? 

• Is there a sequential pattern in the occurrence of 
frustration and confusion or is there no temporal 
pattern

• What is the relationship between 
frustration/confusion and student success? 

• Is there a significant difference on student 
engagement when employing self-report method 
of affect data collection vs. unobtrusive field 
observation method? 

• Does the ratio of frustration to confusion states 
significantly change in relation to the amount of 
support available or is there no correlation 

between the amount of support provided and 
students’ frustration and confusion? For example, 
are low-risk environments (e.g., adult/peer 
assistance available) related to  lower amounts of 
confusion and no to low amount of frustration? 

• Do students resume educational gameplay after 
being in a frustrated emotional state? If so, when 
and under what conditions do they resume their 
gameplay? 
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METHODS 
For the purposes of the research questions, there 

are several data collection source that I will be using 
(e.g., gameplay data, observation data, video data). 
Two affect data collection tools will be employed in a 
within subject comparison study design and sequential 
pattern mining tools will be utilized in order to 
identify significant emotional state patterns and their 
interaction with student performance. 

For the field observations of student engagement 
I will be using BROMP tool [9]. This holistic coding 
procedure will allow me to code student emotions and 
behavior while they are engaged in the game-like 
environment. I have also developed a comparable self-
report tool in order to investigate the effects of self-
report and unobtrusive observations on student 
engagement (i.e., if there is a significant change in the 
levels of student engagement). Given the prominent 
role that self-report has in the field and the possible 
drawbacks that are being discussed but not tested via 
empirical studies, I believe that this comparison will 
provide an insight on the use of self-report and how it 
compares to unobtrusive field observation methods. 
My preliminary hypothesis is that self-report will 
takes away from the learner’s concentration on the 
learning environment and distracts their normal 
thought process. Moreover, I believe that self-report 
does not reflect on the entire learning process but 
rather concentrates on the moment in time when 
student is requested to provide a feedback or think 
aloud. With this within subject design and two 
measures of the same construct will help me verify or 
reject my initial hypothesis. 

The observations will be carried out in a 
predetermined order of the classroom and computers. 
Each observer will be responsible for a separate set of 
students and will be given 15-20 second segments to 
record the observed behavior and affect (time will be 
fixed based on game’s level of interactivity). During 
each segment, the dominant affective state will be 
recorded after which the observer will move to the 
next student repeating this process in a cycle until the 
end of class period. While class A will have no 
gameplay interruption because of employing BROMP 
observation tool, class B will have a pop up self-report 
measure of emotions that will interrupt students work 
every so often (currently it is set to 300 seconds). 

Along with these data collection tools, students’ 
gameplay screens along with their facial expressions 
will be continuously recorded in order to provide 
uninterrupted engagement data for sequential pattern 
mining purposes in the analysis stage. Finally, 
students gameplay will be recorded in a clickstream 
data format and will be synchronized with the 
emotions data in order to detect patterns in their 
emotional and behavioral states that affect their 
performance in game and vice versa. I will use the 
models of affective computing of over time data and 
create detectors that will automatically identify 
negative affect to support student persistence through 
failure and negative emotions. 

	  
ANALYSIS 

The uniqueness of scale of educational 
datasets renders many traditional statistical methods 
inapplicable (Azarnough, Bekki, Runger, Bernstein, & 
Atkinson, 2013). Sequence analyses have been used 
by researchers on educational datasets in order to gain 
more granular overlook at the data and existing 
patterns (Sanjeev and Zytkow, 1995; Zaıane et al., 
1998; Zaıane and Luo, 2001; Pahl and Donnellan, 
2003; Wang, 2002; Shen et al., 2003; Wang et al., 
2004). Sequence pattern analyses are concerned with 
the underlying patterns and orders of events in the 
dataset (Agrawal & Srikant, date; Zhou, Xu, Nesbit, & 
Winne, 2009). Once student data is converted into a 
simple ordered list of items (see Appendix G, Table 
11), there are numerous ways to investigate this 
sequential data.  

The main goal of this study is to find 
temporal and order based patterns of frustration and 
confusion in students’ affect data. Therefore, having 
continuous affect data, which I will obtain by coding 
video recordings of students’ faces, will allow me to 
perform inter-sequence distance analysis (Sabherwal 
& Robey, 1993) with optimal matching and clustering 
(Bailey, 1994; Tyron, 1939) of those sequences. These 
findings may potentially allow for design and 
development of better, affect-responsive digital games 
for learning.  

Sequence mining techniques offer several 
approaches to pattern mining. My interests lie with the 
methods that look for the most frequent patterns across 
a set of sequences. This way I will be able to compare 
different students affective states and find most 
frequently occurring patterns of confusion-frustration 
interrelation (e.g., CFFCFCFFCCFF). In addition, I 
will be able to assess changes in students’ engagement 
with the game (e.g., concentrated, bored) as a result of 
certain confusion-frustration patterns.  

Another option is motif analysis 
(Shanabrook, Cooper, Woolf, & Arroyo, 2010). 
Unlike inter-sequence analysis, motif analysis allows 
us to look inside the sequence for patterns instead of 
comparing the sequences (Hardy, & Bryman, 2004). 
This is a great method to look into one students affect 
data over hours of gameplay (e.g., investigate two 
strategically selected students sequences separately in 
order to find what are the big differences based on an 
extra variable such as gender or success rate etc.). 
Moreover, with motif analysis, I will be able to 
investigate one students affect data and compare it to 
their gameplay performance patterns. 
 
CURRENT STATUS OF WORK 

Currently, I am in the middle of my 
dissertation study implementation. While pilot work 
was conducted in order to test the same hypotheses, 
some of the research questions along with the learning 
environment (game) have been altered. There have 
been methods implement in order to make sure the 
data collection captures continuous affect data and 
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incorporates a self-report based comparison tool to 
unobtrusive field observations method that was 
implemented in the pilot work. I addition, self-report 
tool has been tested with the comparable grade level 
students in order to test the usability and the 
comprehensibility of the questionnaire’s content. 
Preliminary results indicate on an interesting inter-
relation between frustration, confusion and student 
performance in the learning environment. 
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ABSTRACT 
The landscape of online learning has evolved in a synchronous 
fashion with the development of the every-growing repertoire of 
technologies, especially with the recent addition of Massive 
Online Open Courses (MOOCs). Since MOOC platforms allow 
thousands of students to participate at the same time, MOOC 
participants can have fairly varied motivation. Meanwhile, a low 
course completion rate has been observed across different MOOC 
platforms. The first and initiated stage of the proposed research 
here is a preliminary attempt to study how different motivational 
aspects of MOOC learners correlate with course participation and 
completion, with motivation measured using a survey and 
participation measured using log analytics. The exploratory stage 
of the study has been conducted within the context of an 
educational data mining MOOC, within Coursera. In the long run, 
research results can be expected to inform future interventions, 
and the design of MOOCs, as well as increasing understanding of 
the emergent needs of MOOC learners as data collection extends 
beyond the current scope by incorporating wider disciplinary 
areas. 
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1. INTRODUCTION 
In this paper, the first section presents a literature review on 
motivational studies of online learners in both the generic distance 
learning fields and the ones specific to the MOOC settings. The 
second section on methodology and progress explains 
methodologies applied for at the current research stage as well as 
planned analysis for the in-progress work presented. The third part 
is the discussion section where potential follow-up studies are 
proposed. Lastly, aspects on direction of future analysis and 
where advice is needed are stated. 

2. LITERATURE REVIEW 
2.1 Motivation of Online Learners 
MOOC students have demonstrated varied motivation, beyond 
just solely utilitarian or learning goals [34]. Kizilcec, Piech, and 
Schneider [21] presented a classification method grouping MOOC 
learners by engagement levels. Clow [9] introduced a “funnel of 
participation” which conceptualized a pattern of highly unequal 
participation of MOOC learners and further confirmed the 
challenges of catering to varied needs of MOOC participants with 
current MOOC models.  

High MOOC student dropout rates have been identified and 
studied by both researchers in academia and journalists [3, 8, 12, 
22, 29], though debate is ongoing about the importance of dropout 

rate within the context of MOOCs. Furthermore, doubts have been 
cast upon whether completing the course assignments is necessary 
for MOOC participants [18, 23]. As Anderson [3] pointed out, 
many MOOC participants enroll in courses only to satisfy their 
initial curiosities with no intention of completing the course. 
Although course completion rate is by no means the only 
meaningful outcome, it has become one of the most discussed 
metrics in the MOOC environment. 
Although MOOCs are a relatively new addition to the field of 
online learning, the construct of learner motivation has long been 
seen as essential to learning and learning outcomes. Dweck [13] 
argued that two key goals characterize most learners: learning 
goals and performance goals. Learning goals or mastery goals [2] 
indicates learners who strive to increase their competence and 
master the given skill; whereas performance goals suggest that 
learners seek to obtain favorable assessments from others. Since 
then, researchers have argued for two types of performance goals 
[17]. 

2.2 Goal Orientation of Online Learners 
More recently, it has been argued that different goal orientations 
are actually symptoms of underlying student mind-sets.  Students 
with growth mind-sets hold beliefs that intelligence is malleable; 
whereas students with fixed mind-set considers intelligence an 
unchangeable entity [14, 15]. A study conducted by Blackwell, 
Trzesniewski, and Dweck [7] measured and monitored seventh 
grade students of these two aforementioned mind-sets and found 
out that students with a growth mind-set outperform their 
counterparts who accept a fixed mind-set, over the long-term 
term. 

Many motivation theorists have also argued that learning/mastery 
goals sustain intrinsic motivation [11, 16, 20]. According to Ryan 
and Deci [30], intrinsic motivation refers to executing a learning 
activity out of one’s inherent interests, whereas extrinsic 
motivation implies one intends to gain a separate outcome. 
MOOC students presumably consist of learners possessing each 
(or both) types of motivation. For example, out of intrinsic 
motivation, one might register for an educational data mining 
course purely out of curiosity. In contrast, out of extrinsic 
motivation, one might register for the same course because the 
skill sets covered in this course are useful for the student to 
advance in his or her career. 

Intrinsic motivation has long been praised to predict effective 
learning; however such kind of motivation is also vulnerable to 
various non-supportive [31]. Keller and Suzuki [19] reasoned that 
students of E-learning platforms confront more motivational 
challenges due to that they have to work independently at a 
distance in most cases. It is also noticed that a relatively high 
dropout rates have been consistently observed across E-learning 
platforms [27], but these environments are generally more 
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effective for students with self-regulated learning skill. 

2.3 LAK and EDM on MOOCs 
Among students who do not effectively regulate themselves 
during online learning, disengaged behaviors may emerge, such as  
“carelessness” -- not demonstrating a skill despite knowing it [32] 
and “gaming the system” – where learners use help and feedback 
provided by the online learning system to avoid learning [4]. It is 
not yet clear what the full range of disengaged behaviors are in 
MOOCs, but understanding this, and the role these behaviors play 
in the reduction of participation in MOOCs, is a key research 
question. Research applying learning analytics and data mining on 
MOOCs has helped identify distinct behavioral patterns. As an 
emerging filed, existing MOOC research has focused on 
classifying learner behavioral patterns by levels of engagement [9, 
21]; adapting existing modeling techniques to MOOC data [28]; 
as well as developing new models for the MOOC environment [1, 
35].  

3. METHODOLOGY AND PROGRESS 
3.1 Research Context 
The exploratory stage of the proposed project has been carried out 
in the context of one MOOC, titled “Big Data in Education”, 
offered through Coursera by Teachers College, Columbia 
University. (https://www.coursera.org/course/bigdata-edu). This 
course spanned 8 continuous weeks with 8 weekly assignments. 
The weekly course composed of lecture videos. Students and 
teaching staff participated in forum discussion accompanying 
weekly course releases. The motivational survey was distributed 
through Coursera to students who have enrolled in this course 
prior to the course start date. This course has an enrollment of 
about 48,000 students.  

3.2 Survey Data 
Given the heterogeneity of the motivations of MOOC learners and 
the current interest in course completion and other measures of 
participation, this proposed research intends to expand our 
understanding of MOOC learners by analyzing how MOOC 
learners’ motivation correlates with students’ degrees of course 
completion and participation. Two categories of motivational 
aspects including both general items and MOOC-specific ones has 
been taken into account in this initial research attempt. 
Specifically, both MOOC-specific motivational items including 
those tested by existing MOOC studies [5, 26] and two subscales 
of the PALS survey [24] measuring goal orientation and academic 
efficacy are included in a pre-course survey. The MOOC-specific 
items include questions such as the familiarity of the MOOC 
environment and course content; whereas the PALS subscales 
focus on learner orientations towards learning or performance 
goals, across learning contexts. The survey was distributed 
through broadcast E-mail to all registered students. As of the end 
of the course, the pre-course survey has gathered 2,792 responses. 

3.3 Log Analytics 
Learning analytics and educational data mining techniques will 
also be applied to study student participation. Specifically, 
drawing from past research in monitoring participation within 
online learning [10, 25], this project will analyze indicators of 
participation such as use of discussion forums, quiz completion 
rate, and video usage. All the above-mentioned data collected will 
then be linked to the MOOC survey, and correlation mining will 
be used to determine which motivational indicators can predict 
participation metrics, employing FDR post-hoc correction [6] to 

control for running too many tests. Patterns of changes in 
participation across the course will also be analyzed by means of 
sequential pattern mining. Motivational response and participation 
will be used as predictors of MOOC completion. 

4. PROPOSED CONTRIBUTION 
Although MOOC participants represent a diverse population of 
learners with a diverse range of motivations, they do form a new 
learning community with common features. The low retention rate 
observed across different MOOC platforms is an important 
engagement issue to investigate further. A low retention rate may 
not be inherently negative in the context of MOOCs [21, 28, 35], 
given that MOOC participants registering for the same course can 
have very different motivations and goals in mind. At the same 
time, some failure to complete may not be simply due to lack of 
student interest in completing. Therefore, understanding MOOC 
learners’ motivation is imperative in helping us understand course 
participation and completion in this new context; which failure to 
complete is simply an artifact of student goals? Which is due to 
other factors, and therefore a problem to address? Research results 
of the present study is expected to inform intervention of MOOC 
learning environments as well as providing MOOC faculty 
members resources in planning and modifying their courses.  

5. ADVICE NEEDED FOR FUTURE 
ANALYSIS 
The first stage of analysis serves as initial research attempt to 
study how different motivational aspects of MOOC participants 
correlate with course participation and completion. Moving 
forward, research and advice is needed toward further 
understanding of learning patterns of MOOC learners and to 
inform future design of interventions.  
Specifically, advice on how to extract MOOC data based on 
existing knowledge of other online learning platforms especially 
intelligent tutoring systems is needed for the progressing of the 
current research stage. For example, what are some of the 
knowledge components identified in ITS can be adapted in the 
MOOC models? How to synchronize forum textual data with 
clickstream data? How can unrecognized similarities or features 
between MOOCs and other well-studied online learning platforms 
be detected? Additionally, general and specific advice on 
designing experimental intervention is needed in ensuring internal 
validity, external validity, as well as research feasibility.  
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ABSTRACT
My thesis focuses on the design of systems to augment exist-
ing e-learning software in a way that supports both teachers
and students. It addresses three central challenges: per-
sonalization of educational content to students, techniques
for machine-generated interventions, and incentive designs
to enhance students’ learning. For each of these problems
I will synthesizes approaches from informational retrieval
and social choice theory. My results thus far have included
a novel algorithm for sequencing content in e-learning sys-
tem that uses collaborative filtering to generate a difficulty
ranking over the test questions, without needing to predict
students’ performance directly on these questions. The al-
gorithm was able to outperform state-of-the-art approaches
from the literature on two different data sets containing mil-
lions of records. My future efforts will be directed to ex-
tending these results and to generalize my approach to the
problems of intervention and incentive designs.

1. INTRODUCTION
My thesis focuses on the design of systems for e-learning that
support both students in their learning processes and teach-
ers in their understanding of how students learn. I focus
on augmenting existing educational software already used
in schools where impact can be achieved and for which large
amounts of data is available for analysis from past students
interaction. My work addresses three central challenges in
the design of such systems by synthesizing techniques from
information retrieval and social choice:

The first challenge is personalization of educational content
to students. Educational content is now accessible to stu-
dent communities of varied backgrounds, learning styles1

and needs. There is thus a growing need for personaliz-
ing educational content to students in e-learning systems in
a way that adapts to students’ individual needs [10, 1]. My

1learning styles: e.g. as defined by [5] covering perception,
input, organization, processing and understanding aspects.

approach towards such personalization is to sequence stu-
dents’ questions in a way that best matches their learning
styles or gains [2, 12]. To this end, I use a collaborative
filtering approach [3], to generate a difficulty ranking over
a set of questions for a target student by aggregating the
known difficulty rankings over questions solved by other,
similar students. The difficulty rankings of similar students
is combined using social choice theory [6] to produce the
best difficulty ranking for the target student.

The second challenge is intelligent intervention for students.
Two foundational principles of a collaborative system [7, 4,
8] are that (1) the system pursues all possible avenues for do-
ing its tasks, and provides support to all participants in the
system. (2) the system is lightweight and avoids disrupting
other participants as much as possible. Within the context
of education, such a system will guide students’ interactions
in a way that best adapts to their abilities and learning
styles, while minimizing the amount of intervention, allow-
ing for activities that yield educational gains through explo-
rations. To minimize intrusion, the system must be able to
model the effect of interruption on the students’ behavior
with the educational system over time. For example, the
system should be able to decide not to intervene when the
student is off-track, because it predicts that this exploratory
behavior will yield further educational gains. To this end,
I will use approaches from the recommendation systems lit-
erature to compare students’ past interactions with that of
similar students, to infer the best point in time when to
interrupt the user.

The third challenge is incentive design for influencing the
behavior of students (whether as individuals or group mem-
bers). Although incentive structures have been studied ex-
tensively in psychology and economics (and most recently,
human computation), there has been scarce work on the de-
sign and analysis of incentives in educational contexts. To
this end, I plan to model students’ uses of educational con-
tent (e.g., on-line course forums, problem sets, etc...) and
to compare the efficacy of different incentives (e.g., points,
badges and peer pressure) towards steering student behavior
and learning.

2. INITIAL RESULTS
My research efforts thus far have focused on the first chal-
lenge, that of personalizing educational content to students
in e-learning systems. I developed a novel algorithm for se-
quencing content in e-learning systems that directly creates

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 455



www.manaraa.com

a “difficulty ranking” over new questions. My approach is
based on collaborative filtering [3], which generates a dif-
ficulty ranking over a set of questions for a target student
by aggregating the known difficulty rankings over questions
solved by other, similar students. The similarity of other
students to the target student is measured by their grades
on common past question, the number of retries for each
question, and other features. Unlike other uses of collabora-
tive filtering in education, this approach directly generates
a difficulty ranking over the test questions, without predict-
ing students’ performance directly on these questions, which
may be prone to error.2

The algorithm, called EduRank, weighs the contribution of
these students using measures from the information retrieval
literature. It allows for partial overlap between the difficulty
rankings of a neighboring student and the target student,
making it especially suitable for e-learning systems where
students differ in which questions they solve. The algorithm
extends a prior approach for ranking items in recommen-
dation systems [9], which was not evaluated on educational
data, in two ways: First, by using social choice theory to
combine the difficulty rankings of similar students and pro-
duce the best difficulty ranking for the target student. Sec-
ond, EduRank penalizes disagreements in high positions in
the difficulty ranking more strongly than low positions, un-
der the assumption that errors made in ranking more diffi-
cult questions are more detrimental to students than errors
made in ranking of easier questions.

I evaluated EduRank on two large real world data sets con-
taining tens of thousands of students and about a million
records. I compared the performance of EduRank to a vari-
ety of personalization methods from the literature, including
the prior approach mentioned above as well as other popular
collaborative filtering approaches such as matrix factoriza-
tion and memory-based K nearest neighbors. I also com-
pared EduRank to a (non-personalized) ranking created by
a domain expert. EduRank significantly outperformed all
other approaches when comparing the outputted difficulty
rankings to a gold standard.

3. FUTURE CHALLENGES AND ANTICI-
PATED CONTRIBUTION

My next efforts are going to focus on incentive design and
intervention policies in e-learning systems. For this, I’m
going to address, among others, the following topics and
will be happy to get the advise of the consortium on them:

• Extrinsic vs. intrinsic motivation and respective in-
centives in educational systems

• Usage of persuasion technologies to steer on-line learn-
ing behavior

• Badges as an reputation incentive mechanism

• Additional game mechanics to be adapted for the con-
text of my research

2To illustrate, in the KDD cup 2010, the best preforming
grade prediction algorithms exhibited prediction errors of
about 28% [11]

• Comparing hints to other intervention methods in the
context of exploration and learning

• Influencing learning and mastery through personal vs.
group incentives

• Investigating additional social choice methods for com-
bining peers influence on personalization and interven-
tion

My anticipated contribution will include developing novel
modeling algorithms for users in e-learning systems, design-
ing incentive mechanisms for these systems and constructing
and evaluating personalization and intervention mechanisms
for users by reasoning about how they respond to these in-
terventions over time. I will evaluate my approaches in real
world e-learning environments.
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Graph data has become increasingly prevalent in data-mining
and data analysis generally. Many types of data can be rep-
resented naturally as graphs including social network data,
log traversal, and online discussions. Moreover recent work
on the importance of social relationships, peer tutoring, col-
laboration, and argumentation has highlighted the impor-
tance of relational information in education including:

• Graphical solution representations such as argument
diagrams and concept maps;

• Graph-based models of problem-solving strategies;

• User-system interaction data in online courses and open-
ended tutors;

• Sub-communities of learners, peer-tutors and project
teams within larger courses; and

• Class assignments within a larger knowledge space.

Our goal in this workshop was to highlight the importance
of graph data and its relevance to to the wider EDM com-
munity. We also sought to foster the development of an in-
terested community of inquiry to share common problems,
tools, and techniques. We solicited papers from academic
and industry professionals focusing on: common problems,
analytical tools, and established research. We also partic-
ularly welcomed new researchers and students seeking col-
laboration and guidance on future directions. It is our hope
that the papers published here will serve as a foundation
for ongoing research in this area and as a basis for future
discussions.

The papers presented at the workshop (see [1]) covered a
range of topics. Kovanovic, Joksimovic, Gasevic & Hatala
focus on evaluating social networks, and specifically on the
development of social capital and high-status individuals in
a course context while Catete, Hicks, Barnes, & Lynch de-
scribe an online tool designed to promote social network
formation in new students. Similar work is also described

by by Jiang, Fitzhugh & Warschauer who focus on the iden-
tification of high-connection users in MOOCs.

Other authors turned to the extraction of plan and hint in-
formation from course materials and user logs. Belacel, Du-
rand, & Laplante define a graph-based algorithm for identi-
fying the best path through a set of learning objects. Kumar
describes an algorithm for the automatic construction of be-
havior graphs for example-tracing tutors based upon expert
solutions and Dekel & Gal in turn consider plan identifi-
cation to support automatic guidance. Two further papers
by Vacuĺık, Nezvalová & Popeĺınský, and by Mostafavi &
Barnes, apply graph analysis techniques to the specific do-
main of logic tutoring and, in particular, on the classification
of student solutions and to the evaluation of problem quality.

And finally several authors chose to present general tools
for the evaluation of graphical data. Lynch describes Aug-
mented Graph Grammars, a formal rule representation for
the analysis of rich graph data such as argument diagrams
and interconnected student assignments, and details an im-
plementation of it. Sheshadri, Lynch, & Barnes present In-
Vis a visualization and analysis platform for student inter-
action data designed to support the types of research de-
scribed above. And McTavish describes a general technique
to support graph analysis and visualization particularly for
student materials through the use of interactive hierarchical
edges. We thank the included authors for their contributions
to the discussion and look forward to continued research.
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1. INTRODUCTION 
Personalization of learning in computer-based environments is a 
major initiative in education today - accordingly, the United States 
Department of Education recently cited personalized, 
individualized, and differentiated approaches to instruction as a 
grand challenge in their National Education Technology Plan [1].  
Many computer-based learning environments adapt to individual 
learners based on cognitive factors like skill mastery. Recent 
research has been directed at improving personalization in such 
systems by harnessing non-cognitive factors such as learner 
affect, motivation, preferences, self-efficacy, self-regulation and 
grit.  The importance and promise of such work is noted in a 
recent draft report from the U.S. Department of Education’s 
Office of Educational Technology [2], emphasizing non-cognitive 
factors like grit, tenacity, and perseverance for learning outcomes, 
notes “important opportunities to leverage new and emerging 
advances in technology (e.g., educational data mining, affective 
computing, online resources, tools for teachers) to develop 
unprecedented approaches for a wide range of students.” To 
capitalize on these opportunities, future work on non-cognitive 
factors will require not only an understanding of learning science 
theory to inform meaningful scientific work on non-cognitive 
factors but also a good handle on contemporary data mining 
techniques to harness large scale, “big data” that is now available 
in a wide variety of educational technology contexts. 

Recognizing that data-mining techniques offer a unique 
opportunity to collect and analyze information about non-
cognitive factors, which can then be used to adapt instruction, 
research programs at various universities, companies, and 
government organizations focus on the influence of non-cognitive 
factors on student learning. Across these institutions, methods and 
approaches for varying learning environments differ greatly. 
Bringing together researchers to discuss similarities and 
differences between approaches is both important and timely. 

As such, this workshop brings together researchers studying non-
cognitive factors in a variety of environments and platforms, using 
various experimental, measurement, data mining, and statistical 
methods. In addition to presenting on-going research on specific 
non-cognitive factors and their impact of learning outcomes, this 
workshop is a venue to address common methodological 
questions and problems: what are suitable ways to measure, 
observe, detect, sense, or infer factors like learner affect or mood? 

How, and to what degree, or various non-cognitive factors 
associated with a variety of learning outcomes? How do 
interventions efficaciously “honor” learner preferences or 
motivate students? What are appropriate levels of granularity for 
analyses and interventions (e.g., at a level of problems, topical 
sections, or entire curricula)? How do lessons learned about one 
particular factor or learner population generalize to other non-
cognitive factors and learner populations? How do theoretical 
advances in the learning sciences and data mining techniques 
complement each other to help answer questions about non- 
cognitive factors and personalization in disparate, adaptive 
learning environments in the era of “big data?” 

Case studies presented in this workshop provide a host of 
promising answers to these questions as well as insights into on-
going research and directions for future work that will seek to 
leverage non-cognitive factors in technology-based (and 
mediated) learning environments to improve learning outcomes. 
Finally, and appropriately for the present venue, presenters 
represent a diversity of approaches to analyzing and mining rich 
learner and/or instructional data generated by modern learning 
platforms and environments. 
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Bayesian Knowledge Tracing is a popular method for student 

modeling because of its capability to infer student’s dynamic 

knowledge state in real time as the student is solving a series of 

problems (Corbett & Anderson, 1995). After its introduction in 

1995, many extensions to the original technique have been 

proposed to improve. Variants include: fitting model parameters 

to individuals rather than populations (Lee & Brunskill, 2012), 

crossing skill and student parameters (Yudelson, Koediger, & 

Gordon, 2010), contextualizing model parameters based on past 

and current usage of an intelligent tutoring system (Baker, 

Corbett, & Aleven, 2008, Baker et al., 2010; González-Brenes, 

2014; Pardos et al., 2010) and on latent characteristics of students 

and problems (Khajah et al, 2014), clustering similar students and 

sharing parameters among them (Pardos et al, 2012), soft sharing 

of parameters via hierarchical Bayesian inference (Beck & Chang, 

2007; Beck, 2007), and considering knowledge state as a 

continuous variable (Sohl-Dickstein, 2013; Smith et al., 2004). 

At this workshop we look back at the twenty years of research on 

Bayesian Knowledge Tracing and examine the problems that are 

actively investigated by educational data mining researchers 

today. 

A tangible number of papers are discussing practical questions of 

training Bayesian Knowledge Tracing models. Derrick Coetzee 

looks at the amount of data that is necessary to produce a usable 

model. According to the author, in the situation when there is not 

enough of training data, the model would perform poorly. In this 

work, synthetic data is used to estimate the standard deviation of 

the prediction error that is found to be proportional to the inverse 

of the size of the training set. Also, author finds that parameter 

values close to 0 or 1 are easier to arrive at when facing the 

shortage of training data. 

Another paper by Dhanni et al. discusses alternative objective 

functions used for training BKT models. Traditionally, log-

likelihood is used. However, authors find that rood mean squared 

error (RMSE) when used leads to a more accurate model, when 

log-likelihood and another metric, area under the ROC curve, 

result in less accurate model. The authors’ conclusions are based 

on the distance metric between ground truth parameters used to 

generate synthetic data and the model parameters under 

consideration as characterized by the corresponding value of the 

metric. 

Nelimarkka and Ghori look at BKT performance in situations 

when priors of the skill masteries assume extremely low or 

extremely high values. The authors find that extremely high 

values of priors lead to worse model performance. 

An interesting work by Rosenberg-Kima and Pardos seeks to 

detect whether the data model was trained on is synthetic or real. 

Authors stipulate that given this information it would be possible 

to better define the goodness of model’s fit. 

Another group of papers is discussing extensions to the BKT 

model. Xu et al. talk about using a signal from a portable 

electroencephalography (EEG) device as a sensor for determining 

student’s emotional state. Authors report that EEG-informed BKT 

model results in significant improvement of the model 

performance. 

Zhu et al. talk about a special Sequence of Actions (SOA) model 

that takes advantage of the student attempts and hit requests from 

the previous problem the student solved. A two-step modeling 

approach is compared to the standard BKT and the assistance 

model (AM). Results are showing that the SOA model has a 

reliably better accuracy than BKT and AM. 

Hawkins and Heffernan look at the problem of correlating student 

performance on the current problem and the previous problem 

when both address similar skills. Authors introduce a BKT variant 

that takes into account the similarity between the current and 

previous problem. It is shown that the new model can capture the 

effect of problem similarity on performance, and moderately 

improve accuracy on skills with many dissimilar problems. 

Student gaming behaviors are an intensively researched area 

today. As it was shown before, misuse of intelligent tutoring 

system’s hints could endanger learning. Schultz and Arroyo 

present a variation of BKT model that predicts gaming behaviors 

and retains the prediction of performance. The new model is 

compared to standard BKT model as well as the models that target 

engagement specifically. 
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ABSTRACT
Virtually all learning management systems and tutoring sys-
tems provide feedback to learners based on their time spent
within the system, the number, intensity and type of tasks
worked on and past performance with these tasks and cor-
responding skills. Often the analysis of learner / system
interactions is limited to these high-level interactions, and
does not make good use of all the information available in
much richer interaction types such speech and video. In this
workshop we brought together researchers and practitioners
interested in developing data-driven feedback and interven-
tion mechanisms based on rich, multimodal interactions of
learners.

1. WORKSHOP PAPERS
The workshop contributions addressed topics from affect
recognition in intelligent tutoring systems to online learn-
ing and collaborative learning.

Interventions During Student Multimodal Learning Activi-
ties: Which, and Why? [1] This paper describes a Wizard-
of-Oz study investigating the potential of Automatic Speech
Recognition together with an emotion detector support young
children in their exploration and reflection.

Multimodal Affect Recognition for Adaptive Intelligent Tu-
toring Systems [2]. This paper aims to support student per-
formance prediction and sequencing models for intelligent
tutoring systems by cues taken from multimodal input such
as speech input from the students.

Collaborative Assessment [3]. In this paper is introduced an

automated assessment service for online learning support
in the context of communities of learners. The goal is to
introduce automatic tools to support the task of assessing
massive number of students as needed in MOOCs.

Mining for Evidence of Collaborative Learning in Question
& Answering Systems [4]. This paper illustrates how the
collaborative nature of feedback can be measured in online
platforms, and how users can be identified that need to be
encouraged to participate in collaborative activities.

Creative Feedback: a Manifesto for Social Learning [5]. In
order to ground and motivate the definition and use of “cre-
ative feedback” the paper takes a historical look at the two
concepts of creativity/creative and feedback.

2. CONCLUSIONS
The contributions present a growing interest in the adoption
of technique of real-time and offline feedback for improving
the learning process. There are open research question on
the selection of the best feedback mechanism, and on inte-
grating such feedback into learning analytic frameworks.
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